The present disclosure relates to methods and apparatuses for separating biological materials, such as a selected fraction from a multiple component biological material.
This section provides background information related to the present disclosure, which is not necessarily prior art.
Various cellular or biological materials can be used to facilitate the healing or recovery process in a human patient. Selected cell types, such as stromal cells, pluripotent or multipotent stem cells, or fully differentiated cells can be applied therapeutically to the patient. For example, stem cells can be applied to an affected area of the patient, such as an area that may be damaged due to injury, chemotherapy, or radiation therapy, to assist in healing the area through differentiation of the stem cells and regeneration of the affected cells.
In performing a therapeutic procedure on a human patient using undifferentiated cells, such as stem cells or stromal cells, the undifferentiated cells can be obtained from various sources, including the patient's own anatomy. Accordingly, certain autologous cells can be applied to or injected into various portions of the patient's anatomy. Generally, a whole tissue, such as adipose tissue, or whole blood sample, can be obtained from the patient during a first procedure, selected cells can be separated from the whole tissue or blood sample, and the selected, separated cells can be reapplied to or injected into the patient during a subsequent procedure.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present teachings provide for a separation system for separating a multiple component material into at least two fractions. The separation system includes a separation device having a first end, a second end opposite to the first end, and a sidewall that extends between the first end and the second end to define a separation chamber having an interior volume. The system also includes a valve moveable between an open position and a closed position, the valve is mounted at a fixed location within the separation chamber at a position that is closer to the second end than to the first end and is spaced apart from the second end, the valve is operable to isolate a first fraction of the multiple component material having a first density on a first side of the valve from a second fraction having a second density on a second side of the valve that is opposite to the first side.
The present teachings further provide for a separation system for separating a multiple component material into at least two fractions that includes a separation device and a valve. The separation device has a first end, a second end opposite to the first end, and a sidewall that extends between the first end and the second end to define a separation chamber having an interior volume. The valve is mounted at a fixed positioned within the separation chamber at a position that is closer to the second end than to the first end and is spaced apart form the second end. The valve includes a screen, a flexible valve actuation member, and a sealing member. The flexible valve actuation member is movable in response to gravitational forces applied to the separation device. The sealing member is supported by the flexible valve actuation member. The flexible valve actuation member and the sealing member extend in a plane perpendicular to a longitudinal axis of the separation chamber and the sealing member contacts the screen to prevent the passage of materials through the screen when the valve is in a closed position. The flexible valve actuation member and the sealing member bend toward the second end when the valve is in an open position in response to gravitational forces exerted upon the separation device such that the sealing member is spaced apart from the screen to permit the passage of material through the screen.
The present teachings also provide for a method for isolating at least two fractions of a multiple component material. The method includes the following: loading the multiple component material into a separation chamber of a separation device between a valve mounted at a fixed position in the separation chamber and a first end of the device, the first end is opposite to a second end and a sidewall extends between the first end and the second end to define the separation chamber having an interior volume; centrifuging the separation device such that the valve moves to an open position in response to gravitational forces exerted on the device to permit a first fraction of the multiple component material of a first density to pass through the valve toward the second end; ceasing centrifugation of the separation device to permit the valve to move to a closed position, thus isolating the first fraction of the first density between the valve and the second end and isolating a second fraction of a second density that is less dense than the first density between the valve and the first end; and withdrawing at least one of the first fraction and the second fraction from the separation chamber for use in a subsequent procedure.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
With initial reference to
With additional reference to
The grate 20 is surrounded by an annular insert 28 having a conical surface 30 that is angled toward the grate 20 to direct materials on the conical surface 30 toward the grate 20. The insert 28 has an outer diameter 32 that approximates an inner diameter of the separation chamber 17, such that no material can pass around the insert 28. The grate 20 and the opening 22 defined by the grate 20 provide support and alignment for a second extraction tube 72, which is further described herein. In place of the grate 20, any suitable screen with or without an opening therein can be used. Further, the grate 20 may be optional and the device 10 can be provided with the grate 20 removed and an opening provided in its place.
The valve 18 further includes a sealing member 34 and a support or valve actuation member 36. As illustrated, the sealing member 34 and the valve actuation member 36 can be aligned along the longitudinal axis A of the separation chamber 17. The sealing member 34 is generally shaped as a cylindrical disk and includes an opening 38 at its axial center. The sealing member 34 can be made of any suitable material, including a flexible material, such as a silicone rubber material. The sealing member 34 is sized to seal the plurality of passageways 25.
The valve actuation member 36 can include a cylindrical disk 40 and a mounting tube 42 extending therefrom along a longitudinal axis of the valve actuation member 36. The cylindrical disk 40 has a circumference that is substantially similar to that of the sealing member 34. The cylindrical disk 40 includes an opening 44 at its axial center. As further described herein, the cylindrical disk 40 provides support for the sealing member 34 to position the sealing member 34 against the grate 20 and prevent the passage of materials through the passageways 25 when the valve 18 is in the closed position. Further, the cylindrical disk 40 is flexible in response to gravitational forces, such as those experienced during centrifugation, to move the sealing member 34 from contact with the grate 20 and permit the passage of materials through the passageways 25 when the valve 18 is in the open position.
The mounting tube 42 extends from the cylindrical disk 40 along the axial center of the cylindrical disk. The mounting tube 42 has a circumference that is generally smaller than the circumference of the cylindrical disk 40. Proximate to a distal end 46 of the mounting tube 42 is at least one aperture 48. As illustrated, the distal end 46 includes four of the apertures 48, which are spaced evenly about the mounting tube 42 at approximately 90° intervals. A through port 50 extends between the apertures 48 and the opening 44 to provide fluid communication through the valve actuation member 36.
The cylindrical disk 40 of the valve actuation member 36 can be formed of any suitable material that can flex when a force is applied to it, such as a centrifugal force or a pressure differential force. For example, the disk 40 can be any resilient member operable to bias the valve 18 in a closed position such that the sealing member 34 blocks the passage of materials through the passageways 25. Material selected for the cylindrical disk 40 can include acrylic, polycarbonate, and any other appropriate resilient, flexible, and substantially inert material. The sealing member 34 can be mounted to the cylindrical disk 40 in any suitable manner, such as by using a suitable adhesive. Alternatively, the sealing member 34 can be a coating on the disk 40 and/or integral with the disk 40. The sealing member 34 can also be a separate component that is not secured to the disk 40, but rather sits thereon and is supported by the disk 40.
The assembled valve 18 is positioned within the separation chamber 17 such that the distal end 46 of the mounting tube 42 abuts the second end 14 of the chamber 17, which may include a funnel 52 as further described herein. The grate 20, the sealing member 34, and the valve actuating member 36, are each positioned such that the center opening 22, the opening 38, and the opening 44 respectively are all aligned along the longitudinal axis A. When the valve is in the closed position as illustrated in
With additional reference to
The funnel 52 at the second end 14 of the chamber 17 generally includes a base portion 54 at the longitudinal axis A of the separation chamber 17. Extending from the base portion 54 is an angled cylindrical sidewall 56. The sidewall 56 is angled such that it slopes from the sidewall 16 of the separation chamber 17 toward the base portion 54. Thus, the funnel 52 directs material along the angled cylindrical sidewall 56 toward the base portion 54 where the apertures 48 of the mounting tube 42 are positioned. The funnel 52 can be secured at the second end 14 in any suitable manner, such as with a suitable adhesive or a press fit. The funnel 52 can include a counterbore or recess 55 on its undersurface facing the second end 14 of the device 10. The recess 55 accommodates a dimple 57 at the second end 14 of the device 10. Cooperation between the dimple 57 and the recess 55 can retain the funnel 52 centered in the separation chamber 17. The dimple 57 can cooperate with a corresponding feature in a centrifugation device to properly position the device 10 in the centrifuge.
The separation chamber further includes a loading port 58, a first extraction port 60, and a second extraction port 62. The loading port 58 can be any suitable port that extends into the separation chamber 17 to permit the introduction of materials into the separation chamber 17. As illustrated, the loading port 58 is at the first end 12 and extends there through. The loading port 58 can also be offset from the longitudinal axis A, as illustrated. The loading port 58 can include a loading port cap 64 that can be fastened to the port 58 using any suitable connection, such as a Luer lock connection. The Luer lock connection can also cooperate with a device for delivering the multiple component material to the separation chamber 17, such a syringe.
The first extraction port 60 can be any suitable port that extends into the separation chamber 17 to permit the withdrawal of one or more components of a multiple component material from within the separation chamber 17. As illustrated, the first extraction port 60 is at the first end 12 and extends there through. The first extraction port 60 can include a cap 66 that can be fastened to the first extraction port 60 using any suitable connection, such as a Luer lock connection. The Luer lock connection can also cooperate with a device for withdrawing the components from within the separation chamber 17, such as a syringe. Extending from the first extraction port 60 can be a first extraction tube 68. As illustrated, the first extraction tube 68 extends from the port 60 to a position proximate to a first side 69 of the valve 18 that faces the first end 12. However, one skilled in the art will recognize that the extraction tube 68 can be of any suitable length to extract a desired component of the multiple component composition of a specific density. For example, if the composition includes adipose tissue and purified fat is desired for extraction, then the extraction tube 68 can extend approximately 1.5 inches from the first end 12, such as in applications where 60 ml of adipose tissue is loaded for separation in the separation chamber 17 having a diameter of about 1.35 inches and a volume of about 90 ml. This is because purified fat is typically one of the least dense fractions of adipose tissue. Alternatively, if one or more of the more dense fractions of adipose tissue is desired for extraction, such as oil or excess/tumescent fluid, then the extraction tube 68 can extend from the first end 12 to a distance that is about 0.25 inches from the valve 18. Such a longer extraction tube 68 can also be use to extract purified fat by drawing off the more dense fractions prior to drawing the purified fat.
The second extraction port 62 can be any suitable port that extends into the separation chamber 17 to permit the withdrawal of one or more components of the multiple component material from within the separation chamber 17. As illustrated, the second extraction port 62 is at the first end 12 and extends there through. The second extraction port 62 can include a cap 70 that can be fastened to the second extraction port 62 using any suitable connection, such as a Luer lock connection. The Luer lock connection can also cooperate with a device for withdrawing the components from within the separation chamber 17, such as a syringe.
Extending from the second extraction port 62 can be the second extraction tube 72. As illustrated, the second extraction tube 72 extends from the second extraction port 62 along the longitudinal axis A to the valve 18. At the valve 18, the second extraction tube 72 extends through the center opening 22 of the grate 20, through the opening 38 of the sealing member 34, through the opening 44 of the valve actuation member 36, and the through port 50 to a position proximate to the apertures 48. Thus, the second extraction tube 72 provides fluid communication between the apertures 48 and the second extraction port 62. The second extraction tube 72 can sit on a shoulder 73 of the mounting tube 42 and can be secured within the valve 18, such as within the through port 50, in any suitable manner, such as with a press-fit or a suitable adhesive.
One skilled in the art will appreciate that the grate or screen 20 can be provided in a variety of different configurations in addition to those illustrated. Accordingly and with additional reference to
With additional reference to
With initial reference to
Prior to being loaded in the separation chamber 17, the adipose tissue, or any multiple component composition, can be optionally subject to mechanical disruption. Mechanical disruption loosens the adipose tissue to facilitate separation of the different fractions during further processing. Any suitable disruptor can be used, such as the disruptors described in U.S. application Ser. No. 12/395,085 titled “A System For Separating A Material,” which was filed on Feb. 27, 2009 and is assigned to Biomet Biologics, LLC., which is incorporated by reference herein. This type of disruptor includes a screen or grate that the multiple component material is forced through to loosen the interaction between the different fractions.
After the adipose tissue is loaded, a suitable anticoagulant, such as citrate phosphate dextrose (“CPD”), can be added as well as through the loading port 58. Any suitable amount of CPD can be added, such as about 8.5 cc for 60 cc of adipose tissue. The separation device 10 can then be incubated at about 37° C. for about five minutes. Any suitable device or method can be used to perform the incubation, such as by placing the separation device 10 in a heat bath or wrapping the device 10 in a heat pack.
The separation device 10 containing the adipose tissue is then spun in a suitable rotational device, such as the centrifuge 90 illustrated in
During centrifugation, gravitational forces act on the valve 18 to cause the valve 18 to move to the open position of
With additional reference to
The valve 18 is positioned within the separation chamber 17 along the longitudinal axis A such that after centrifugation the two fractions of the multiple component material that are most desirable are separated on opposite sides of the valve 18. One skilled in the art will recognize that the position of the valve 18 along the longitudinal axis A will depend on the densities of the most desired fractions.
For example, when the multiple component material is adipose tissue, the valve can be positioned from about 0.5 inches to about 1.5 inches, such as about 0.75 inches, from the second end 14 in applications where the separation chamber 17 has a diameter of about 1.35 inches and a volume of about 90 ml. As a result, the fractions of adipose tissue of the greatest density, including cellular material 92 having a typical density of about 1.06 g/ml to about 1.1 g/ml, will be isolated proximate to the second end 14 on the second side 71 of the valve 18. Conversely, the fractions of adipose tissue of the least density, including purified fat having a density of about 0.95 g/ml, excess water or other fluid having a density of about 1.0 g/ml, oil, etc. at 94 are isolated on the first side 69 of the valve 18. A tumescent fluid layer 95 will be isolated on both sides of the valve 18 between the cellular material 92 and the purified fat.
To provide higher cell yields, the diameter of the separation chamber 17 can be increased and/or the volume of adipose tissue can be decreased. This increases the surface area of the adipose tissue, thus making it easier for the cells to travel through the fat and extra cellular matrix (ECM) toward the second end 14.
Increased cell yields can also be provided by subjecting the fractions 94 isolated on the first side 69 of the valve 18, such as purified fat, excess fluid, oil, etc., to a second disruption and/or centrifugation process. For example, after the one or more fractions 94 are isolated through centrifugation, the fractions 94 can again be passed through the disruptor 120 to loosen the interaction between the materials and then again be centrifuged in the separation chamber 17 to permit isolation of cellular material 94 on the second side 71 of the valve 18 that was not previously isolated. Both the disruption and centrifugation processes are further described below.
With additional reference to
The isolated fractions can be used for a variety of different purposes. For example, the cellular material 92 can be used to facilitate wound healing, such as by directly injecting the cellular material 92 to a wound site of a patient 100, as illustrated in
With additional reference to
To facilitate withdrawal of the adipose tissue from the desired area 106 of the patient, a suitable extraction device, such as a vacuum pump 110, can be used. The vacuum pump 110 can be connected to a separate vacuum port 112 at the first end 12 of the separation chamber 17 that provides fluid communication with the interior volume of the separation chamber 17. The vacuum pump 110 can be connected to the vacuum port 112 using a suitable suction tube 108. The vacuum pump 110 can be any suitable vacuum pump 110 operable to withdraw the multiple component material out of the suitable area 106 of the patient to within the separation chamber 17. After the multiple component composition is drawn into the separation chamber 17, the vacuum pump 110 can be disconnected from the vacuum port 112 and the vacuum port 112 can be closed with a suitable cap.
With additional reference to
The disruptor inlet port 126 provides fluid communication between an exterior of the disruptor 120 and the disruptor chamber 122. The suction tube 102 with the cannula 104 attached thereto can be connected to the disruptor inlet port 126 using any suitable connection, such as a Luer lock connection.
The disruptor vacuum port 128 also provides fluid communication between an exterior of the disruptor 120 and the disruptor chamber 122. The vacuum pump 110 can be connected to the disruptor vacuum port 128 using any suitable connection, such as a Luer lock connection, to draw the multiple component composition into the disruptor chamber 122.
After a suitable amount of the multiple component material, such as adipose tissue, is drawn into the chamber 122, the pump 110 can be stopped and the plunger 124 can be depressed to drive the multiple component material through the disruption screen 130, which is also illustrated in
The disruptor outlet port 132 is connected to an inlet port 134 of the separation device 10. As illustrated, the inlet port 134 extends through the first end 12 and is similar to the loading port 58. The inlet port 134 can be connected to the disruptor outlet port 132 in any suitable manner, such as through a Luer lock connection, to provide fluid communication between the disruptor chamber 122 and the interior volume of the separation chamber 17. Thus, as the plunger 124 is depressed, the multiple component composition is pushed through the disruptor screen 130 and into the interior volume of the separation chamber 17 where it is separated into its different fractions through centrifugation as described above. The separate inlet port 134 for the disruptor 120 is optional as the disruptor 120 can also be connected to the loading port 58.
The inlet port 134 can be located at the axial center A of the first end 12 to facilitate introduction of the adipose tissue into the separation chamber 17, however, the inlet port 134 can be located at any suitable location and can be eliminated altogether because the disruptor 120 can also be connected to the loading port 58. When the inlet port 134 is located at the axial center A, the second extraction port 62 can be moved offset from the axial center A. Accordingly, the second extraction tube 72 does not extend entirely along the axial center A as described above, but can be offset with an elbow portion 136. The inlet port 134 can be in addition to, or can take the place of, the loading port 58.
While the disruptor screen 130 is illustrated as being integral with the disruptor 120, the disruptor screen 130 can also be a separate component that is connected to both the disruptor inlet port 126 and the disruptor 120 using suitable fastening devices, such as Luer lock connections. Further, the disruptor screen 130 can be integral with the separation device 10 and the disruptor 120 can be connected to the disruptor screen 130 with a suitable connection.
While the disruptor 120 is illustrated as being connected to a single separation device 10, the disruptor 120 can be connected to multiple separation devices 10 through the use of a suitable connection device, such as a branch connector, that will provide fluid communication between the disruptor 120 and inlet ports of multiple separation chambers.
The present teachings further provide for a sterile method of using the separation device 10. With reference to
To facilitate collection of the multiple component composition, multiple cannulas 104 can be inserted into area 106 of the patient from where the composition is to be removed and multiple suction tubes 102 can be connected to the cannulas 104. The suction tubes 102 can then be connected to the loading port 58 or the disruptor inlet port 126 using a suitable connecting device, such as a suitable branch connector. Also, multiple vacuum pumps 110 can be used to increase the vacuum force. The pumps 110 can be connected to the first extraction port 60 or the disruptor vacuum port 128 using multiple suction tubes 108 connected by, for example, a branch line.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.
This application is a divisional of U.S. patent application Ser. No. 12/758,127 filed Apr. 12, 2010. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
280820 | Hickson et al. | Jul 1883 | A |
593333 | Park | Nov 1897 | A |
1468313 | Lux | Sep 1923 | A |
1593814 | Vogel | Jul 1926 | A |
2722257 | Lockhart | Nov 1955 | A |
3013557 | Pallotta | Dec 1961 | A |
3141846 | Laven, Jr. | Jul 1964 | A |
3159159 | Cohen | Dec 1964 | A |
3300051 | Mitchell | Jan 1967 | A |
3409165 | Creith | Nov 1968 | A |
3420374 | Umeda | Jan 1969 | A |
3441143 | Kudlaty | Apr 1969 | A |
3453364 | Flodin et al. | Jul 1969 | A |
3469369 | Helmke | Sep 1969 | A |
3508653 | Coleman | Apr 1970 | A |
3545671 | Ross | Dec 1970 | A |
3583627 | Wilson | Jun 1971 | A |
3596652 | Winkelman | Aug 1971 | A |
3647070 | Adler | Mar 1972 | A |
3654925 | Holderith | Apr 1972 | A |
3661265 | Greenspan | May 1972 | A |
3706305 | Berger et al. | Dec 1972 | A |
3706306 | Berger et al. | Dec 1972 | A |
3723244 | Breillatt, Jr. | Mar 1973 | A |
3741400 | Dick | Jun 1973 | A |
3779383 | Ayres | Dec 1973 | A |
3785549 | Latham, Jr. | Jan 1974 | A |
3814248 | Lawhead | Jun 1974 | A |
3849072 | Ayres | Nov 1974 | A |
3850369 | Bull et al. | Nov 1974 | A |
3879295 | Glover et al. | Apr 1975 | A |
3887466 | Ayres | Jun 1975 | A |
3894952 | Ayres | Jul 1975 | A |
3896733 | Rosenberg | Jul 1975 | A |
3897337 | Ayres | Jul 1975 | A |
3897343 | Ayres | Jul 1975 | A |
3909419 | Ayres | Sep 1975 | A |
3929646 | Adler | Dec 1975 | A |
3931010 | Ayres et al. | Jan 1976 | A |
3931018 | North, Jr. | Jan 1976 | A |
3935113 | Ayres | Jan 1976 | A |
3937211 | Merten | Feb 1976 | A |
3941699 | Ayres | Mar 1976 | A |
3945928 | Ayres | Mar 1976 | A |
3951801 | Ayres | Apr 1976 | A |
3957654 | Ayres | May 1976 | A |
3962085 | Liston et al. | Jun 1976 | A |
3965889 | Sachs | Jun 1976 | A |
3972812 | Gresl, Jr. | Aug 1976 | A |
3982691 | Schlutz | Sep 1976 | A |
4001122 | Griffin | Jan 1977 | A |
4020831 | Adler | May 1977 | A |
4046699 | Zine, Jr. | Sep 1977 | A |
4055501 | Cornell | Oct 1977 | A |
4059108 | Latham, Jr. | Nov 1977 | A |
4066549 | Oeser et al. | Jan 1978 | A |
4077396 | Wardlaw et al. | Mar 1978 | A |
4088582 | Murty et al. | May 1978 | A |
4146172 | Cullis et al. | Mar 1979 | A |
4152270 | Cornell | May 1979 | A |
4154690 | Ballies | May 1979 | A |
4159896 | Levine et al. | Jul 1979 | A |
4187979 | Cullis et al. | Feb 1980 | A |
4189385 | Greenspan | Feb 1980 | A |
4203840 | Stoeppler et al. | May 1980 | A |
4204537 | Latham, Jr. | May 1980 | A |
4225580 | Rothman et al. | Sep 1980 | A |
4229298 | Bange | Oct 1980 | A |
4269718 | Persidsky | May 1981 | A |
4294707 | Ikeda et al. | Oct 1981 | A |
4298598 | Schwarz et al. | Nov 1981 | A |
4300717 | Latham, Jr. | Nov 1981 | A |
4303193 | Latham, Jr. | Dec 1981 | A |
4314823 | Rich, Jr. et al. | Feb 1982 | A |
4322298 | Persidsky | Mar 1982 | A |
4332351 | Kellogg et al. | Jun 1982 | A |
4362567 | Schwarz et al. | Dec 1982 | A |
4364832 | Ballies et al. | Dec 1982 | A |
4377572 | Schwarz et al. | Mar 1983 | A |
4379849 | Heimreid | Apr 1983 | A |
4411794 | Schwinn et al. | Oct 1983 | A |
4414976 | Schwarz et al. | Nov 1983 | A |
4416654 | Schoendorfer et al. | Nov 1983 | A |
4417981 | Nugent | Nov 1983 | A |
4424132 | Iriguchi et al. | Jan 1984 | A |
4427650 | Stroetmann et al. | Jan 1984 | A |
4427651 | Stroetmann et al. | Jan 1984 | A |
4442655 | Stroetmann et al. | Apr 1984 | A |
4443345 | Wells | Apr 1984 | A |
4445550 | Davis et al. | May 1984 | A |
4446021 | Aufderhaar et al. | May 1984 | A |
4453927 | Sinko | Jun 1984 | A |
4453939 | Zimmerman et al. | Jun 1984 | A |
4464167 | Schoendorfer et al. | Aug 1984 | A |
4511662 | Baran et al. | Apr 1985 | A |
4537767 | Rothman et al. | Aug 1985 | A |
RE32089 | Blatt et al. | Mar 1986 | E |
4577514 | Bradley et al. | Mar 1986 | A |
4610656 | Mortensen | Sep 1986 | A |
4617009 | Ohlin et al. | Oct 1986 | A |
4627879 | Rose et al. | Dec 1986 | A |
4631055 | Redl et al. | Dec 1986 | A |
4632761 | Bowers et al. | Dec 1986 | A |
4639316 | Eldegheidy | Jan 1987 | A |
4650678 | Fuhge et al. | Mar 1987 | A |
4655211 | Sakamoto et al. | Apr 1987 | A |
4672969 | Dew | Jun 1987 | A |
4675117 | Neumann et al. | Jun 1987 | A |
4680025 | Kruger et al. | Jul 1987 | A |
4714457 | Alterbaum | Dec 1987 | A |
4722790 | Cawley et al. | Feb 1988 | A |
4724317 | Brown et al. | Feb 1988 | A |
4735616 | Eibl et al. | Apr 1988 | A |
4735726 | Duggins | Apr 1988 | A |
4738655 | Brimhall et al. | Apr 1988 | A |
4755300 | Fischel et al. | Jul 1988 | A |
4755301 | Bowers | Jul 1988 | A |
4770779 | Ichikawa et al. | Sep 1988 | A |
4776964 | Schoendorfer et al. | Oct 1988 | A |
4818291 | Iwatsuki et al. | Apr 1989 | A |
4818386 | Burns | Apr 1989 | A |
4828710 | Itoh et al. | May 1989 | A |
4832851 | Bowers et al. | May 1989 | A |
4834890 | Brown et al. | May 1989 | A |
4839058 | Cawley et al. | Jun 1989 | A |
4844818 | Smith | Jul 1989 | A |
4846780 | Galloway et al. | Jul 1989 | A |
4846835 | Grande | Jul 1989 | A |
4850952 | Figdor et al. | Jul 1989 | A |
4853137 | Ersson et al. | Aug 1989 | A |
4871462 | Fischel et al. | Oct 1989 | A |
4874368 | Miller et al. | Oct 1989 | A |
4877520 | Burns | Oct 1989 | A |
4879031 | Panzani et al. | Nov 1989 | A |
4900453 | Sedlmayer et al. | Feb 1990 | A |
4902281 | Avoy | Feb 1990 | A |
4909251 | Seelich et al. | Mar 1990 | A |
4915847 | Dillon et al. | Apr 1990 | A |
4917801 | Luderer et al. | Apr 1990 | A |
4928603 | Rose et al. | May 1990 | A |
4929242 | Desecki et al. | May 1990 | A |
4933291 | Daiss et al. | Jun 1990 | A |
4939081 | Figdor et al. | Jul 1990 | A |
4943273 | Pages et al. | Jul 1990 | A |
4946601 | Fiehler | Aug 1990 | A |
4950220 | Wells et al. | Aug 1990 | A |
4957637 | Cornell | Sep 1990 | A |
4957638 | Smith | Sep 1990 | A |
4973168 | Chan | Nov 1990 | A |
4983157 | Pober et al. | Jan 1991 | A |
4983158 | Headley | Jan 1991 | A |
4985153 | Kuroda et al. | Jan 1991 | A |
5000970 | Shanbhag et al. | Mar 1991 | A |
5002571 | O'Donnell, Jr. et al. | Mar 1991 | A |
5019243 | McEwen et al. | May 1991 | A |
5024613 | Vasconcellos et al. | Jun 1991 | A |
5030215 | Morse et al. | Jul 1991 | A |
5030341 | McEwen et al. | Jul 1991 | A |
5039401 | Columbus et al. | Aug 1991 | A |
5045048 | Kaleskas et al. | Sep 1991 | A |
5047004 | Wells | Sep 1991 | A |
5053127 | Schoendorfer et al. | Oct 1991 | A |
5053134 | Luderer et al. | Oct 1991 | A |
5071570 | Shiraki et al. | Dec 1991 | A |
5080262 | Herold et al. | Jan 1992 | A |
5086784 | Levine et al. | Feb 1992 | A |
5100564 | Pall et al. | Mar 1992 | A |
5104375 | Wolf et al. | Apr 1992 | A |
5112484 | Zuk, Jr. | May 1992 | A |
5112490 | Turpen | May 1992 | A |
5131907 | Williams et al. | Jul 1992 | A |
5137832 | Levine et al. | Aug 1992 | A |
5141645 | Shiraki et al. | Aug 1992 | A |
5147290 | Jonsson et al. | Sep 1992 | A |
5152905 | Pall et al. | Oct 1992 | A |
5156613 | Sawyer | Oct 1992 | A |
5165938 | Knighton | Nov 1992 | A |
5171456 | Hwang et al. | Dec 1992 | A |
5173295 | Wehling et al. | Dec 1992 | A |
5178602 | Wells | Jan 1993 | A |
5185001 | Galanakis | Feb 1993 | A |
5188583 | Guigan et al. | Feb 1993 | A |
5190057 | Sarfarazi | Mar 1993 | A |
5190759 | Lindblad et al. | Mar 1993 | A |
5197985 | Caplan et al. | Mar 1993 | A |
5203825 | Haynes et al. | Apr 1993 | A |
5204537 | Bennet et al. | Apr 1993 | A |
5206023 | Hunziker et al. | Apr 1993 | A |
5207638 | Choksi et al. | May 1993 | A |
5217426 | Bacehowski et al. | Jun 1993 | A |
5217627 | Pall et al. | Jun 1993 | A |
5219328 | Morse et al. | Jun 1993 | A |
5226877 | Epstein | Jul 1993 | A |
5226914 | Caplan et al. | Jul 1993 | A |
5234608 | Duff | Aug 1993 | A |
5236604 | Fiehler | Aug 1993 | A |
5251786 | Sarrine | Oct 1993 | A |
5258126 | Pall et al. | Nov 1993 | A |
5260420 | Burnouf-Radosevich et al. | Nov 1993 | A |
5269927 | Fiehler | Dec 1993 | A |
5271852 | Luoma, II | Dec 1993 | A |
5279825 | Wehling et al. | Jan 1994 | A |
5281342 | Biesel et al. | Jan 1994 | A |
5290552 | Sierra et al. | Mar 1994 | A |
5290918 | Bui-Khac et al. | Mar 1994 | A |
5298171 | Biesel et al. | Mar 1994 | A |
5304372 | Michalski et al. | Apr 1994 | A |
5316674 | Pall et al. | May 1994 | A |
5318524 | Morse et al. | Jun 1994 | A |
5318782 | Weis-Fogh et al. | Jun 1994 | A |
5321126 | van Dommelen et al. | Jun 1994 | A |
5322620 | Brown et al. | Jun 1994 | A |
5330974 | Pines et al. | Jul 1994 | A |
5344752 | Murphy | Sep 1994 | A |
5354483 | Furse | Oct 1994 | A |
5370221 | Magnusson et al. | Dec 1994 | A |
5370802 | Brown | Dec 1994 | A |
5372945 | Alchas et al. | Dec 1994 | A |
5376263 | Fischel | Dec 1994 | A |
5387187 | Fell et al. | Feb 1995 | A |
5393674 | Levine et al. | Feb 1995 | A |
5395923 | Bui-Khac et al. | Mar 1995 | A |
5403272 | Deniega et al. | Apr 1995 | A |
5405607 | Epstein | Apr 1995 | A |
5409833 | Hu et al. | Apr 1995 | A |
5411885 | Marx | May 1995 | A |
5417650 | Gordon | May 1995 | A |
5420250 | Lontz | May 1995 | A |
5443481 | Lee | Aug 1995 | A |
5454958 | Fiehler | Oct 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5456885 | Coleman et al. | Oct 1995 | A |
5474687 | Van Vlasselaer | Dec 1995 | A |
5480378 | Weis-Fogh et al. | Jan 1996 | A |
5484383 | Fitch, Jr. et al. | Jan 1996 | A |
5486359 | Caplan et al. | Jan 1996 | A |
5494578 | Brown et al. | Feb 1996 | A |
5494592 | Latham, Jr. et al. | Feb 1996 | A |
5501371 | Schwartz-Feldman | Mar 1996 | A |
5505685 | Antwiler | Apr 1996 | A |
5510102 | Cochrum | Apr 1996 | A |
5520885 | Coelho et al. | May 1996 | A |
5525477 | Hassouna | Jun 1996 | A |
5533518 | Vogler | Jul 1996 | A |
5560830 | Coleman et al. | Oct 1996 | A |
5575778 | Hardt et al. | Nov 1996 | A |
5577513 | Van Vlasselaer | Nov 1996 | A |
5585007 | Antanavich et al. | Dec 1996 | A |
5588958 | Cunningham et al. | Dec 1996 | A |
5589462 | Patat et al. | Dec 1996 | A |
5601711 | Sklar et al. | Feb 1997 | A |
5601727 | Bormann et al. | Feb 1997 | A |
5603845 | Holm | Feb 1997 | A |
5607579 | Latham, Jr. et al. | Mar 1997 | A |
5614106 | Payrat et al. | Mar 1997 | A |
5618663 | Delmas et al. | Apr 1997 | A |
5632895 | Tsukagoshi et al. | May 1997 | A |
5632905 | Haynes | May 1997 | A |
5641414 | Brown | Jun 1997 | A |
5641622 | Lake et al. | Jun 1997 | A |
5643192 | Hirsh et al. | Jul 1997 | A |
5643193 | Papillon et al. | Jul 1997 | A |
5645540 | Henniges et al. | Jul 1997 | A |
5646004 | Van Vlasselaer | Jul 1997 | A |
5648223 | Van Vlasselaer | Jul 1997 | A |
5649903 | Deniega et al. | Jul 1997 | A |
5663051 | Vlasselaer | Sep 1997 | A |
5674173 | Hlavinka et al. | Oct 1997 | A |
5707331 | Wells et al. | Jan 1998 | A |
5707647 | Dunn et al. | Jan 1998 | A |
5707876 | Levine | Jan 1998 | A |
5716616 | Prockop et al. | Feb 1998 | A |
5723331 | Tubo et al. | Mar 1998 | A |
5724988 | Dennehey et al. | Mar 1998 | A |
5733466 | Benebo et al. | Mar 1998 | A |
5733545 | Hood, III | Mar 1998 | A |
5736033 | Coleman et al. | Apr 1998 | A |
5738784 | Holm et al. | Apr 1998 | A |
5738796 | Bormann et al. | Apr 1998 | A |
5750025 | Holmes et al. | May 1998 | A |
5750658 | Coelho et al. | May 1998 | A |
5762798 | Wenthold et al. | Jun 1998 | A |
5785700 | Olson | Jul 1998 | A |
5786217 | Tubo et al. | Jul 1998 | A |
5788662 | Antanavich et al. | Aug 1998 | A |
5792344 | Holm | Aug 1998 | A |
5795489 | Holm et al. | Aug 1998 | A |
5795571 | Cederholm-Williams et al. | Aug 1998 | A |
5795751 | Apel | Aug 1998 | A |
5811094 | Caplan et al. | Sep 1998 | A |
5811151 | Hendriks et al. | Sep 1998 | A |
5817519 | Zelmanovic et al. | Oct 1998 | A |
5823986 | Peterson | Oct 1998 | A |
5824084 | Muschler | Oct 1998 | A |
5830359 | Knight et al. | Nov 1998 | A |
5833866 | Brown | Nov 1998 | A |
5834418 | Brazeau et al. | Nov 1998 | A |
5837150 | Langley et al. | Nov 1998 | A |
5840502 | Van Vlasselaer | Nov 1998 | A |
5853600 | McNeal et al. | Dec 1998 | A |
5860937 | Cohen | Jan 1999 | A |
5863892 | Stern et al. | Jan 1999 | A |
5865785 | Bischof | Feb 1999 | A |
5885239 | Headley et al. | Mar 1999 | A |
5889584 | Wardlaw | Mar 1999 | A |
5895346 | Wells et al. | Apr 1999 | A |
5899874 | Jonsson et al. | May 1999 | A |
5900245 | Sawhney et al. | May 1999 | A |
5906934 | Grande et al. | May 1999 | A |
5916557 | Berlowitz-Tarrant et al. | Jun 1999 | A |
5916743 | Lake et al. | Jun 1999 | A |
5918622 | Perez et al. | Jul 1999 | A |
5924972 | Turvaville et al. | Jul 1999 | A |
5934803 | Hutter | Aug 1999 | A |
5938621 | Kelly et al. | Aug 1999 | A |
5951160 | Ronk | Sep 1999 | A |
5955032 | Kelly et al. | Sep 1999 | A |
5955436 | Kunkle, Jr. | Sep 1999 | A |
5958250 | Brown et al. | Sep 1999 | A |
5958253 | Holm et al. | Sep 1999 | A |
5961210 | McCardel et al. | Oct 1999 | A |
5980734 | Itoh et al. | Nov 1999 | A |
5980757 | Brown et al. | Nov 1999 | A |
5985315 | Patat et al. | Nov 1999 | A |
5997544 | Nies et al. | Dec 1999 | A |
6007811 | Sawyer et al. | Dec 1999 | A |
6010627 | Hood, III | Jan 2000 | A |
6011490 | Tonnesen et al. | Jan 2000 | A |
6020196 | Hu et al. | Feb 2000 | A |
6022306 | Dumont et al. | Feb 2000 | A |
6025201 | Zelmanovic et al. | Feb 2000 | A |
6027655 | Holm | Feb 2000 | A |
6049026 | Muschler | Apr 2000 | A |
6051146 | Green et al. | Apr 2000 | A |
6051147 | Bischof | Apr 2000 | A |
6053856 | Hlavinka | Apr 2000 | A |
6054122 | MacPhee et al. | Apr 2000 | A |
6063297 | Antanavich et al. | May 2000 | A |
6063624 | Kandler et al. | May 2000 | A |
6071421 | Brown | Jun 2000 | A |
6071422 | Hlavinka et al. | Jun 2000 | A |
6071423 | Brown et al. | Jun 2000 | A |
6090793 | Zimmermann et al. | Jul 2000 | A |
6096309 | Prior et al. | Aug 2000 | A |
6102843 | Kelley et al. | Aug 2000 | A |
6117425 | MacPhee et al. | Sep 2000 | A |
6123655 | Fell et al. | Sep 2000 | A |
6150163 | McPherson et al. | Nov 2000 | A |
6153113 | Goodrich et al. | Nov 2000 | A |
6183737 | Zaleske et al. | Feb 2001 | B1 |
6196987 | Holmes et al. | Mar 2001 | B1 |
6197325 | MacPhee et al. | Mar 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6200606 | Peterson et al. | Mar 2001 | B1 |
6214338 | Antanavich et al. | Apr 2001 | B1 |
6221315 | Giesler et al. | Apr 2001 | B1 |
6245900 | Yamasaki et al. | Jun 2001 | B1 |
6264890 | Boehringer et al. | Jul 2001 | B1 |
6274090 | Coelho et al. | Aug 2001 | B1 |
6277961 | Hock et al. | Aug 2001 | B1 |
6280400 | Niermann | Aug 2001 | B1 |
6286670 | Smith | Sep 2001 | B1 |
6296602 | Headley | Oct 2001 | B1 |
6316247 | Katz et al. | Nov 2001 | B1 |
6322785 | Landesberg et al. | Nov 2001 | B1 |
6327491 | Franklin et al. | Dec 2001 | B1 |
6328765 | Hardwick et al. | Dec 2001 | B1 |
6334842 | Hlavinka et al. | Jan 2002 | B1 |
6342157 | Hood, III | Jan 2002 | B1 |
6351659 | Vilsmeier | Feb 2002 | B1 |
6355239 | Bruder et al. | Mar 2002 | B1 |
6368298 | Beretta et al. | Apr 2002 | B1 |
6368498 | Guilmette | Apr 2002 | B1 |
6398972 | Blasetti et al. | Jun 2002 | B1 |
6406671 | DiCesare et al. | Jun 2002 | B1 |
6409528 | Bodnar | Jun 2002 | B1 |
6410344 | Chung et al. | Jun 2002 | B1 |
6417004 | Brady et al. | Jul 2002 | B1 |
6440444 | Boyce et al. | Aug 2002 | B2 |
6444228 | Baugh et al. | Sep 2002 | B1 |
6464624 | Pages | Oct 2002 | B2 |
6471069 | Lin et al. | Oct 2002 | B2 |
6472162 | Coelho et al. | Oct 2002 | B1 |
6487992 | Hollis | Dec 2002 | B1 |
6508778 | Verkaart et al. | Jan 2003 | B1 |
6516953 | DiCesare et al. | Feb 2003 | B1 |
6523698 | Dennehey et al. | Feb 2003 | B1 |
6544162 | Van Wie et al. | Apr 2003 | B1 |
6544727 | Hei | Apr 2003 | B1 |
6558341 | Swisher | May 2003 | B1 |
6563953 | Lin et al. | May 2003 | B2 |
6596180 | Baugh et al. | Jul 2003 | B2 |
6623959 | Harris | Sep 2003 | B2 |
6629919 | Egozy et al. | Oct 2003 | B2 |
6638503 | Chitte et al. | Oct 2003 | B2 |
6676629 | Andrew et al. | Jan 2004 | B2 |
6716187 | Jorgensen et al. | Apr 2004 | B1 |
6719901 | Dolecek et al. | Apr 2004 | B2 |
6733471 | Ericson et al. | May 2004 | B1 |
6758978 | Bedell | Jul 2004 | B1 |
6764531 | Hogan | Jul 2004 | B2 |
6777231 | Katz et al. | Aug 2004 | B1 |
6803022 | DiCesare et al. | Oct 2004 | B2 |
6811777 | Mishra | Nov 2004 | B2 |
6830762 | Baugh et al. | Dec 2004 | B2 |
6835353 | Smith et al. | Dec 2004 | B2 |
6835377 | Goldberg et al. | Dec 2004 | B2 |
RE38730 | Wells et al. | Apr 2005 | E |
6899813 | Dolecek et al. | May 2005 | B2 |
6905612 | Dorian et al. | Jun 2005 | B2 |
6911202 | Amir et al. | Jun 2005 | B2 |
RE38757 | Wells et al. | Jul 2005 | E |
6979307 | Beretta et al. | Dec 2005 | B2 |
7011644 | Andrew et al. | Mar 2006 | B1 |
7077273 | Ellsworth et al. | Jul 2006 | B2 |
7077827 | Greenfield | Jul 2006 | B2 |
7155288 | Soykan et al. | Dec 2006 | B2 |
7179391 | Leach et al. | Feb 2007 | B2 |
7195606 | Ballin | Mar 2007 | B2 |
7223346 | Dorian et al. | May 2007 | B2 |
7273886 | Olivero et al. | Sep 2007 | B2 |
7354515 | Coull et al. | Apr 2008 | B2 |
7374678 | Leach et al. | May 2008 | B2 |
7411006 | Shanbrom | Aug 2008 | B2 |
7470371 | Dorian et al. | Dec 2008 | B2 |
7531355 | Rodriguez et al. | May 2009 | B2 |
7553413 | Dorian et al. | Jun 2009 | B2 |
7694828 | Swift et al. | Apr 2010 | B2 |
7780860 | Higgins et al. | Aug 2010 | B2 |
7806276 | Leach et al. | Oct 2010 | B2 |
7832566 | Leach et al. | Nov 2010 | B2 |
7837884 | Dorian et al. | Nov 2010 | B2 |
7845499 | Higgins et al. | Dec 2010 | B2 |
7901584 | Dorian et al. | Mar 2011 | B2 |
7914689 | Higgins et al. | Mar 2011 | B2 |
7954646 | Leach et al. | Jun 2011 | B2 |
7987995 | Dorian et al. | Aug 2011 | B2 |
7992725 | Leach et al. | Aug 2011 | B2 |
8048321 | Leach et al. | Nov 2011 | B2 |
8062534 | Higgins et al. | Nov 2011 | B2 |
8067534 | Jagota et al. | Nov 2011 | B2 |
8119013 | Leach et al. | Feb 2012 | B2 |
8163184 | Leach et al. | Apr 2012 | B2 |
8187477 | Dorian et al. | May 2012 | B2 |
8313954 | Leach et al. | Nov 2012 | B2 |
8328024 | Leach et al. | Dec 2012 | B2 |
8337711 | Dorian et al. | Dec 2012 | B2 |
8474630 | Dorian et al. | Jul 2013 | B2 |
8567609 | Landrigan et al. | Oct 2013 | B2 |
8591391 | Chavarria et al. | Nov 2013 | B2 |
8596470 | Leach et al. | Dec 2013 | B2 |
8783470 | Hecker et al. | Jul 2014 | B2 |
8801586 | Dorian et al. | Aug 2014 | B2 |
8808551 | Leach et al. | Aug 2014 | B2 |
8950586 | Dorian et al. | Feb 2015 | B2 |
8992862 | Leach et al. | Mar 2015 | B2 |
9011800 | Leach et al. | Apr 2015 | B2 |
20010009757 | Bischof et al. | Jul 2001 | A1 |
20020032112 | Pages | Mar 2002 | A1 |
20020035820 | Farris | Mar 2002 | A1 |
20020076400 | Katz et al. | Jun 2002 | A1 |
20020082220 | Hoemann et al. | Jun 2002 | A1 |
20020090711 | Karlsson | Jul 2002 | A1 |
20020104808 | Blasetti et al. | Aug 2002 | A1 |
20020114775 | Pathak | Aug 2002 | A1 |
20020161449 | Muschler | Oct 2002 | A1 |
20020169408 | Beretta et al. | Nov 2002 | A1 |
20020172666 | Sacchi et al. | Nov 2002 | A1 |
20020182664 | Dolecek et al. | Dec 2002 | A1 |
20020192632 | Hei et al. | Dec 2002 | A1 |
20030033021 | Plouhar et al. | Feb 2003 | A1 |
20030033022 | Plouhar et al. | Feb 2003 | A1 |
20030050709 | Noth et al. | Mar 2003 | A1 |
20030050710 | Petersen et al. | Mar 2003 | A1 |
20030082152 | Hedrick et al. | May 2003 | A1 |
20030185803 | Kadiyala et al. | Oct 2003 | A1 |
20030191429 | Andrew et al. | Oct 2003 | A1 |
20030205538 | Dorian et al. | Nov 2003 | A1 |
20040005246 | Efthimiadis et al. | Jan 2004 | A1 |
20040013575 | Stevens et al. | Jan 2004 | A1 |
20040120942 | McGinnis et al. | Jun 2004 | A1 |
20040171146 | Katz et al. | Sep 2004 | A1 |
20040182395 | Brookman | Sep 2004 | A1 |
20040182788 | Dorian et al. | Sep 2004 | A1 |
20040182795 | Dorian et al. | Sep 2004 | A1 |
20040251217 | Leach et al. | Dec 2004 | A1 |
20050076396 | Katz et al. | Apr 2005 | A1 |
20050084961 | Hedrick et al. | Apr 2005 | A1 |
20050084962 | Simon | Apr 2005 | A1 |
20050109716 | Leach et al. | May 2005 | A1 |
20050130301 | McKay et al. | Jun 2005 | A1 |
20050145187 | Gray | Jul 2005 | A1 |
20050153441 | Hedrick et al. | Jul 2005 | A1 |
20050153442 | Katz et al. | Jul 2005 | A1 |
20050186120 | Dorian et al. | Aug 2005 | A1 |
20050196393 | Shanbrom | Sep 2005 | A1 |
20050196874 | Dorian et al. | Sep 2005 | A1 |
20050247715 | Ellsworth et al. | Nov 2005 | A1 |
20050260174 | Fraser et al. | Nov 2005 | A1 |
20050260175 | Hedrick et al. | Nov 2005 | A1 |
20050282275 | Katz et al. | Dec 2005 | A1 |
20060051865 | Higgins et al. | Mar 2006 | A1 |
20060057693 | Simon | Mar 2006 | A1 |
20060083720 | Fraser et al. | Apr 2006 | A1 |
20060140923 | Evangelista et al. | Jun 2006 | A1 |
20060151384 | Ellsworth et al. | Jul 2006 | A1 |
20060175242 | Dorian et al. | Aug 2006 | A1 |
20060175244 | Dorian et al. | Aug 2006 | A1 |
20060178610 | Nowakowski | Aug 2006 | A1 |
20060196885 | Leach et al. | Sep 2006 | A1 |
20060243676 | Swift et al. | Nov 2006 | A1 |
20060273049 | Leach et al. | Dec 2006 | A1 |
20060273050 | Higgins et al. | Dec 2006 | A1 |
20060278588 | Woodell-May | Dec 2006 | A1 |
20070034579 | Dorian et al. | Feb 2007 | A1 |
20070036768 | Fraser et al. | Feb 2007 | A1 |
20070075016 | Leach | Apr 2007 | A1 |
20070208321 | Leach et al. | Sep 2007 | A1 |
20080011684 | Dorian et al. | Jan 2008 | A1 |
20080164204 | Hatamian et al. | Jul 2008 | A1 |
20080173593 | Coull et al. | Jul 2008 | A1 |
20080193424 | McKale et al. | Aug 2008 | A1 |
20080210645 | Coull et al. | Sep 2008 | A1 |
20080217263 | Higgins et al. | Sep 2008 | A1 |
20080217264 | Leach et al. | Sep 2008 | A1 |
20080217265 | Leach et al. | Sep 2008 | A1 |
20080268064 | Woodell-May | Oct 2008 | A1 |
20080269762 | Simon et al. | Oct 2008 | A1 |
20080283474 | Leach et al. | Nov 2008 | A1 |
20080306431 | Yoo | Dec 2008 | A1 |
20080318317 | Roche et al. | Dec 2008 | A1 |
20090014391 | Leach et al. | Jan 2009 | A1 |
20090018313 | Shanbrom | Jan 2009 | A1 |
20090101599 | Dorian et al. | Apr 2009 | A1 |
20090131827 | Crocker et al. | May 2009 | A1 |
20090192528 | Higgins et al. | Jul 2009 | A1 |
20090220482 | Higgins et al. | Sep 2009 | A1 |
20090221075 | Dorian et al. | Sep 2009 | A1 |
20090236297 | Dorian et al. | Sep 2009 | A1 |
20090250413 | Hoeppner | Oct 2009 | A1 |
20090253566 | Chavarria | Oct 2009 | A1 |
20090289014 | Hoeppner | Nov 2009 | A1 |
20100055087 | Higgins et al. | Mar 2010 | A1 |
20100140182 | Chapman et al. | Jun 2010 | A1 |
20100186676 | Van Der Berg | Jul 2010 | A1 |
20100206798 | Dorian et al. | Aug 2010 | A1 |
20100256595 | Leach et al. | Oct 2010 | A1 |
20100323870 | Leach et al. | Dec 2010 | A1 |
20100324450 | Leach et al. | Dec 2010 | A1 |
20110014705 | Leach et al. | Jan 2011 | A1 |
20110020196 | Grippi et al. | Jan 2011 | A1 |
20110021334 | Leach et al. | Jan 2011 | A1 |
20110036786 | Ellsworth | Feb 2011 | A1 |
20110056893 | Leach et al. | Mar 2011 | A1 |
20110065183 | Dorian et al. | Mar 2011 | A1 |
20110077596 | Higgins et al. | Mar 2011 | A1 |
20110168193 | Leach et al. | Jul 2011 | A1 |
20110192804 | Landrigan et al. | Aug 2011 | A1 |
20110251041 | Chavarria et al. | Oct 2011 | A1 |
20120015796 | Leach et al. | Jan 2012 | A1 |
20140051061 | Landrigan et al. | Feb 2014 | A1 |
20140054246 | Landrigan et al. | Feb 2014 | A1 |
20140091048 | Leach et al. | Apr 2014 | A1 |
20140275497 | Leach et al. | Sep 2014 | A1 |
20140349388 | Dorian et al. | Nov 2014 | A1 |
20140356446 | Leach et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
696278 | Jan 1999 | AU |
9103724 | Mar 1993 | BR |
1321138 | Aug 1993 | CA |
2182862 | Jun 1996 | CA |
2448415 | Dec 2002 | CA |
1074709 | Jul 1993 | CN |
1321103 | Nov 2001 | CN |
1322146 | Nov 2001 | CN |
103702729 | Apr 2014 | CN |
56103 | Oct 1860 | DE |
1443359 | Nov 1968 | DE |
4202667 | May 1993 | DE |
090997 | Oct 1983 | EP |
0102773 | Mar 1984 | EP |
0109374 | May 1984 | EP |
0142339 | May 1985 | EP |
0244834 | Nov 1987 | EP |
0253198 | Jan 1988 | EP |
0295771 | Dec 1988 | EP |
0417818 | Mar 1991 | EP |
0534178 | Mar 1993 | EP |
534178 | Mar 1993 | EP |
0592242 | Apr 1994 | EP |
1005910 | Jun 2000 | EP |
1006360 | Jun 2000 | EP |
1289618 | Mar 2003 | EP |
1406492 | Apr 2004 | EP |
1427279 | Jun 2004 | EP |
1467746 | Oct 2004 | EP |
1509326 | Mar 2005 | EP |
1670315 | Jun 2006 | EP |
1716901 | Nov 2006 | EP |
2558143 | Feb 2013 | EP |
854715 | Nov 1960 | GB |
60-053845 | Mar 1985 | JP |
60250014 | Dec 1985 | JP |
2036872 | Feb 1990 | JP |
02071747 | Mar 1990 | JP |
2000-189407 | Jul 2000 | JP |
2000199760 | Jul 2000 | JP |
02129224 | Oct 2000 | JP |
2004-305439 | Nov 2004 | JP |
2005013783 | Jan 2005 | JP |
200598704 | Apr 2005 | JP |
2005098704 | Apr 2005 | JP |
2005524451 | Aug 2005 | JP |
2006-305365 | Nov 2006 | JP |
2006527025 | Nov 2006 | JP |
2008104789 | May 2008 | JP |
2009-155234 | Jul 2009 | JP |
WO-8400905 | Mar 1984 | WO |
WO-8802259 | Apr 1988 | WO |
WO-9010031 | Sep 1990 | WO |
WO-9222312 | Dec 1992 | WO |
WO-9305067 | Mar 1993 | WO |
WO-9308904 | May 1993 | WO |
WO-9407548 | Apr 1994 | WO |
WO-9617871 | Jun 1996 | WO |
WO-9617871 | Jun 1996 | WO |
WO-9848938 | Nov 1998 | WO |
WO-0061256 | Oct 2000 | WO |
WO-0074713 | Dec 2000 | WO |
WO-0103756 | Jan 2001 | WO |
WO-0183068 | Nov 2001 | WO |
WO-0238610 | May 2002 | WO |
WO-02060925 | Aug 2002 | WO |
WO-02098566 | Dec 2002 | WO |
WO-03015800 | Feb 2003 | WO |
WO-03024215 | Mar 2003 | WO |
WO-03053362 | Jul 2003 | WO |
WO-03088905 | Oct 2003 | WO |
WO-03092894 | Nov 2003 | WO |
WO-03099412 | Dec 2003 | WO |
WO-2004009207 | Jan 2004 | WO |
WO-2004104553 | Dec 2004 | WO |
WO-2005034843 | Apr 2005 | WO |
WO-2006041406 | Apr 2006 | WO |
WO-2007127834 | Nov 2007 | WO |
WO-2007142908 | Dec 2007 | WO |
WO-2008127639 | Oct 2008 | WO |
WO-2009021257 | Feb 2009 | WO |
WO-2009111338 | Sep 2009 | WO |
WO-2011008836 | Jan 2011 | WO |
WO2011130173 | Oct 2011 | WO |
Entry |
---|
Japanese Office Action mailed May 20, 2014 for Japanese Application No. JP2012-503768. |
Japanese Office Action mailed Sep. 9, 2014 for Japan Patent Application No. 2012-520742,which claims benefit of PCT/US2010/041942 filed Jul. 14, 2010, which claims benefit of U.S. Appl. No. 12/504,413, filed Jul. 16, 2009. |
“Caps for Corning® and Costar® Plastic Labware,” Technical Bulletin. (Dec. 2008) Corning, Incorporated. |
“Cell Isolation Techniques, Methods and Materials, Working with Enzymes,” (2004) (9 pages) Worthington Biochemical Corp. |
“Cell Isolation Theory, Tissue Types,” (2004) (5 pages) Worthington Biochemical Corp. |
“Centrifuge Tubes” Corning Costar brochure. 1996/1997 Catalog pp. 76-77. |
“Clotalyst® Autologous Clotting Factor” brochure. (Aug. 15, 2008) Biomet Biologics. |
“Clotalyst® Autologous Clotting Factor. Would you like to have an autologous thrombin for rapid clotting and haemostasis?” Brochure. Biomet Biologics (Aug. 15, 2008). |
“Corning® 15 and 50 mL Centrifuge Tubes,” Life Sciences. (Jun. 2005) Corning Incorporated. |
“Cytori Celution Cell Concentrate Device,” Exhibit 14, 510(k) Summary, FDA approval K060482 (Sep. 28, 2006). |
“Frequently Asked Questions, 1. Kits, 2. Enzymes,” (2003) 3 pages Worthington Biochemical Corp. |
“Letter CryoSeal FS System. Vaccines, Blood & Biologics,” letter. (Jul. 26, 2007) FDA U.S. Food and Drug Administation. http://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/PremarketApprovalsPMAs/ucm091631.htm (Web accessed Aug. 12, 2011). |
“MarrowStim™ Concentration Kit Peripheral Arterial Disease (PAD) Study” brochure. Web. Jul. 2, 2009 http://www.biomet.com/patients/clinical—recruitment—padstudy.cfm. |
“MarrowStim™ Concentration System,” brochure. Biomet Biologics Jun. 15, 2008. |
“Plasmax® Plasma Concentration System” brochure. (Jun. 15, 2008) Biomet® Biologics. |
“Prosys PRP Kit,” brochure Tozai Holdings, Inc. http://tozaiholdings.en.ec21.com/Prosys—PRP—Kit--5467051—5467061.html Printed from Web Aug. 24, 2011. |
“Prosys PRP Kit,” Tozai Holdings, Inc. EC21 Global B2B Marketplace http://www.ec21.com/product-details/Prosys-PRP-Kit--5467061.html Printed from Web Jul. 18, 2011. |
“ThermoGenesis Corp. to Supply Autologous Thrombin Kits to Biomet, Inc.,” PR Newslink: http:/tinyurl.com/4h3up. (Apr. 5, 2005) http://www.noblood.org/press-releases/2128-thermogenesis-corp-supply-autologous-thrombin-kits-biomet-inc [web accessed Sep. 27, 2011]. |
“Trypsinization of Adherent Cells,” (undated) 2 pages. |
“Trypsinizing cells.” Bart's Cookbook, Web. Apr. 14, 2010. http://pingu.salk.edu/˜sefton/Hyper—protocols/trypsin.html. |
Anesthesiology, vol. 81, No. 4, pp. 1074-1077, Oct. 1994, Hiromasa Mitsuhata, M.D., et al., “An Anaphylactic Reaction to Topical Fibrin Glue”. |
Ann Thorac Surg, vol. 53, pp. 530-531, 1992, Mehmet C. Oz, M.D., et al., “Autologous Fibrin Glue From Intraoperatively Collected Platelet-Rich Plasma”. |
Ann Thorac Surg, vol. 56, pp. 387-389, 1993, Robert L. Quigley, M.D., et al., “Intraoperative Procurement of Autologous Fibrin Glue”. |
Badiavas, et al., “Treatment of Chronic Wounds With Bone Marrow-Derived Cells,” (Reprinted) Arch Dermatol. 139:510-516 (Apr. 2003). |
Bang, N.U., et al., “Plasma Protein Requirements for Human Platelet Aggregation” Ann. N.Y. Acad Sci, 201:280-299 (1972). |
Berguer, R., R. L. Staerkel, E. E. Moore, F. A. Moore, W. B. Galloway, and M. B. Mockus. “Warning: fatal reaction to the use of fibrin glue in deep hepatic wounds. Case reports.” J Trauma 31:3 (1991): 408-11. |
Berruyer, M., J. Amiral, P. Ffrench, J. Belleville, O. Bastien, J. Clerc, A. Kassir, S. Estanove, and M. Dechavanne. “Immunization by bovine thrombin used with fibrin glue during cardiovascular operations. Development of thrombin and factor V inhibitors,” J Thorac Cardiovasc Surg 105: 5 (1993): 892-7. |
BioCUE™ Platelet Concentration System, Jun. 2010. (2 pages). |
Biopolymers, vol. 27, pp. 763-774, 1988, Gerald Marx, “Mechanism of Fibrin Coagulation Based on Selective, Cation-Driven, Protofibral Association”. |
Boomgaard, et al., “Pooled Platelet Concentrates Prepared by the Platelet-Rich-Plasma Method and Filtered with Three Different Filters and Stored for 8 Days.” Vox Sanq, vol. 68: 82-89, Feb. 1995. |
Brodke, et al., “Bone Grafts Prepared with Selective Cell Retention Technology Heal Canine Segmental Defects as Effectively as Autograft”, SCR-Enriched Bone Grafts Heal Canine Segmental Defects, Journal of Orthopaedic Research (May 2006) pp. 857-866. |
Casali, B., F. Rodeghiero, A. Tosetto, B. Palmieri, R. Immovilli, C. Ghedini, and P. Rivasi. “Fibrin glue from single-donation autologous plasmapheresis.” Transfusion 32:7 (1992): 641-3. |
Clayden J D Et Al: “Improved segmentation reproducibility in group tractography using a quantitative tract similarity measure” Neuroimage, Academic Press, Orlando, FL, US LNKD-DOI: 10.1016/J.Neuroimage. 2006.07.016, vol. 33, No. 2, Nov. 1, 2006, pp. 482-492. |
Clotalyst™ Automatic Clotting Factor, Would you like to have an autologous thrombin for rapid clotting and haemostasis?, brochure, Biomet Biologics, Inc., Feb. 2007 (12 pages). |
Collier, B.S. et al., “The pH Dependence of Quantitative Ristocetin-induced Platelet Aggregation: Theoretical and Practical Implications—A New Device for Maintenance of Platelet-Rich Plasma pH”, Hematology Service, Clinical Pathology Department, Clinical Center, National Institutes of Health, Bethesda, Md. 20014, Blood, vol. 47, No. 5 (May 1976). |
Connolly, “Injectable Bone Marrow Preparations to Stimulate Osteogenic Repair,” Clinical Orthopaedics and Related Research 313:8-18 (Apr. 1995). |
Connolly, John, M.D., et al. “Development of an Osteogenic Bone-Marrow Preparation.” The Journal of Bone and Joint Surgery, Incorporated. vol. 71-A, No. 5 (Jun. 1989) pp. 684-691. |
Dallari, et al., “In Vivo Study on the Healing of Bone Defects Treated with Bone Marrow Stromal Cells, Platelet-Rich Plasma, and Freeze-Dried Bone Allografts, Alone and in Combination,” Healing of Bone Defects, Journal of Orthopaedic Research (May 2006) pp. 877-888. |
De Ugarte, et al., “Comparison of Multi-Lineage Cells from Human Adipose Tissue and Bone Marrow,” Cells Tissues Organs 174:101-109 (2003). |
De Ugarte, et al., “Differential Expression of Stem Cell Mobilization-Associated Molecules on Multi-Lineage Cells from Adipose Tissue and Bone Marrow,” Immunology Letters 89:267-270 (2003). |
De Wit, et al. “Experiments on the Preparation of Blood Components with the IBM 2991 Blood Cell Processor” Vox Sang. 29: 352-362 (Feb. 10, 1975). |
DelRossi, A. J., A. C. Cernaianu, R. A.Vertrees, C. J. Wacker, S. J. Fuller, J. Cilley Jr., and W. A. Baldino. “Platelet-rich plasma reduces postoperative blood loss after cardiopulmonary bypass.” J Thorac Cardiovasc Surg 100:2 (Aug. 1990): 281-6. |
DePalma, L., et al., “The preparation of fibrinogen concentrate for use as fibrin glue by four different methods.” Transfusion (1993) vol. 33, No. 9; pp. 717-720. |
DeUgarte, M.D., Daniel A., et al., “Future of Fat as Raw Material for Tissue Regeneration,” (Feb. 2003) pp. 215-219, Lippincott Williams & Wilkins, Inc. |
DiMuzio, Paul et al., “Development of a Tissue-Engineered Bypass Graft Seeded with Stem Cells,” Vasucular, vol. 14, No. 6, (2006) pp. 338-342, BC Decker, Inc. |
Drug Intelligence and Clinical Pharmacy, vol. 22, pp. 946-952, Dec. 1988, Dennis F. Thompson, et al., “Fibrin Glue: A Review of Its Preparation, Efficacy, and Adverse Effects as a Topical Hemostat”. |
Edlich, Richard F., George T. Rodeheaver, and John G. Thacker. “Surgical Devices in Wound Healing Management.” In Wound Healing: Biochemical & Clinical Aspects,ed. I. Kelman Cohen, Robert F. Diegelmann, and William J. Lindblad. 581-600. 1st ed., vol. Philadelphia: W.B. Saunders Company, 1992. |
Ehricke H H Et Al: “Visualizing MR diffusion tensor fields by dynamic fiber tracking and uncertainty mapping” Computers and Graphics, Elsevvier, GB LNKD-DOI: 10.1016/J.CAG.2006.01.031, vol. 30, No. 2, Apr. 1, 2006, pp. 255-264. |
Eppley, et al., “Platelet Quantification and Growth Factor Analysis from Platelet-Rich Plasma: Implications for Wound Healing,” Plastic and Reconstructive Surgery, 114(6):1502-1508 (Nov. 2004). |
Epstein, G. H., R. A. Weisman, S. Zwillenberg, and A. D. Schreiber. “A new autologous fibrinogen-based adhesive for otologic surgery.” Ann Otol Rhinol Laryngol 95 (May 25-26, 1985) 40-5. |
European Communication Pursuant to Article 94(3) EPC mailed May 6, 2013 for PCT/US2010/029957 which claims benefit of U.S Appl. No. 12/417,789, filed Apr. 3, 2009. |
Fibrostik™ Plasma Concentrator, Attention Operating Surgeon, Cell Factor Technologies, Inc., Jul. 2003. |
First clinical results: Kuderma, H. and Helene Matras. “Die klinische Anwendung der Klebung van Nervenanastomosen mit Gerinnungssubstanzen bei der Rekonstruction verletzter peripherer Nerven.” Wein Klin Wochenschr 87 (Aug. 15, 1975): 495-501. |
Floryan, K. et al. “Home Study Program: Intraoperative Use of Autologous Platelet-Rich and Platelet-Poor Plasma for Orthopedic Surgery Patients” vol. 80, No. 4 (Oct. 2004) p. 667-674. |
Frasier, John K., et al., “Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes,” Nature Clinical Practice Cardiovascular Medicine, vol. 3, Supplement 1 (Mar. 2006) pp. S33-S37. |
Friesen, M.D., Robert, et al. “Blood Conservation During Pediatric Cardiac Surgery: Ultrafiltration of the Extracorporeal Circuit Volume After Cardiopulmonary Bypass.” Anesth. Analg 1993: 77-702-7. |
Galois, et al., “Cartilage Tissue Engineering: State-of-the-Art and Future Approaches,” Pathol Biol (Paris), 53(10), Dec. 2005. |
Gibble, J. W. and P. M. Ness. “Fibrin glue: the perfect operative sealant?” Transfusion 30 (1990): 741-7. |
Gimble, Jeffrey M., “Adipose-Derived Stem Cells for Regenerative Medicine,” Circulation Research (May 11, 2007) pp. 1249-1260, American Heart Association, Inc. |
Gomillion, Cheryl T., et al., “Stem cells and adipose tissue engineering,” Biomaterials 27, Science Direct (2006) pp. 6052-6063, Elsevier. |
GPS® III System, GPS® III Platelet Separation System, Leadership through Technology, brochure, Jul. 2007 (8 sheets). |
GPS® System, “GPS® Platelet Concentrate System,” Cell Factor Technologies, Inc., Biomet Orthopaedics, Inc., (Feb. 29, 2004) (9 pages). |
GPS® System, “Shoulder Recovery with the GPS® Platelet Concentrate System, Rotator Cuff Surgical Techniques,” brochure, Cell Factor Technologies, Inc., Biomet Orthopaedics, Inc., (2004) 6 pages. |
GPS® System, “Shoulder Recovery with the GPS® Platelet Concentrate System, Rotator Cuff Surgical Techniques,” Cell Factor Technologies, Inc., Biomet Orthopaedics, Inc., (2004) 3 pages, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
GPS® II System, Gravitational Platelet Separation System, “Accelerating the Body's Natural Healing Process,” Biomet Biologics (Jul. 15, 2006) 16 pages. |
GPS® II System, Gravitational Platelet Separation System, “Accelerating the Body's Natural Healing Process,” Cell Factor Technologies, Inc., Biomet Europe (2005) 16 pages, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
GPS® II System, Gravitational Platelet Separation System, “User Manual,” Cell Factor Technologies, Inc., Biomet Europe [date unknown] 13 pages, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
Grove, et al., “Plasticity of Bone Marrow-Derived Stem Cells,” Stem Cells: Concise Review, Jan. 22, 2004. |
Guilak, Frank, et al., “Adipose-derived adult stem cells for cartilage tissue engineering,” Biorheology 41 (2004) pp. 389-399, IOS Press. |
Harris, E.L.V. Concentration of the Extract. In. Protein Purification Methods: A Practical Approach Harris, E.L.V.; Angal, S.; Editors. (1989) Publisher: (IRL Press, Oxford, UK), pp. 67-69. |
Hartman, A. R., D. K. Galanakis, M. P. Honig, F. C. Seifert, and C. E. Anagnostopoulos. “Autologous whole plasma fibrin gel. Intraoperative procurement.” Arch Surg 127 (Mar. 1992): 357-9. |
Harvest SmartPrep PRP-20 Procedure Pack, “Instructions for Use” (date unknown). |
Harvest Technologies brochure, SmartPrep2 (2002). |
Hattori, et al., “Osteogenic Potential of Human Adipose Tissue-Derived Stromal Cells as an Alternative Stem Cell Source,” Cells Tissues Organs (2004) 178:2-12 Karger. |
Haynesworth, S.E. et al. “Mitogenic Stimulation of Human Mesenchymal Stem Cells by Platelet Releasate Suggests a Mechanism for Enhancement of Bone Repair by Platelet Concentrate” 48th Annual Meeting of the Orthopaedic Research Society Poster No. 0462 (2002). |
Hennis, H. L., W. C. Stewart, and E. K. Jeter. “Infectious disease risks of fibrin glue [letter].” Ophthalmic Surg 23 (Sep. 1992): 640. |
Hernigou, et al., “Percutaneous Autologous Bone-Marrow Grafting for Nonunions. Influence of the Number and Concentration of Progenitor Cells,” Journal of Bone & Joint Surgery, 87-A(7):1430-1437 (Jul. 2005). |
Hom, D., et al. “Promoting Healing with Recombinant Human Platelet-Derived Growth Factor-BB in a Previously Irradiated Problem Wound.” The Laryngoscope, vol. 113 (pp. 1566-1671) Sep. 2003. |
Hood, Andrew G., et al., “Perioperative Autologous Sequestration III: A New Physiologic Glue with Wound Healing Properties,” (Jan. 1993) vol. 14 pp. 126-129. |
International Preliminary Examination Report and Written Opinion issued Aug. 31, 2010 for PCT/US2009/035564 claiming benefit of U.S. Appl. No. 61/078,178, filed Jul. 3, 2008, which priority is also claimed of said provisional case by U.S. Appl. No. 12/395,085, filed Feb. 27, 2009. |
International Preliminary Report on Patentability and Written Opinion mailed Oct. 13, 2011 for PCT/US2010/029957 which claims benefit of U.S. Appl. No. 12/417,789, filed Apr. 3, 2009. |
International Preliminary Report on Patentability and Written Opinion mailed Oct. 31, 2013 for PCT/US2012/034104 claiming benefit of U.S. Appl. No. 13/089,591, filed Apr. 19, 2011. |
International Preliminary Report on Patentability completed Aug. 13, 2009 for PCT/US2008/004687 claiming benefit of U.S. Appl. No. 60/911,407, filed Apr. 12, 2007. |
International Preliminary Report on Patentability mailed Jan. 26, 2012 for PCT/US2010/041942 claiming benefit of U.S. Appl. No. 12/504,413, filed Jul. 16, 2009. |
International Search Report and Written Opinion mailed Aug. 9, 2011 for PCT/US2011/031954 claiming benefit of U.S. Appl. No. 12/758,127, filed Apr. 12, 2010. |
International Search Report and Written Opinion mailed Jul. 2, 2008 for International Application No. PCT/US2008/004687 which claims priority to U.S. Appl. No. 60/911,407, filed Apr. 12, 2007. |
International Search Report and Written Opinion mailed Jul. 3, 2009 for PCT/US2009/035564 claiming benefit of U.S. Appl. No. 61/078,178, filed Jul. 3, 2008. |
International Search Report and Written Opinion mailed Jul. 30, 2010 for PCT/US2010/029957 which claims benefit of U.S. Appl. No. 12/417,789, filed Apr. 3, 2009. |
International Search Report and Written Opinion mailed Nov. 7, 2011 for PCT/US2011/045290 claiming benefit of U.S. Appl. No. 12/846,944, filed Jul. 30, 2010. |
International Search Report and Written Opinion mailed Oct. 8, 2010 for PCT/US2010/041942 claiming benefit of U.S. Appl. No. 12/504,413, filed Jul. 16, 2009. |
International Search Report for International Application No. PCT/US/0316506 mailed Oct. 13, 2003 which claims benefit of U.S. Appl. No. 60/383,013, filed May 24, 2002. |
International Search Report for International Application No. PCT/US2007/012587 mailed Nov. 6, 2007 which claims benefit of U.S. Appl. No. 11/441,276, filed May 25, 2006. |
International Search Report for PCT/US2012/034104 mailed Oct. 29, 2012, claiming benefit of U.S. Appl. No. 13/089,591, filed Apr. 18, 2012. |
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee mailed Aug. 6, 2012 for PCT/US2012/034104 claiming benefit of U.S. Appl. No. 13/089,591, filed Apr. 19, 2011. |
Ishida, et al., “Platelet-Rich Plasma With Biodegradable Gelatin Hydrogel Promotes Rabbit Meniscal Tissue Regeneration,” 52nd Annual Meeting of the Orthopaedic Research Society Paper No. 1035, 1 page (2006). |
Jackson, C. M. and Y. Nemerson. “Blood coagulation.” Annu Rev Biochem 49 (1980): 765-811). |
Japan Office Action mailed Jan. 22, 2013 for Japan Application No. 2010-503066. |
Jayadev, Suprya. “Trypsinization of Adherent Cells.” Aug. 8, 1991. Web. Apr. 14, 2010 http://www.duke.edu/web/ceramide/protocols/0005.html. |
Johnstone, et al., “Autologous Mesenchymal Progenitor Cells in Articular Cartilage Repair”, Clinical Orthopaedics and Related Research 367S:S156-S162 (Oct. 1999). |
Jones D K et al: “Confidence mapping in diffusion ensor magnetic resonance imaging tractography using a bootstrap approach” Magnetic Resonance in Medicine Wiley USA, vol. 53 , No. 5, May 2005, pp. 1143-1149. |
Jorgensen, et al., “Stem Cells for Repair of Cartilage and Bone: The Next Challenge in Osteoarthritis and Rheumatoid Arthritis,” Annals of Rheumatic Diseases, Aug. 2000. |
Journal of Oral Maxillofacial Surgery, vol. 43, pp. 605-611, Helene Matras, M.D., “Fibrin Seal: The State of the Art” (1985). |
Karpatkin, S., “Heterogeneity of Human Platelets. VI., Correlation of Platelet Function with Platelet Volume”, Blood, vol. 51, No. 2 (Feb. 1978). |
Kjaergard, H. K,, U. S. Weis-Fogh, H. Sorensen, J. Thiis, and I. Rygg. “A simple method of preparation of autologous fibrin glue by means of ethanol.” Surg Gynecol Obstet 175 (1992): 72-3. |
Kjaergard, H. K., Fogh Us Weis, and J. J. Thiis. “Preparation of autologous fibrin glue from pericardial blood.” Ann Thorac Sur 55 (1993): 543-4. |
Kumar, Vijay et al. “Stability of Human Thrombin Produced From 11 ml of Plasma Using the Thrombin Processing Device,” Journal of American Society of Extra-Corporeal Technology. JECT: Mar. 2005:37; 390-395. |
Kumar, Vijay et al. “Whole Blood Thrombin: Development of a Process for Intra-Operative Production of Human Thrombin.” Journal of American Society of Extra-Corporeal Technology. JECT: Apr. 2007; 39:18-23. |
Kumar, Vijay et al., “Autologous Thrombin: Intraoperative Production From Whole Blood.” Journal of American Society of Extra-Corporeal Technology. JECT: Apr. 2008; 40:94-98. |
Laryngoscope vol. 99, pp. 974-976, Sep. 1989, Kyosti Laitakari, M.D., et al., “Autologous and Homologous Fibrinogen Sealants: Adhesive Strength”. |
Laryngoscope, vol. 95, pp. 1074-1076, Sep. 1985, Karl H. Siedentop, M.D., et al., “Autologous Fibrin Tissue Adhesive”. |
Laryngoscope, vol. 96, pp. 1062-1064, Oct. 1986, Karl H. Siedentop, M.D., et al., “Extended Experimental and Preliminary Surgical Findings with Autologous Fibrin Tissue Adhesive Made from Patient's Own Blood”. |
Lasher, Lisa, M.D., “My Experience with PRP,” PowerPoint presentation, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
Lendeckel, Stefan, et al., “Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report,” Journal of Cranio-Maxillofacial Surgery (2004) European Association for Cranio-Maxillofacial Surgery. |
Lerner, R. and N. S. Binur. “Current status of surgical adhesives.” J Surg Res 48 (Feb. 1990): 165-81. |
Longas, Maria O., “An Improved Method for the Purification of Human Fibrinogen.” J. Biochem (1980) vol. 11, pp. 559-564. |
Lori N F Et Al: “Diffusion tensor fiber tracking of human brain connectivity: acquisition methods, reliability analysis and biological results” NMR in Biomedicine Wiley UK, vol. 15, No. 7-8, Nov. 2002, pp. 493-515. |
Lu, et al., “Bone Marrow Mesenchymal Stem Cells: Progress in Bone/Cartilage Defect Repair,” 19(1), Jan. 2002. |
Marrowstim Concentration System, Biomet Biologics, Inc., 20 pages (REV Feb. 15, 2008). |
Marx, Gerard, et al., “Heat Denaturation of Fibrinogen to Develop a Biomedical Matrix.” Journal of Biomedical Materials Research Part B: Applied Biomaterials (Apr. 2007) pp. 49-57. |
Masri, Marwan A., et al. “Isolation of Human Fibrinogen of High Purity and in High Yield Using Polyethylene Glycol 1000.” Thromb Haemostas (Struttgart) (1983) vol. 49 (2); pp. 116-119. |
Matras, Helene, H. P. Dinges, H. Lassmann, and B. Mamoli. “Zur nahtlosen interfaszikularen Nerventransplantation im Tierexperiment.” Wein Med Woschtr 122:37 (1972): 517-523. |
Minntech® Filtration Technologies Group, “Hemocor HPH® Hemoconcentrator,” Minntech Corporation (2004); http://www.minntech.com/ftg/products/hph/index.html, printed Jul. 15, 2004 (2 pages). |
Minntech® Filtration Technologies Group, “Medical Applications: Blood Filtration” Minntech Corporation (2004); http://www.minntech.com/ftg/industries/medical/blood—filter.html, printed Jul. 15, 2004 (1 page). |
Minntech® Filtration Technologies Group, “Renaflo® II Hemofilter,” Minntech Corporation (2004); http://www.minntech.com/ftg/products/renaflo/index.html, printed Jul. 15, 2004 (2 pages). |
Molnar, Amy, “Stem Cells from Muscles Can Repair Cartilage, Study Finds Genetically Engineered Muscle-Derived Stem Cells Improved Cartilage Repair in Rats”, American College of Rheumatology, (2005). |
Moretz, W., Jr., J Shea Jr., J. R. Emmett, and J Shea. “A simple autologous fibrinogen glue for otologic surgery.” Otolaryngol Head Neck Surg 95 (Jul. 1986): 122-4. |
Nakagami, Hironori, et al., “Novel Autologous Cell Therapy in Ischemic Limb Disease Through Growth Factor Secretion by Cultured Adipose Tissue-Derived Stromal Cells,” Angiogenesis by Adipose Tissue-Derived Cells, (Dec. 2005) pp. 2542-2547, American Heart Association, Inc. |
Nathan, Suresh,, et al., “Cell-Based Therapy in the Repair of Osteochondral Defects: A Novel Use for Adipose Tissue,” Tissue Engineering, vol. 9, No. 4 (2003) pp. 733-744 Mary Ann Liebert, Inc. |
Nilsson, et al., “Bone Repair Induced by Bone Morphogenetic Protein in Ulnar Defects in Dogs,” The Journal of Bone and Joint Surgery, vol. 68 B., No. 4, Aug. 1986. |
Notice of Allowance mailed May 27, 2010 for U.S. Appl. No. 12/101,594, filed Apr. 11, 2008. |
Orphardt, Charles E., “Denaturation of Proteins,” Virtual Chembook, Elmhurst College (2003) 3 pages. http://www.elmhurstedu/˜chm/vchembook/568denaturation.html (web accessed Mar. 9, 2011). |
Otolaryngologic Clinics of North America, vol. 27, No. 1, pp. 203-209, Feb. 1994, Dean M. Toriumi, M.D., et al., “Surgical Tissue Adhesives in Otolaryngology-Head and Neck Surgery”. |
Parchment et al., Roles for in vitro myelotoxicity tests in preclincial drug development and clinical trial planning, Toxicology Pathology, Society of Toxicological Pathologists, vol. 21, No. 2, 1993, pp. 241-250. |
Parchment et al., Roles for in vitro myelotoxicity tests in preclinical drug development and clinical trial planning, Toxicology Pathology, Society of Toxicological Pathologists, vol. 21, No. 2, 1993, pp. 241-250. |
Parker, Anna M., et al., Adipose-derived stem cells for the regeneration of damaged tissues, Expert Opinion, Cell- & Tissue-based Therapy, Expert Opin. Biol. Ther. (2006) pp. 567-578 Informa UK Ltd. |
Planat-Bénard, V., et al., “Spontaneous Cardiomyocyte Differentiation From Adipose Tissue Stroma Cells,” Adipose-Derived Cell Cardiomyocyte (Feb. 6, 2004) pp. 223-229 American Heart Association, Inc. |
Ponticiello, Michael S., “A Rapid Technique for the Isolation and Concentration of Stem Cells from Human Bone Marrow”, Cell Factor Technologies, Inc. (2006) 2 pages. |
Rangappa, Sunil, M.D., “Transformation of Adult Mesenchymal Stem Cells Isolated From the Fatty Tissue Into Cardiomyocytes,” Adult Stem Cells Transformed into Cardiomyoctyes, (2003) pp. 775-779 Ann Thorac Surg. |
Rigotti, M.D., et al, “Clinical Treatment of Radiotherapy Tissue Damage by Lipoaspirate Transplant: A Healing Process Mediated by Adipose-Derived Adult Stem Cells,” Plastic and Reconstructive Surgery, Breast, PRS Journal vol. 119, No. 5, Stem Cell Therapy for Angiogenesis, (Apr. 15, 2007) pp. 1409-1422. |
Rubin, M.D., et al, “Clinical Treatment of Radiotherapy Tissue Damage by Lipoaspirate Transplant: A Healing Process Mediated by Adipose-Derived Adult Stem Cells,” Plastic and Reconstructive Surgery, Discussion vol. 119, No. 5, Stem Cell Therapy for Angiogenesis, (Apr. 15, 2007) pp. 1423-1424. |
Sanal, M. “Does fibrin glue cause foreign body reactions? [letter].” Eur J Pediatr Surg 3 (1992): 190 (1 page). |
Sanal, M., H. Dogruyol, A. Gurpinar, and O. Yerci. “Does fibrin glue cause foreign body reactions?” Eu r J Pediatr Surg 2 (1992): 285-6. |
Schmidt, K.G., et al., “Labelling of Human and Rabbit Platelets with Indium-Oxine Complex”, 23:97-106 (1979). |
Schmidt, K.G., et al., “Preparation of Platelet Suspensions from Whole Blood in Buffer”, Scand. J. Hoemato, 23:88-96 (1979). |
Schäffler, Andreas, et al., “Concise Review: Adipose Tissue-Derived Stromal Cells—Basic and Clinical Implications for Novel Cell-Based Therapies,” Tissue-Specific Stem Cells, Stem Cells® (Apr. 10, 2007) pp. 818-827 AlphaMed Press. |
Semple, Elizabeth, PhD, et al. “Quality of Thrombin Produced From the Patient's Own Plasma Using the TPD™, a New Thrombin-Processing Device.” Journal of American Society of Extra-Corporeal Technology. JECT: 2005; 37:196-200. |
Sierra, D. H. “Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications.” J Biomater Appl 7 (Apr. 1993): 309-52. |
Sigma-Aldrich® Alkaline Phosphatase (Procedure No. 85), drug fact sheet, (2003) pp. 1-2, Sigma-Aldrich, Inc. |
Silver, Frederick H., et al., “Review Preparation and use of fibrin glue in surgery.” Biomaterials 16 (1995) pp. 891-903. |
Solem, Jan Otto, et al., “Hemoconcentration by Ultrafiltration During Open-Heart Surgery,” Scand J Thor Cardiovasc Surg 22:271-274, 1988. |
Sutton, Robin G., et al. “Comparison of Three Blood-Processing Techniques During and After Cardiopulmonary Bypass.” Ann Thorac Surg (1993) vol. 56; pp. 941-943. |
Swift, Mathew J., et al., “Characterization of Growth Factors in Platelet Rich Plasma,” 1-Cell Factor Technologies, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
Symphony II Platelet Concentrate System/PCS brochure; “Increasing bone graft bioactivity through reproducible concentrations of natural growth factors,” DePuy (Jan. 2003). |
Takahashi, Kazutoshi et al., “Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,” Cell, (Nov. 30, 2007) pp. 1-12, Elsevier Inc. |
The American Journal of Surgery, vol. 168, pp. 120-122, Aug. 1994, Roy L. Tawes, Jr., M.D., et al., “Autologous Fibrin Glue: The Last Step in Operative Hemostatis”. |
The American Surgeon, vol. 55, pp. 166-168, Mar. 1989, William D. Spotnitz, M.D., et al., “Successful Use of Fibrin Glue During 2 Years of Surgery at a University Medical Center”. |
The Sports Medicine Center, “Knee Cartilage Implantation”, Carticel™, “Autologous Cultured Chondrocyte Implantation”, http://www.orthoassociates.com/carticel.htm (printed Apr. 6, 2006). |
The Stone Clinic, “Platelet Rich Plasma (PRP)”, web site printed May 2006. |
Weis-Fogh, U. S. “Fibrinogen prepared from small blood samples for autologous use in a tissue adhesive system.” Eur Surg Res 20 (1988): 381-9. |
Weisman, MD., Robert A., “Biochemical Characterization of Autologous Fibrinogen Adhesive,” Laryngoscope 97: Oct. 1987; pp. 1186-1190. |
Wiseman, David M., David T. Rovee, and Oscar M. Alverez. “Wound Dressings: Design and Use.” In Wound Healing: Biochemical & Clinical Aspects,ed. I. Kelman Cohen, Robert F. Diegelmann, and William J. Lindblad. 562-580. 1st ed., vol. Philadelphia: W. B. Saunders Company, 1992. |
Woodell-May, et al., “Producing Accurate Platelet Counts for Platelet Rich Plasma: Validation of a Hematology Analyzer and Preparation Techniques for Counting,” Scientific Foundation, Journal of Carniofacial Surgery 16(5):749-756 (Sep. 2005). |
Written Opinion of the International Preliminary Examining Authority mailed Mar. 17, 2009 for International Application No. PCT/US2008/004687 which claims priority to U.S. Appl. No. 60/911,407, filed Apr. 12, 2007. |
Yoon, Eulsik, M.D., Ph.D., et al., “In Vivo Osteogenic Potential of Human Adipose-Derived Stem Cells/Poly Lactide-Co-Glycolic Acid Constructs for Bone Regneration in a Rat Critical-Sized Calvarial Defect Model,” Tissue Engineering, vol. 13, No. 3 (2007) pp. 619-627 Mary Ann Liebert, Inc. |
Zhang, Duan-zhen, et al., “Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction,” Chinese Medical Journal, vol. 120, No. 4 (2007) pp. 300-307 General Hospital of Shenyang Military Region, Shenyang, China. |
Zuk, Patricia A., Ph.D., “Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies,” Tissue Engineering, vol. 7, No. 2, (2001) pp. 211-228 Mary Ann Liebert, Inc. |
International Preliminary Report on Patentability and Written Opinion mailed on Mar. 12, 2015 for PCT/US2013/056793 claiming benefit of U.S. Appl. No. 13/595,461, filed Aug. 27, 2012. |
International Search Report and Written Opinion mailed Dec. 5, 2013 for PCT/US2013/056793 claiming benefit of U.S. Appl. No. 13/595,461, filed Aug. 27, 2012. |
Preliminary Notice of Reasons for Rejection for Japanese Patent Application No. 2014-024420 mailed on Feb. 24, 2015. |
Chinese Office Action mailed Nov. 21, 2014 for Chinese Patent Application No. 201280030026.X. |
Chinese Office Action mailed Jun. 30, 2014 for Chinese Patent Application No. 201080019707.7, which claims benefit of PCT/US2010/029957 filed Apr. 5, 2010, which claims benefit of U.S. Appl. No. 12/417,789, filed Apr. 3, 2009. |
Minivalve international: duckbill valves—du 054.001 sd, <http://www.minivalve.com/htm/DV054.htm>, Accessed Jun. 30, 2014, 1 page. |
Momentive Silopren*LSR 2050, Jun. 30, 2014, 3 pages |
Vernay Product Information Sheet, Umbrella Check Valve, Part No. V251010200, Jul. 2013, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20140088492 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12758127 | Apr 2010 | US |
Child | 14086482 | US |