1. Field of the Invention
The present invention relates to a method and an apparatus for separating a solution that separate a higher concentration of alcohol mainly from an alcohol solution such as sake (Japanese rice wine) or sake raw materials.
2. Description of the Related Art
The inventors of the present invention have developed an apparatus for separating alcohol which is a target material exhibiting a property of surface excess (See JP-A-2001-314724).
With this type of separating apparatus, an ultrasonic atomization chamber with a closed structure is filled with an alcohol solution, and the alcohol solution in the ultrasonic atomization chamber is atomized into a mist by means of ultrasonic oscillation with an ultrasonic oscillator. The separating apparatus aggregates and collects the atomized mist, and separates a higher concentration of alcohol solution. More specifically, the separating apparatus separates a higher concentration of alcohol solution as a target material in the following operation.
With alcohol, which quickly moves to the surface and exhibits a property of surface excess, the concentration of alcohol is high at the surface. When the solution is oscillated in this state by ultrasonic oscillation, fine liquid droplets are ejected into air as a mist from the surface of the solution by ultrasonic oscillation energy. The mist ejected into the air has a higher concentration of alcohol. The reason is that the solution at its surface with a higher concentration of alcohol is ejected as the mist. Therefore, a solution with a higher concentration of alcohol can be separated by aggregating and collecting the mist. With this method, a high concentration of alcohol solution can be separated without heating the solution. Thus, a target material can be separated at a high concentration. Furthermore, since heating is not necessary, the separating apparatus has an advantage in that the target material can be separated without deterioration in quality.
With the above-described apparatus, the solution is atomized into a mist into circulated air. The reason why the air is circulated is that the mist contained in the air and the target material vaporized from the mist cannot be completely collected. That is to say, when the air containing an uncollectable portion of the target material is discharged to the outside, the target material will disappear to increase the loss, so that the air is circulated into the ultrasonic atomization chamber without discharging the air to the outside. For this reason, the ultrasonic atomization chamber is not supplied with fresh air, and the air containing the target material is circulated. Meanwhile, when a solution is to be atomized into a mist having a high concentration, the efficiency in producing a mist of the target material decreases if the air contains the target material. In atomizing the target material into a mist, the mist of the target material can be produced efficiently by increasing the extent of nonequilibrium between the solution surface and the gas phase side. However, when the air in the ultrasonic atomization chamber contains a high concentration of alcohol, the alcohol will be in a near equilibrium state between the solution surface and the gas phase side, so that the mist of alcohol cannot be produced with good efficiency.
The reason why the air from which the target material such as alcohol has been collected is circulated into the ultrasonic atomization chamber is that the air contains the target material. Therefore, the air circulated into the ultrasonic atomization chamber contains the target material such as alcohol, and this aggravates the efficiency of atomizing the target material into a mist. This problem can be solved by completely collecting the target material before circulating the air into the ultrasonic atomization chamber. However, in actual cases, the target material contained in the air cannot be completely collected, so that the target material contained in the circulated air aggravates the efficiency in producing a mist.
Also, with a conventional apparatus, the air is cooled for aggregating and collecting the mist. For this reason, the cooled air is circulated into the ultrasonic atomization chamber. However, in atomizing the solution into a mist in the ultrasonic atomization chamber, the efficiency of producing a mist decreases when the temperature of the solution is low. This problem can be solved by heating the solution. However, heating the solution requires heat energy. This increases the total energy consumption, and increases the energy consumption for concentrating the solution.
Further, with a conventional apparatus, the air is cooled to aggregate the mist, and this increases energy consumption. In particular, since the air serving as a carrier gas for carrying the mist is cooled to aggregate the mist, the amount of air to be cooled increases when the concentration of the mist contained in the air decreases, and a large amount of energy is consumed for cooling the air. In order to produce a mist in the ultrasonic atomization chamber with good efficiency, the concentration of the mist relative to the air must be lowered as described before. However, when the concentration of the mist relative to the air decreases, the energy for cooling the air increases. When the amount of mist relative to air is increased in order to avoid this drawback, the mist cannot be produced at high efficiency in the ultrasonic atomization chamber.
The present invention has been developed in order to solve the aforementioned problems in the conventional art. The major object of the present invention is to provide a method and an apparatus for separating a solution in which the solution can be efficiently separated with reduced energy consumption for cooling and the like by efficiently collecting the mist while efficiently producing the mist.
A method of separating a solution according to the first aspect of the present invention includes an atomization step of atomizing a solution containing a target substance into a mist in an atomizer 1 to produce a mixed fluid of mist and gas, and a collection step of collecting the mist from the mixed fluid obtained in the atomization step. With this separation method, while a gas contains at least one of hydrogen and helium, in the collection step, a gas transmission membrane 51 of a pore size is used that transmits gas but does not transmit the target substance contained in the mist. With this separation method, the mixed fluid is brought into contact with a primary surface of the gas transmission membrane 51, and a pressure on the primary surface is made higher than a pressure on a secondary surface of an opposite side, whereby the gas in the mixed fluid is let to pass through the gas transmission membrane 51 to separate part or all of the gas contained in the mixed fluid.
The atomizer 1 can atomize the solution into the mist by ultrasonic oscillation. The atomizer 1 can atomize the solution into the mist by ultrasonic oscillation at a frequency of 1 MHz or higher.
With a method of separating a solution according to the second aspect of the present invention, in the collection step, the mixed fluid from which part of the gas has been separated by the gas transmission membrane 51 can be further cooled to aggregate and collect the mist. Further, with this separation method, the mixed fluid, from which the mist has been separated by cooling and aggregation after part of the gas is separated by the gas transmission membrane 51, can be circulated and supplied to the atomizer 1. Furthermore, with the separation method of the present invention, the gas separated from the mixed fluid by the gas transmission membrane 51 can be supplied to the atomizer 1.
An apparatus for separating a solution according to the first aspect of the present invention includes an atomization chamber 4 to which a solution containing a target substance is supplied, an atomizer 1 for scattering the solution in the atomization chamber 4 into gas as a mist to produce a mixed fluid of gas and the mist in the solution, and an gas separator 50 connected to the atomization chamber 4 to separate gas from the mixed fluid. An inside of the gas separator 50 is partitioned by an gas transmission membrane 51 of a pore size that transmits gas but does not transmit the target substance, so as to provide, in an inside thereof, a primary passageway 52 for passing the mixed fluid and a secondary gas-discharging passageway 53 for discharging gas. A forced gas discharger 54 is connected to the secondary gas-discharging passageway 53 of the gas separator 50. With this separation apparatus, the forced gas discharger 54 discharges the gas in the secondary gas-discharging passageway 53 in a forced manner to make a pressure on a primary surface of the gas transmission membrane 51 higher than a pressure on a secondary surface of the gas transmission membrane 51 so that the gas contained in the mixed fluid may be transmitted through the gas transmission membrane 51 to separate gas from the mixed fluid that passes through the primary passageway 52.
An apparatus for separating a solution according to the second aspect of the present invention includes an atomization chamber 4 to which a solution containing a target substance is supplied, an atomizer 1 for scattering the solution in the atomization chamber 4 into gas as a mist to produce a mixed fluid of gas and the mist in the solution, and an gas separator 50 connected to the atomization chamber 4 to separate gas from the mixed fluid. An inside of the gas separator 50 is partitioned by an gas transmission membrane 51 of a pore size that transmits gas but does not transmit the target substance, so as to provide, in an inside thereof, a primary passageway 52 for passing the mixed fluid and a secondary gas-discharging passageway 53 for discharging gas. A compressor 55 for pressurizing and supplying the mixed fluid in the atomization chamber 4 is connected to the primary passageway 52 of the gas separator 50. With this separation apparatus, the compressor 55 presses the mixed fluid in the atomization chamber 4 into the primary passageway 52 to make a pressure on a primary surface of the gas transmission membrane 51 higher than a pressure on a secondary surface of the gas transmission membrane 51 so that the gas contained in the mixed fluid may be transmitted through the gas transmission membrane 51 to separate gas from the mixed fluid that passes through the primary passageway 52.
The separation method and the separation apparatus described above have an advantage in that the solution can be efficiently separated with reduced energy consumption for cooling and the like by efficiently collecting the mist while efficiently producing the mist. The reason is that, with the separation method and the separation apparatus described above, the mixed fluid of gas and the mist of the solution containing the target substance produced by the atomizer is brought into contact with a primary surface of an gas transmission membrane of a pore size that transmits gas but does not transmit the target substance contained in the mist, and a pressure on the primary surface is made higher than a pressure on a secondary surface of an opposite side, whereby the gas in the mixed fluid is let to pass through the gas transmission membrane to separate the gas contained in the mixed fluid. The mixed fluid from which gas has been separated has a small content of gas, and contains the target substance in a supersaturated state, so that a high concentration of the target substance can be collected with an extremely good efficiency.
The gas transmission membrane 51 can include a filter member obtained by coating a surface of a ceramic with zeolite. The atomizer 1 can include an ultrasonic oscillator 2 for atomizing the solution into a mist by ultrasonic oscillation and an ultrasonic power supply 3 connected to the ultrasonic oscillator 2 to supply high-frequency electric power to the ultrasonic oscillator 2 for ultrasonic oscillation.
With the separation apparatus of the present invention, the mist can be collected by connecting any one of a cyclone, a punched plate, a demistor, a chevron, a scrubber, a spray tower, and an electrostatic collector to an outlet side or an inlet side of the gas separator 50.
With the separation apparatus of the present invention, a collection chamber 5 for aggregating and collecting the mist from the mixed fluid can be connected to an outlet side of the primary passageway 52 provided in the gas separator 50. In addition, with the separation apparatus of the present invention, a cooling heat exchanger 33 can be provided in the collection chamber 5, and the mist can be aggregated and collected by cooling the mixed fluid with the cooling heat exchanger 33.
With the separation apparatus of the present invention, a collection chamber 5 can be connected to the atomization chamber 4, whereby the gas from which gas has been separated by the gas separator 50 and further the mist has been separated in the collection chamber 5 can be supplied to the atomization chamber 4. In addition, with the separation apparatus of the present invention, the secondary gas-discharging passageway 53 of the gas separator 50 can be connected to the atomization chamber 4, whereby the gas separated from the mixed fluid by the gas transmission membrane 51 of the gas separator 50 can be supplied to the atomization chamber 4.
Further, with the separation method and the separation apparatus that aggregate and collect the mist by cooling the mixed fluid from which part of gas has been separated by the gas transmission membrane, the target substance can be efficiently collected with reduced amount of energy consumption for cooling. The reason is that the mixed fluid from which gas has been separated by the gas transmission membrane has a reduced amount of gas, so that, when cooling, the target substance can be collected efficiently with reduced amount of cooling.
Furthermore, with the separation method and the separation apparatus that circulate into the atomization chamber the mixed fluid from which the mist has been separated by being cooled and aggregated after part of the gas is separated by the gas transmission membrane, the mist can be efficiently produced while reducing the energy consumption. The reason is that, since the mixed fluid with reduced amount of cooling is circulated into the atomization chamber, the solution can be atomized into a mist while reducing the energy consumption for heating the solution in the atomization chamber.
Further, the separation method and apparatus in which the gas separated from the mixed fluid by the gas transmission membrane is supplied to the atomization chamber has an advantage in that the solution can be efficiently atomized into a mist in the atomization chamber. The reason is that the gas separated from the mixed fluid does not contain the target substance. Also, since the gas separated from the mixed fluid by the gas transmission membrane is gas controlled to have an optimum temperature for producing the mist in the atomization chamber, the mist can be efficiently produced by supplying this gas into the atomization chamber.
The above and further objects and features of the invention will more fully be apparent from the following detailed description with accompanying drawings.
An apparatus for separating a solution according to the present invention atomizes a solution containing a target material, which quickly moves to the liquid surface and exhibits a physical property of surface excess, into a mist and then separates the solution by collecting the mist. In the present invention, solutes and solvents of the solution are not specifically limited. Though water is mainly used as a solvent in the present invention, organic solvents such as alcohol can be used other than water. Following solutions containing target materials can be used, for example.
(1) Refined sake, beer, wine, vinegar, mirin (sweet sake for cooking), spirits, shochu (Japanese spirits), brandy, whisky and liqueur.
(2) Solutions containing a perfume such as pinene, linalool, limonene, or polyphenols, an aromatic component, or a fragrant component.
(3) Solutions containing an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene, and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a compound obtained by bonding these.
(4) Solution containing a substance obtained by substituting a halogen(s) for at least one hydrogen atom or functional group of an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a bonded compound of these.
(5) Solution containing a substance obtained by substituting a hydroxy group(s) for at least one hydrogen atom or functional group of an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a bonded compound of these.
(6) Solution containing a substance obtained by substituting an amino group(s) for at least one hydrogen atom or functional group of an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a bonded compound of these.
(7) Solution containing a substance obtained by substituting a carbonyl group(s) for at least one hydrogen atom or functional group of an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a bonded compound of these.
(8) Solution containing a substance obtained by substituting a carboxyl group(s) for at least one hydrogen atom or functional group of an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a bonded compound of these.
(9) Solution containing a substance obtained by substituting a nitro group(s) for at least one hydrogen atom or functional group of an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a bonded compound of these.
(10) Solution containing a substance obtained by substituting a cyano group(s) for at least one hydrogen atom or functional group of an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a bonded compound of these.
(11) Solution containing a substance obtained by substituting a mercapto group(s) for at least one hydrogen atom or functional group of an organic compound that is classified as any one of alkane and cycloalkane, which are a saturated hydrocarbon, alkene, cycloalkene and alkyne, which are an unsaturated hydrocarbon, ether, thioether, and aromatic hydrocarbon, or a bonded compound of these.
(12) Solutions containing a substance obtained by substituting a metal ion(s) for at least one atom of the target substances mentioned in (3) to (11).
(13) Solutions containing a substance obtained by substituting an arbitrary molecule(s) of the molecules mentioned in (3) to (11) for an arbitrary hydrogen atom(s), carbon atom(s), or functional group(s) contained in the target substances mentioned in (3) to (11).
The target materials contained in the above solutions quickly move to the surface and exhibit a physical property of surface excess. The concentrations of these target material are high at the surface. When the solutions at the surface are atomized into a mist, the mist has a higher concentration of the target materials. Therefore, aggregating and collecting the mist can make the concentration of the target materials higher. That is, a compound containing a higher concentration of the target material can be separated from the solution. Though the atomizer for atomizing the solution at the surface into a mist is not specifically limited, the atomizer that can be used may be one that oscillates the solution at an ultrasonic frequency, one that discharges the solution from a capillary and electrostatically atomizes the solution at the electrode, or the like.
The following description will describe an apparatus and a method for separating a higher concentration of alcohol from a solution containing the alcohol as a target material by producing a mist through ultrasonic oscillation. However, in the present invention, the target material is not limited to an alcohol. Any target material, which quickly moves to the surface and exhibits a physical property of surface excess, can be separated. Also, the atomizer that atomizes a solution into a mist is not limited to an atomizer by ultrasonic oscillation. For example, an electrostatic atomizer or the like can be used.
The separation apparatus shown in
Further, in place of air, a gas containing either of hydrogen or helium can be used as a carrier gas. To be used as the carrier gas is a gas made up with one of hydrogen and helium, a mixed gas of hydrogen and helium, a mixed gas of hydrogen and air, a mixed gas of helium and air, or alternatively a mixed gas of hydrogen, helium and air. Thus, by using, as the carrier gas, hydrogen or helium, or by using a mixed gas of hydrogen and helium, or by using a mixed gas of hydrogen or helium and air, the oxygen concentration in the apparatus and in its vicinity can be reduced to be proven useful for an explosion prevention as well.
The solution separating method and apparatus include the feature that while maintaining an increased efficiency in atomizing the mist, the mist can be collected efficiently and the highly condensed concentration can be efficiently made with a smaller amount of energy. In other words, the present invention is so designed that when the gas is a gas containing at least one of hydrogen and helium, the solution can be condensed efficiently to a higher concentration for two reasons that the efficiency in atomizing into the mist is increased and that the gas is separated more effectively from the mixed fluid by means of a gas transmission membrane. The efficiency in atomizing the solution into the mist to be mixed with the gas is influenced by a molecular weight of the gas. The maximum amount of mist vaporization that can be contained in a dry gas increases when the molecular weight of the gas is smaller. For example, the air used as a conventional gas has a molecular weight of about 29, while the molecular weight of hydrogen is 2 and the molecular weight of helium is 4, both of which are very small when compared with the air. For this reason, in the case of hydrogen and helium, the maximum weight of mist vaporization that can be contained in 1 kg of dry gas becomes very large when compared with the air. That is to say, hydrogen and helium can contain a large amount of solution in a state of a gas. Such gas has very great efficiency in atomizing the solution into the mist. Therefore, in the present invention, when the gas is a gas that contains at least one of hydrogen and helium, the efficiency can be increased in atomizing the solution into the mist. The mixed fluid can efficiently collect the mist by using the gas transmission membrane. This is because the mist can be collected by reducing the amount of gas which passes through the gas transmission membrane. Further, the gas transmission membrane allows hydrogen and helium more efficiently than the air. This is because hydrogen and helium are of a small size when compared with the air, so as to be able to pass through the gas transmission membrane smooth enough. The molecular weight of gas is one parameter in determining the size of a molecule, and hydrogen and helium with a smaller molecular weight than the airpasses through the gas transmission membrane more smoothly than the air. For this reason, the present invention, in which the gas is a gas that contains at least one of hydrogen and helium, can efficiently separate the gas from the mixed fluid by means of the gas transmission membrane. In the mixed fluid from which the gas has been separated by means of the gas transmission membrane, the target substance contained in the mist gets over-saturated, so that the target substance can be collected very efficiently and in a high concentration. As described above, in the present invention, while the solution is efficiently atomized into the mist, the mist can efficiently pass through the gas transmission membrane, and further the gas amount in the mixed fluid that is separated by the gas transmission membrane can be made small, so that the overall efficient can be improved to a great extent.
The solution is supplied to the atomization chamber 404 by a pump 4010. The atomization chamber 4, 204, 304, 404 does not atomize all the solution supplied thereto as a mist. The reason is that, if all the solution is atomized and collected in the collection chamber 5, 205, 305, 405, the concentration of a target material such as alcohol in the solution collected in the collection chamber 5, 205, 305, 405 will be the same as that of the solution supplied to the atomization chamber 4, 204, 304, 404. With the solution supplied to the atomization chamber 4, 204, 304, 404, the concentration of the target material decreases as the amount of the solution decreases due to the atomization into a mist. Therefore, the concentration of the target material contained in the mist also gradually decreases. The solution in the atomization chamber 4, 204, 304, 404 is replaced with a new solution when the concentration of the target material decreases.
A solution containing the target material, for example, at a concentration of 10 to 50% by weight is atomized in the atomization chamber 4, 204, 304, 404. When the concentration of the target material decreases, the solution in the atomization chamber 4, 204, 304, 404 is replaced with a new solution. The solution is replaced in a batch manner, i.e. by a method in which the solution is replaced with a new one each time after a predetermined period of time passes. However, a stock solution tank 4011 storing a solution may be connected to the atomization chamber 404 via a pump 4010, whereby the solution can be supplied continuously from the stock solution tank 4011. With this apparatus, the atomization chamber 404 is supplied with a solution from the stock solution tank 4011 while discharging the solution in the atomization chamber 404, thus preventing decrease in the concentration of the target material such as alcohol in the solution in the atomization chamber 404. Also, as shown by an arrow B in
The solution in the atomization chamber 4, 204, 304, 404 is atomized into a mist by the atomizer 1, 201, 301, 401. The mist produced by the atomizer 1, 201, 301, 401 has a higher concentration of the target material than the solution. In this case, the atomizer 1, 201, 301, 401 produces a mist from the solution by atomization, and the mist is aggregated and collected, whereby a highly concentrated solution can be efficiently separated.
The atomizer 1, 201, 301, 401 includes a plurality of ultrasonic oscillators 2, 202, 302, 402 and an ultrasonic power supply 3, 203, 303, 403 that supplies high-frequency electric power to these ultrasonic oscillators 2, 202, 302, 402. The atomizer 1, 201, 301, 401 preferably atomizes the solution by ultrasonic oscillation at a frequency of 1 MHz or higher. Use of this atomizer 1, 201, 301, 401 has an advantage in that the solution can be atomized into a mist made of extremely fine droplets, and can concentrate the solution at a higher concentration. In the present invention, the atomizer is not limited to the one by ultrasonic oscillation; however, with an atomizer by ultrasonic oscillation, the oscillation frequency can be made lower than 1 MHz.
The atomizer 1, 201, 301, 401 that oscillates the solution at an ultrasonic frequency scatters the solution from the solution surface W as a mist with a concentration higher than the solution in the atomization chamber 4, 204, 304, 404. When the solution is subjected to ultrasonic oscillation, liquid columns P appear on the solution surface W. The mist is produced from the surface of the liquid columns P. With the atomizer 81 shown in
The atomizer 81 shown in the drawings includes a plurality of ultrasonic oscillators 82 and an ultrasonic power supply 83 that oscillates these ultrasonic oscillators 82 at an ultrasonic frequency. The ultrasonic oscillators 82 are fixed, in a watertight structure, to the bottom of the atomization chamber 84. The apparatus, which oscillates the solution at an ultrasonic frequency by means of the plurality of ultrasonic oscillators 82, produces a mist from the solution more efficiently.
The plurality of ultrasonic oscillators 82 are fixed to a detachable plate 812 in a watertight structure, as shown in
The detachable plate 812 shown in
In order to provide a watertight structure between the ultrasonic oscillators 82 and the front side plate 812A, a packing member 816 is sandwiched between the ultrasonic oscillators 82 and the front side plate 812A. With the atomizer 81 shown in
The packing member 816 is an elastic rubber made of Teflon (registered trademark), silicone, natural or synthetic rubber, or the like. The packing members 816 are sandwiched between the ultrasonic oscillators 82 and the front side plate 812A and between the ultrasonic oscillators 82 and the backside plate 812B so as to be elastically deformed and crushed. Thus, the packing members 816 come into close contact with the surfaces of the ultrasonic oscillators 82, the front side plate 812A, and the backside plate 812B without a gap so as to provide a watertight structure in the connection portions. Here, the packing member 816 may be a ring-shaped metal packing member made of a metal such as copper, brass, aluminum, or stainless steel.
With the detachable plate 812 shown in
The above atomizer 81 provides a watertight structure by means of the packing member 816; however, the atomizer may provide a watertight structure by filling the positions corresponding to the packing member with a caulking material. Furthermore, with the atomizer 81 shown in
With the atomizer 101 of
With the atomizer 111 of
With the atomizer 121 of
A detachable plate may be immersed in the solution in an atomization chamber 134 to oscillate the solution at ultrasonic frequency, as shown in
If the ultrasonic oscillator 2, 202, 302, 402 or the ultrasonic power supply 3 heats the solution in the atomization chamber 4, 204, 304, 404 to a high temperature, the quality may deteriorate. Forced cooling of the ultrasonic oscillator 2, 202, 302, 402 can solve this problem. Furthermore, the ultrasonic power supply 3, 203, 303, 403 is preferably also cooled. The ultrasonic power supply 3, 203, 303, 403 does not directly heat the solution, but heats the surroundings thereof to thereby heat the solution indirectly. The ultrasonic oscillator 2, 202, 302, 402 and the ultrasonic power supply 3 can be cooled by disposing a cooling pipe in a thermally coupled state, namely by disposing a cooling pipe in a state of being in contact. The cooling pipe cools the ultrasonic oscillator and the ultrasonic power supply by running a liquid or refrigerant, which is cooled by a cooler, or cooling water such as ground water or service water.
Furthermore, the separation apparatus shown in
The temperature of the solution affects the efficiency in atomizing the solution into a mist by means of ultrasonic oscillation. When the temperature of the solution lowers, the efficiency in atomizing the solution into a mist decreases. When the temperature of the solution is lowered, the deterioration of the product quality will be smaller. However, if the temperature of the solution is low, the efficiency in atomizing the solution into a mist decreases, so that the temperature of the solution is set at a temperature at which the solution can be efficiently atomized into a mist while considering the property of the target substance that changes with temperature. A target substance that does not deteriorate in product quality or does not raise a problem even at a high temperature can be efficiently atomized into a mist by raising the temperature of the solution.
Further, with the separation apparatus shown in
The air separator 50, 2050, 3050, 4050 separates air from the mixed fluid supplied from the atomization chamber 4. An inside of this air separator 50, 2050, 3050, 4050 is partitioned into a primary passageway 52, 2052, 3052, 4052 and a secondary air-discharging passageway 53, 2053, 3053, 4053 with an air transmission membrane 51, 2051, 3051, 4051. The primary passageway 52, 2052, 3052, 4052 is connected to the atomizer 1, 201, 301, 401 to pass the mixed fluid. The secondary air-discharging passageway 53, 2053, 3053, 4053 discharges the air that is separated from the mixed fluid by being passed through the air transmission membrane 51, 2051, 3051, 4051.
The air transmission membrane 51, 2051, 3051, 4051 passes only air and does not pass the target substance. Therefore, this air transmission membrane 51, 2051, 3051, 4051 to be used here is a molecular sieve which is a membrane of a pore size that transmits air but does not transmit the target substance. Air is made of about 80% nitrogen and 20% oxygen. Therefore, the air transmission membrane 51, 2051, 3051, 4051 is a membrane of a pore size that transmits nitrogen and oxygen. The pore size of this air transmission membrane 51, 2051, 3051, 4051 is preferably 0.4 nm to 0.5 nm. This air transmission membrane 51, 2051, 3051, 4051 transmits the air made of nitrogen and oxygen, which are smaller than the pore size, but does not transmit the target substance such as ethanol, which is larger than a pore size. The above air transmission membrane 51, 2051, 3051, 4051 is fabricated, for example, by coating a surface of a ceramic with zeolite.
The primary passageway 52, 2052, 3052, 4052 of the air separator 50, 2050, 3050, 4050 is connected to the atomization chamber 4, 204, 304, 404 to bring the mixed fluid into contact with the primary surface of the air transmission membrane 51, 2051, 3051, 4051. Further, with the apparatus of
The gas transmission membrane 7 allows the carrier gas alone to pass through, but not the target substance. Therefore, this carrier gas transmission membrane 7 uses a molecular sieve with a membrane of such a pore size as may allow the carrier gas to pass through but not the target substance. In the apparatus in which alcohol is condensed as a target substance, the pore size of the carrier gas transmission membrane 7 is preferably 0.4-0.5 nm. The carrier gas transmission membrane 7 does not allow a target substance, such as ethanol which is larger than the pore size, to pass through, but the membrane 7 allows hydrogen, helium, or a carrier gas made up with a gas containing at least one of hydrogen and helium, which is all smaller than the pore size, to pass through. The carrier gas transmission membrane 7 with the above-described size is made by coating zeolite on the surface of ceramic.
The forced air discharger 54, 3054, 4054 is a suction pump such as a vacuum pump that sucks and discharges air in a forced manner. The suction side of the forced air discharger 54, 3054, 4054 is connected to the secondary air-discharging passageway 53, 3053, 4053 to discharge the air in the secondary air-discharging passageway 53, 3053, 4053 forcibly. The secondary air-discharging passageway 53, 3053, 4053 from which air is discharged will have a pressure lower than an atmospheric pressure, and hence will have a lower pressure than the primary passageway 52, 3052, 4052. In other words, the pressure in the primary passageway 52, 3052, 4052 will be relatively higher than the pressure in the secondary air-discharging passageway 53, 3053, 4053. When the system is brought into this state, the air contained in the mixed fluid is transmitted through the air transmission membrane 51, 3051, 4051 to pass from the primary passageway 52, 3052, 4052 to the secondary air-discharging passageway 53, 3053, 4053 to thereby be separated from the mixed fluid.
With the apparatus of
Further, with the apparatus of
The air separated by the air separator 50, 2050, 3050, 4050 is an air that does not contain the target substance. With the apparatus of
The mixed fluid from which air has been separated by the air separator 50, 2050, 3050, 4050 has a smaller content of air, namely, has a larger content of the mist relative to air, so that the target substance of the mist will be in a supersaturated state. Therefore, the mist can be collected efficiently in the collection chamber 5, 205, 305, 405. Since air is separated from the mixed fluid by the air separator 50, 2050, 3050, 4050, the mixed fluid supplied to the collection chamber 5, 205, 305, 405 has a smaller content of air than the mixed fluid discharged from the atomization chamber 4, 204, 304, 404.
The mixed fluid from which part of the air has been separated by the air separator 50, 2050, 3050, 4050 is transported to the collection chamber 5, 205, 305, 405. The mixed fluid is supplied to the collection chamber 5, 205, 305, 405 by a forced transporter 35, 2035, 3035, 4035 made of a blower or a compressor. The forced transporter 35, 2035, 3035, 4035 is connected between the air separator 50, 2050, 3050, 4050 and the collection chamber 5, 205, 305, 405 so as to supply the mixed fluid from the air separator 50, 2050, 3050, 4050 to the collection chamber 5, 205, 305, 405. The forced transporter 35, 2035, 3035, 4035 absorbs the mixed fluid from which part of the air has been separated by the air separator 50, 2050, 3050, 4050, and supplies the absorbed mixed fluid to the collection chamber 5, 205, 305, 405.
With the apparatus shown in
The compressor 3035A, 4035A to be used may be a compressor of a piston type, a compressor of a rotary type, a compressor of a diaphragm type, a compressor of a Rischorm type, or the like. The compressor 3035A, 4035A to be used is preferably of a type that can transport the mixed fluid by pressurizing the mixed fluid to 0.2 to 1 MPa.
With the apparatus that increases the pressure in the collection chamber 305, 405 by using the compressor 3035A, 4035A as the forced transporter 3035, 4035, a throttle valve 3036, 4036 is connected to an outlet side of the collection chamber 305, 405. However, if the flow rate of the mixed fluid supplied to the collection chamber by the compressor is high, the throttle valve need not always be provided on the outlet side of the collection chamber. The reason is that, if the passage resistance on the outlet side of the collection chamber is large, the compressor can supply a large amount of the mixed fluid to the collection chamber to increase the pressure in the collection chamber to be higher than an atmospheric pressure. However, when the throttle valve is connected to the outlet side of the collection chamber, the pressure in the collection chamber can be efficiently increased to be higher than an atmospheric pressure. The throttle valve 3036, 4036 increases the pressure in the collection chamber 305, 405 by increasing the passage resistance of the mixed fluid discharged from the collection chamber 305, 405. The throttle valve 3036, 4036 to be used may be a valve that can adjust the passage resistance of the mixed fluid by adjusting the degree of opening, a pipe made of a narrow pipe such as a capillary tube to increase the passage resistance of the mixed fluid, or a pipe filled with a resisting material that increases the passage resistance of the mixed fluid, or the like. According as the throttle valve 3036, 4036 makes the passage resistance larger, the pressure in the collection chamber 305, 405 will be higher.
When the compressor 3035A, 4035A compresses the mixed fluid, the mixed fluid undergoes adiabatic compression to generate heat. Also, when the mixed fluid passes through the throttle valve 3036, 4036, the mixed fluid undergoes adiabatic expansion to be cooled. The mixed fluid supplied from the compressor 3035A, 4035A to the collection chamber 305, 405 is preferably cooled so as to collect the mist efficiently. Therefore, when heat is generated, the collection efficiency will be poor. In order to reduce this problem, the apparatus shown in
The heat-discharging heat exchanger 3037 circulates a refrigerant in the inside of a circulation pipe 3038. One end of the circulation pipe 3038 is thermally coupled to the outlet side of the throttle valve 3036, and the other end of the circulation pipe 3038 is thermally coupled to the outlet side of the compressor 3035A. The refrigerant that circulates in the circulation pipe 3038 is cooled on the outlet side of the throttle valve 3036. The refrigerant cooled here cools the outlet side of the compressor 3035A. Though not illustrated in the drawings, the part of the circulation pipe 3038 that is thermally coupled has a double-pipe structure so as to achieve thermal coupling between the mixed fluid and the refrigerant.
Further, the apparatus shown in
With the apparatus shown in
The collection chamber 5, 205, 305, 405 shown in
In order to collect the mist more speedily in the collection chamber, the collection chamber 155 in
With the separation apparatus shown in
With the separation apparatus shown in
Plural sheets of baffle plates 167 are provided in the inside of the collection chamber 165 of
Furthermore, a fan 169, which blows and stirs the mist in a forced manner, is provided in the collection chamber 165 of
Furthermore, a mist oscillator 178 for oscillating the mist to increase the probability of collision with each other is provided in the collection chamber 175 of
Ultrasonic waves involve high frequencies above the audible frequency of human beings and are inaudible to the human ear. For this reason, with the mist oscillator 178 emitting ultrasonic waves, even if the gas in the collection chamber 175 is intensely oscillated, in other words, even if the output power of the electrical-to-mechanical oscillation converter is very high, the mist oscillator will not harm human beings due to sound. Therefore, ultrasonic waves have an advantage in that the mist can be intensely oscillated, and the droplets of the mist are made to collide with each other efficiently to be quickly collected.
With the separation apparatus described above, a device that aggregates the mist efficiently is disposed in the collection chamber, so that the mist can be aggregated more speedily to prepare a solution having a high concentration. Further, though not illustrated, the separation apparatus of the present invention may incorporate in the collection chamber all of the nozzles that spray the solution, the fan that stirs the mist, and the oscillator that oscillates the mist to aggregate the mist most efficiently. Also, two devices that aggregate the mist may be incorporated to aggregate the mist efficiently.
The atomization chamber 4, 204, 304, 404 and the collection chamber 5, 205, 305, 405 are preferably filled with an inert gas. With this apparatus, the inert gas prevents deterioration of the quality of the solution in the atomization chamber 4, 204, 304, 404 and the collection chamber 5, 205, 305, 405. For this reason, a solution having a high concentration can be obtained in a state having a higher product quality.
As this invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, the present embodiment is therefore illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within the metes and bounds of the claims, or equivalence of such metes and bounds thereof are therefore intended to be embraced by the claims. This application is based on applications No. 2004-097781 filed in Japan on Mar. 30, 2004, and No. 11/091,486 filed in U.S. on Mar. 29, 2005, the content of which is incorporated hereinto by reference.
Number | Date | Country | Kind |
---|---|---|---|
2004-097781 | Mar 2004 | JP | national |
This is a continuation-in-part (CIP) application of Ser. No. 11/091,486, filed Mar. 29, 2005 now U.S. Pat. No. 7,357,334.
Number | Name | Date | Kind |
---|---|---|---|
4469576 | Akazawa et al. | Sep 1984 | A |
5759394 | Rohrbach et al. | Jun 1998 | A |
6235088 | Matsuura | May 2001 | B1 |
6402046 | Loser | Jun 2002 | B1 |
6517612 | Crouch et al. | Feb 2003 | B1 |
7357334 | Matsuura et al. | Apr 2008 | B2 |
Number | Date | Country |
---|---|---|
0 298 881 | Jan 1989 | EP |
0 511 687 | Nov 1992 | EP |
2 857 881 | Jan 2005 | FR |
2 404 880 | Feb 2005 | GB |
9-187601 | Jul 1997 | JP |
2001-314724 | Nov 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20080202333 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11091486 | Mar 2005 | US |
Child | 12071355 | US |