Method and apparatus for sharpening drill bits

Information

  • Patent Grant
  • 6419562
  • Patent Number
    6,419,562
  • Date Filed
    Monday, December 18, 2000
    24 years ago
  • Date Issued
    Tuesday, July 16, 2002
    22 years ago
  • Inventors
  • Examiners
    • Hail, III; Joseph J.
    • McDonald; Shantese
    Agents
    • Devine, Millimet & Branch, P.A.
    • Remus; Paul C.
    • Sullivan; Todd A.
Abstract
This invention results from the realization that a drill bit can be positioned for sharpening without using the flawed tip as a reference point allowing the drill bit to be sharpened with an insignificant level of human judgment and with consistently less flawed results. This inventive method for properly positioning a drill bit to be sharpened involves selecting a drill bit with a substantially helical geometric shape, a feature common to most drill bits. The next step is viewing a drill bit with a digital imaging device. Either an individual or, preferably, a computer determines the geometric shape of the drill bit. An individual or automated mechanism then calculates a sharpening position, relative to a sharpening means, such as sharpening wheels, for sharpening the drill bit based on the geometric shape of the drill bit. Automating this step may involve calibrating the machine by first manually positioning the drill bit and then programming a machine to similarly position all similarly shaped drill bits. The final step to this inventive method is placing the drill bit in the sharpening position, relative to the sharpening means.
Description




FIELD OF THE INVENTION




This invention relates to the field drill bit sharpening. More specifically, this invention relates to the field of sharpening fine drill bits frequently used for drilling holes in printed circuit boards. Even more specifically, this invention relates to the procedure for properly positioning the drill bit to be sharpened before sharpening it.




BACKGROUND OF THE INVENTION




The inspiration of this invention centers on the need to reuse dulled drill bits used for drilling holes in circuit boards. Circuit boards are sensitive materials that require special types of drill bits that are quite costly. The drill bits are used in extensive quantity and dull often. Once the drill bits begin to dull, they will regularly damage circuit boards if not replaced. Thus it has become more cost effective to resharpen drill bits and reuse them, than discarding dulled drill bits.




Sharpening a drill bit in this field means sharpening the drill bit tip, as the web of the drill bit rarely suffers enough wear to require sharpening. The most difficult task in sharpening the drill bit tip is ascertaining where along the drill bit tip the edge is supposed to be located. Once the location for the sharpening is properly located, applying the drill bit to the necessary grinding devices becomes a simple process. Failure to ascertain the correct location can result in improper grinding and sharpening that will require discarding or resharpening the drill bit. As every drill bit can only be sharpened a finite number of times before being worn down too far to be resharpened and reused, an improperly sharpened drill bit is a costly problem.




One method of ascertaining the location for the drill bit tip edge is simply using the human eye. The drill bit is held within a rotating arm of a machine and operators of the machine peer at the drill bit tip through a microscope, which normally has cross hairs on the lens. The machine operators can then rotate the arm of the machine by fractions of degrees to rotate the drill bit until the edge of the used drill bit lines up with the cross hairs.




This method has several flaws. The greatest flaw is using the drill bit tip to determine where the drill bit tip edge should be. After the number of times the drill bit has been used, the drill bit tip is dulled and flawed. It would seem obvious that using a flawed piece of the structure to correct the structure's flaw is an imperfect procedure. Depending on the condition of the tip, the individual sharpening the tip is required to use a degree of judgment in determining where the tip belongs in relation to its altered state. As a result, the sharpening is a very imperfect science resulting in improperly sharpened drill bits.




Another problem with this method is its dependency on human judgment. Human operators, without any scientific backing, are left to judge where along the drill bit tip the sharpened edge belongs. Using a flawed tip and the cross-hairs in the microscope, the operators must choose the location to sharpen on a trial and error basis. This guessing method causes inconsistent results.




Another problem with this method is it is often difficult to determine whether the drill bits were improperly sharpened. The manufacturer using the drill bits doesn't have the time to examine each drill bit under a microscope to determine if the sharpened edge on the drill bit tip is flawed. While sometimes flawed sharpened drill bits will result in obvious damage to the circuit boards, other times the flawed sharpened drill bits will result in non-obvious damage to the circuit boards that is only discovered after the eventual circuit board users discover the circuit boards are dysfunctional. Therefore the unpredictable results that come with human operators using a flawed system are a serious problem.




Another method for finding the edge to sharpen drill bits is using a digital imaging device to view the drill bit in the same manner the human operator was viewing the drill bit in the other method. The digital imaging device finds the location of the drill bit tip and allows the operator to position the drill bit for sharpening much more smoothly. However this method also contains the same flaws as the previous method. This method depends on a flawed piece of the drill bit structure to correct the structure flaw. This method requires trial and error judgment based on the condition of the drill bit to sharpen it. This method produces drill bits with flawed tips inconsistently.




SUMMARY OF THE INVENTION




This invention results from the realization that a drill bit can be positioned for sharpening without using the flawed tip as a reference point allowing the drill bit to be sharpened with an insignificant level of human judgment and with consistently less flawed results.




It is therefore an object of this invention that the drill bits get positioned for sharpening without regard to the condition of the drill bit tip.




It is therefore a further object of this invention that the drill bits get positioned for sharpening without depending on separate human judgment for each drill bit.




It is therefore a further object of this invention that the drill bits get positioned for sharpening based on consistent calculations referencing the geometric shape of the drill bits.











BRIEF DESCRIPTION OF THE DRAWINGS




The novel features believed characteristic of the invention are set forth in the claims. The invention itself however, as well as other features and advantages thereof, will be best understood by reference to the description which follows, read in conjunction with the accompanying drawings, wherein:





FIG. 1

shows a flow chart of the claimed method for properly positioning a drill bit to be sharpened.





FIG. 2

shows a flow chart of another embodiment of the claimed method for properly positioning a drill bit to be sharpened.





FIG. 3

shows a flow chart of another embodiment of the claimed method for properly positioning a drill bit to be sharpened.





FIG. 4

shows a profile of a drill bit.





FIG. 5

shows a profile of the drill bit before and after being rotated.





FIG. 6

shows a drill bit being viewed by a digital imaging device.





FIG. 7

shows a side view of the drill grinding assembly.





FIG. 8

shows a flow chart of another embodiment of the claimed method for properly positioning a drill bit to be sharpened.











DETAILED DESCRIPTION OF THE INVENTION




This method


10


, in

FIG. 1

, for properly positioning a drill bit


30


, in

FIG. 4

, to be sharpened involves selecting


12


a drill bit


30


with a substantially helical geometric shape


32


, a feature common to most drill bits. The next step is viewing


13


a drill bit


30


with a digital imaging device


40


, in FIG.


5


. Either an individual or, preferably, a computer determines


14


the geometric shape


32


of the drill bit


30


. An individual or automated mechanism then calculates


16


a sharpening position, relative to a sharpening means


50


, in

FIG. 7

, such as sharpening wheels, for sharpening the drill bit


30


based on the geometric shape


32


of the drill bit


30


. Automating this step may involve calibrating the machine by first manually positioning the drill bit


30


and then programming a machine to similarly position all similarly shaped drill bits


30


. The final step to this inventive method is placing


18


the drill bit in the sharpening position, relative to the sharpening means


50


.




One method for determining


14


, in

FIG. 2

, the geometric shape


32


of the drill bit


30


involves obtaining


20


multiple digital images


42


of the drill bit


30


as the drill bit


30


is rotated known units


44


of angular rotation to provide a three dimensional image of the drill bit


30


. The next step is comparing


22


a difference in vertical location


34


of a reference point


36


on a helical web


38


on the drill bit


30


, visible on at least two of the digital images


42


, to the known units


44


of angular rotation between the digital images


42


to further define the three dimensional image. Finally, calculating


24


the geometric shape


32


of the drill bit


30


. Limiting the axis on which the drill bit


30


is rotated to the lengthwise axis


39


of the drill bit


30


can narrow this embodiment.




Another embodiment for determining


14


, in

FIG. 3

, the geometric shape


32


of the drill bit


30


involves obtaining


26


a first digital image


46


, in

FIG. 6

, of a first profile


47


of the drill bit


30


. The next step is rotating


27


the drill bit


30


a known unit


44


of angular rotation and obtaining


28


a second digital image


48


of a second profile


49


of the drill bit


30


. The next step is comparing


29


a difference in vertical location


34


of a reference point


36


visible on a helical web


38


on the drill bit


30


in both the first profile


47


and the second profile


49


of the drill bit


30


in relation to the known unit


44


of angular rotation by which the drill bit


30


was rotated. The final step is calculating


24


a geometric shape


32


of the drill bit


30


.




One possible digital imaging device


40


, in

FIG. 5

, for this inventive method


10


is a digital camera


60


with a back lighting device


62


behind the drill bit


30


. Another possible digital imaging device


40


is a series of lasers that at least partially illuminate the drill bit


30


to produce a digital image


42


and determine the geometric shape


32


of the drill bit


30


. Other digitally imaging devices are contemplated.




One apparatus


80


for performing this invention is shown in

FIG. 7. A

drill bit


30


is located and picked up by the robot leader and placed into the collate


82


in its vertical orientation. The vision system


84


determines whether the drill bit


30


is positioned correctly and feeds that information to the supervising computer which adjusts the position of the drill bit


30


by moving the rotation


88


and/or the linear translation stage


90


until the drill bit


30


is correctly located in the field of view


92


of the digital imaging device


40


. The drill bit


30


is slowly rotated about the helix axis


39


while digital pictures


42


are taken. Position of the primary inflection point


36


is determined relative to a fixed position, such as the top of the drill bit


30


, and displacement is calculated as a function of the rotation angle


44


. The position and movement of the secondary inflection points


96


are also determined. Primary


98


and maximum


100


drill bit


30


diameters are determined. Web height is calculated from this information as simply one half the difference between the primary


98


and maximum


100


diameters. Finally the difference between the apparent minimum diameter


104


and the end


106


of the drill bit


30


is calculated. Using a predetermined offset value, the rotation of the collate


82


required to orient the drill bit


30


for presentation to the grinding wheels


112


is calculated. That is, depending on how much stock is to be removed, the drill bit


30


is rotated


18


so that it is presented to the secondary


116


and primary


118


grinding wheels


112


. The assembly


120


is rotated to the horizontal position


122


,

FIG. 6

, and the drill bit


30


is translated through a bushing for stock removal by primary


118


and secondary


116


grinding wheels


112


. The assembly


120


is moved across the grinding wheels


112


and returned to the vertical position


126


. A linear stage is retracted partially from the bushing and the drill bit


30


rotated 180 degrees. The stock removal process is repeated so that the other side of the drill bit


30


can be ground. All measurements are accomplished using a projected area of the drill bit


30


on the digital imaging device


40


. The drill bit


30


is backlit using a collimated fiber optic bundle or LED light source.




One method, in

FIG. 8

, for placing the drill bit


30


in the sharpening position begins by predetermining


130


an axial position where the helical web


38


at a tip


132


of the drill bit


30


should be placed. Predetermining


130


the axial position is based upon the position of the sharpening means


50


with respect to the assembly


120


and, if done correctly, only needs to be performed once per apparatus


80


for a range of drill bit


30


sizes. The next step in this method is predetermining


134


a fixed amount of stock to remove from the drill bit


30


. A minimal amount of stock must be removed from the drill bit


30


to have any sharpening effect. The next step is rotating


136


the drill bit


30


to the predetermined axial position. The final step is offsetting


138


axially the predetermined position by the amount of stock to be removed.



Claims
  • 1. A method for properly positioning a drill bit to be sharpened, said method comprising:selecting a drill bit with a substantially helical geometric shape; viewing a drill bit with a digital imaging device; obtaining multiple digital images of the drill bit as the drill bit is rotated known units of angular rotation; comparing a difference in vertical location of a reference point on a helical web on the drill bit, visible on at least two of the digital images, to the known units of angular rotation between the digital images; calculating the geometric shape of the drill bit; calculating a sharpening position, relative to a sharpening means, for sharpening the dill bit based on the geometric shape of the drill bit; and placing the drill bit in the sharpening position, relative to the sharpening means.
  • 2. The drill bit positioning method of claim 1 wherein the axis on which the drill bit is rotated is a lengthwise axis of the drill bit.
  • 3. A method for properly positioning a drill bit to be sharpened, said method comprises:selecting a drill bit with a substantially helical geometric shape; viewing a drill bit with a digital imaging device; obtaining a first digital image of a first profile of the drill bit; rotating the drill bit a known unit of angular rotation; obtaining a second digital image of a second profile of the drill bit; comparing a difference in vertical location of a reference point visible on a helical web on the drill bit in both the first profile and the second profile of the drill bit in relation to the known unit of angular rotation by which the drill bit was rotated; calculating a geometric shape of the drill bit; calculating a sharpening position, relative to a sharpening means, for sharpening the drill bit based on the geometric shape of the drill bit; and placing the drill bit in the sharpening position, relative to the sharpening means.
  • 4. A method for properly positioning a drill bit to be sharpened, said method comprising:selecting a drill bit with a substantially helical geometric shape; viewing a drill bit with a digital imaging device; determining the geometric shape of the drill bit; calculating a sharpening position, relative to a sharpening means, for sharpening the drill bit based on the geometric shape of the drill bit; predetermining an axial position where a helical web at a tip of the drill bit should be placed; predetermining a fixed amount of stock to remove from the drill bit; rotating the drill bit to the predetermined axial position; and offsetting axially the predetermined position by the amount of stock to be removed.
  • 5. The drill bit positioning method of claim 4 wherein the digital imaging device is a digital camera with a back lighting device behind the drill bit.
  • 6. The drill bit positioning method of claim 4 wherein the digital imaging device is a series of lasers that at least partially illuminate the drill bit to produce a digital image and determine the geometric shape.
US Referenced Citations (2)
Number Name Date Kind
5655354 Baker et al. Aug 1997 A
6283824 Mortell et al. Sep 2001 B1