1. Field of the Invention
The present invention relates to the field of image processing and, in particular, to a method and apparatus for simplifying field prediction motion estimation facilitating real-time video encoding.
2. Background Information
Over the years, the Motion Picture Experts Group (MPEG) has developed a number of standards for digitally encoding (also commonly referred to as compressing) audio and video data (e.g., the well-known MPEG-1, MPEG-2 and MPEG-4 standards). Recently, particular attention has been drawn to the MPEG-2 standard [ISO/IEC 13818-2:1996(E), “Information technology—Generic coding of moving pictures and associated audio information: Video”, 1996], which generally describes a bit-stream syntax and decoding process for broadcast quality digitized video. The MPEG-2 standard is widely used in emerging state-of-the-art video delivery systems including digital versatile disk (DVD, sometimes referred to as digital video disk), direct broadcast satellite (DBS) (e.g., digital satellite television broadcasts) and high-definition television (HDTV).
The rising popularity of the MPEG-2 standard may well be attributed to its complex video compression technology that facilitates the broadcast quality video. Compression is basically a process by which the information content of an image or group of images (also referred to as a Group of Pictures, or GOP) is reduced by exploiting the spatial and temporal redundancy present in and among the image frames comprising the video signal. This exploitation is accomplished by analyzing the statistical predictability of the signal to identify and reduce the spatial and temporal redundancies, thereby reducing the amount of storage and bandwidth required for the compressed data. The MPEG-2 standard provides for efficient compression of both interlaced and progressive video content at bit rates ranging from 4 Mbps (for DVD applications) to 19 Mbps (for HDTV applications).
As shown in the block diagram of
Simplistically speaking, compression by intra-frame compressor 102 may be thought of as a three-step process wherein spatial redundancy within a received video frame is identified, the frame is quantized and subsequently entropy encoded to reduce or eliminate the spatial redundancy in the encoded representation of the received frame. The identification of spatial redundancy within a frame is performed by transforming spatial amplitude data of the frame into a spatial frequency representation of the frame using the discrete cosine transform (DCT) function 110. The DCT function is performed on 8×8 pixel “blocks” of luminance (brightness) samples and the corresponding blocks of chrominance (color differential) samples of the two-dimensional image, generating a table of 64 DCT coefficients. The block of DCT coefficients is then compressed through Quantizer (Q) 112. Quantization is merely the process of reducing the number of bits required to represent each of the DCT coefficients. The quantizing “scale” used can be varied on macroblock (16×16 pixel) basis. The quantized DCT coefficients are then translated into a one-dimensional array for encoding 114 via variable length encoding and run length encoding. The order in which the quantized DCT coefficients are scanned into encoder 114 affects the efficiency of the encoding process. In general, two patterns for scanning the block of quantized DCT coefficients are recognized, the zigzag pattern and the alternate scan pattern, each of which are depicted in
Inter-frame compressor 104 reduces the temporal redundancies existing between frames in a group of pictures and is typically a complex process of motion estimation between frames and fields of the frames using reconstructed past and predicted future frames as a reference. Accordingly, inter-frame compressor 104 is depicted comprising motion estimator 116 which statistically computes motion vectors to anticipate scene changes between frames, anchor frame storage 118 to store reconstructed prior frame data (from the quantized DCT coefficients) and predicted frame storage 120 to store a predicted future frame based on information received from motion estimator 116 and current frame information. In addition, inter-frame compressor 104 is depicted comprising inverse quantizer 122, inverse DCT 124 and a summing node 126 to reconstruct the present or past frames for storage in anchor frame storage 118.
Those skilled in the art will appreciate that the MPEG-2 standard provides for three types of video frames and that the type of frame determines how the motion estimation for that frame is to be accomplished. The three frame types are Intra-frame coded (I-frame), Predictably encoded frames (P-frame) and bidirectionally interpolated frames (B-frame). I-frames are encoded based only on the content within the frame itself and are typically used as reference and synchronization frames. That is, the separation between I-frames is used to denote Groups of Pictures (GOPs). P-frames are encoded based on the immediate past I- or P-frames (also referred to as anchors), and B-frames are encoded based on past or future I- and P-frames (thus the need for anchor and predicted frame storage 118 and 120, respectively). Predicting content based on frame data is graphically illustrated with reference to
Turning to
If the frame sequence contains interlaced content, field prediction is also performed in calculating the motion vector. Simplistically speaking, frames are broken into even and odd fields, and the content of each field is predicted based on the information contained in both the odd and the even fields of the past and/or future frames (depending on the frame type, P or B-frames, respectively). More specifically, the content of P- and B-frames are predicted by analyzing the even and odd fields of past and/or future anchor frames. A typical field prediction process is depicted in
With reference to
Those skilled in the art will appreciate that, although the computationally intensive video encoding associated with the MPEG-2 standard provides high resolution video imagery, its implementation typically requires one or more powerful, dedicated processor(s) (e.g., a microcontroller, an application specific integrated circuit (ASIC), a digital signal processor (DSP) and the like) to encode (or, conversely decode) MPEG-2 standard video data (e.g., to/from a DVD disk). Attempts to utilize the general purpose central processing unit (CPU) of a typical home computer for MPEG-2 processing has proven computationally prohibitive, as the MPEG-2 standard processing consumed nearly all of the computational resources of the general purpose CPU, thereby rendering the computer virtually useless for any other purpose. As a consequence, providing MPEG-2 standard video technology in a personal computer has heretofore required the addition of the costly dedicated video processors described above.
As a result of the cost and performance limitations commonly associated with real-time video encoding described above, the roll-out of MPEG-2 video multimedia capability in the home computing market has been slowed. Consequently, a need exists for encoding enhancements to facilitate real-time video encoding that is unencumbered by the deficiencies and limitations commonly associated with the prior art. An innovative solution to the problems commonly associated with the prior art is provided herein.
In accordance with the teachings of the present invention, a method and apparatus for simplifying field prediction motion estimation is presented. In particular, in accordance with one embodiment of the present invention, motion estimation on a received stream of data comprising at least a predicted frame and an anchor frame, and utilizing even-parity field prediction to predict content of each of a plurality of fields of the predicted frame from corresponding fields of the anchor frame.
The present invention will be described by way of exemplary embodiments, but not limitations, illustrated in the accompanying drawings in which like references denote similar elements, and in which:
In the following description, for purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without the specific details. In other instances, well known features are omitted or simplified in order not to obscure the present invention. Furthermore, for ease of understanding, certain method steps are delineated as separate blocks, however, those skilled in the art will appreciate that such separately delineated blocks should not be construed as necessarily conferring an order dependency in their performance.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrase “in one embodiment” appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
Those skilled in the art will appreciate from the description to follow that the innovative encoder described herein is comprised of a number of innovative aspects, each of which provide increased performance without significant degradation to the integrity of the encoded data over prior art MPEG-2 video encoders. For ease of explanation, each of the innovative aspects of intra-frame encoding and inter-frame encoding processes of the present invention will be described in turn, and as a constituent component of the innovative encoder of the present invention. This is not to say, however, that all of the innovative aspects described herein must be present in order to practice the present invention. Indeed, a number of alternative embodiments will be presented depicting various levels of complexity incorporating one or more aspects of the present invention. Thus, those skilled in the art will appreciate from the description to follow that any of a number of embodiments of the present invention may be practiced without departing from the spirit and scope of the present invention.
Intra-frame Encoding
Turning to
If, however, it is determined in step 502 that VHR downconversion is to be performed, the process continues with step 506 wherein a low-pass filter is applied to the received frame in step 506 and the frame is subsampled horizontally. In one embodiment of the present invention, for example, the frame is subsampled horizontally by a factor of two (2), which eliminates one-half of the frame of data. Turning briefly to
h(n)=0.25[δ(n−1)+2δ(n)+δ(n+1)] (1)
In one example software implementation of the present invention, suitable for execution by an Intel® Architecture processor, the following simplified version of equation (1) may be used, utilizing the pavg instruction:
y(n)=PAVG(x(n),PAVG(x(n−1),x(n+1))) (2)
Thus, instead of subsequently encoding the received data with a traditional 8×8 DCT and then realizing that most of the coefficients in the right half of the block, i.e., the high-frequency spatial components, are zero as a result of the foregoing filter, the block is horizontally subsampled in step 604. In one embodiment, for example, the received blocks are subsampled by a factor of two (2) horizontally. This results in macroblocks of 8×16 and blocks of 4×8. That is, the horizontal 8-pixel DCT is replaced with a modified 4-pixel DCT. The resulting coefficients of the normal 4-pixel DCT are modified by scaling them by the square root of two (sqrt (2)) to accommodate the conversion to an 8-pixel DCT block. Consequently, to an MPEG-2 compliant decoder, the VHR compressed data looks identical to full-resolution encoded MPEG-2 data. When decoded with an MPEG-2 compliant decoder, the visual effect of application of the VHR downconversion of
Once the VHR downconversion has been completed on each block of the received frame in step 506, discrete cosine tranform (DCT) and quantization pre-processing is performed on the VHR downconverted frame, step 508. More specifically, in accordance with one embodiment of the present invention, the pre-processing consists of DCT type selection and macroblock quantization selection.
For data streams comprising interlaced video, the first step in the encoding pipeline is deciding between frame and field DCT. To improve compression efficiency, selection of the DCT type which yields smaller vertical high-frequency coefficients is preferable. In one embodiment present invention, the “vertical activity” is measured by comparing the activity of adjacent lines for both frame and field macroblocks. In one embodiment, vertical frame activity is measured by summing the absolute difference of spatial amplitudes over pairs of adjacent frame lines over a macroblock (i.e., VHR mode 8×16; non-VHR mode 16×16). In one embodiment, a psad operation may be used to sum the absolute difference of pairs and, thus, vertical frame activity is calculated by summing the result of a psad operation over pairs of adjacent frame lines over the macroblock, e.g.,
Similarly, the vertical field activity for both fields is calculated by summing the absolute difference over pairs of adjacent field lines (even numbered lines contain the top field and the odd numbered lines contain the bottom field). Again, the psad operation may well be employed, e.g.,
Low activity values indicate small vertical frequency magnitudes, while the converse is true for high activity values. In accordance with one embodiment of the present invention, the measure which provides the lowest vertical AC coefficients are selected to improve the efficiency of subsequent encoding processes.
In one embodiment of the present invention, the quantizer scale is selected based, at least in part, on how highly correlated the data is within each of the blocks of the macroblock. In one embodiment, if the block data is highly correlated, a lower (finer) quantization scale is used. If, however, the block data is uncorrelated (e.g., highly textured regions), a larger quantizer scale is utilized. This decision is based, in part, on the theory that the human visual system is not particularly sensitive to degenerative artifacts in highly textured regions. To estimate the activity within a macroblock, a measure of the horizontal activity is combined with a measure of the vertical activity value obtained from the DCT type selection (above). In one embodiment, the horizontal activity is measured using a first-order approximation of the correlation between adjacent pixels using the psad operation:
horizontal_activity=ΣPSAD(line[n]&0x00ffffffffffffff, line[n]>>8) (5)
The total activity, which is the sum of the horizontal and vertical activities, then is used to select the macroblock quantizer scale to be applied.
Once the pre-processing of step 508 is completed, the VHR downconverted frame is discrete cosine transformed into the frequency domain, step 510. As provided above, the DCT is but one means of transforming the spatial amplitude data of a frame to a spatial frequency representation. Within the context of the present invention, any of a number of known techniques for performing DCT may well be employed. However, in the instance where the VHR filter has been employed, the transformation to the frequency domain need only be performed on the lower frequency 4×8 pixels of the block (i.e., the left half of the 8×8 block). In one embodiment, the well known fast DCT-SQ algorithm is utilized for eight and four pixel DCT's.
With continued reference to
As described above, the entropy encoding process 514 translates the two-dimensional block of quantized DCT coefficients into a one dimensional representation. Since the quantized DCT coefficients in the right half of the 8×8 block are always zero, as a result of the VHR downconversion, the alternate scan pattern 250 (described above) and run length encoding provides the most efficient entropy encoding process. That is because application of the alternate scan pattern 250 guarantees that almost the entire left half of the block is traversed before traversing the right half. In one embodiment, the run-length encoding process compresses the quantized data further into a form of (run_of_zeroes, next non-zero value). For example, a sequence of “070003000002” would be encoded as (1,7),(3,3),(5,2) and so on. As provided above, the goal is to maximize the run of zeroes for maximum compression efficiency.
Those skilled in the art will appreciate, based on the foregoing, that the VHR method of
Inter-frame Compression/Encoding
Having described the innovative intra-frame compression process above with reference to
As shown, inter-frame compression process 800 begins upon the receipt of one or more frames of video. In the instance where more than one frame of video is received, they are classified in step 801 as either I-, B-, or P-frames, as described above. In accordance with one embodiment of the present invention, the assignment of frame type follows a predetermined sequential pattern to achieve the desired GOP sequence, to be described more fully below. In an alternate embodiment, the received frames are buffered and analyzed to determine whether a scene change occurs within any of the buffered frames. If so, the scene change will be placed between two inter-frame encoded frames, e.g., two B-frames, to maximize coding efficiencies and motion estimation of the B-frames (to be described more fully below).
In accordance with one aspect of the present invention, the innovative encoding process of the present invention utilizes a constrained GOP sequence of GOP (3,3), i.e., 3 frames separating I-frames, with a maximum of 3 frames separating anchor frames. By limiting the inter-frame encoding to the GOP structure identified, the innovative encoder of the present invention provides fast access to particularly fine quantities of video (e.g., facilitating editing, post-production, etc.). Moreover, the constrained GOP structure of the present invention facilitates motion estimation by limiting the number of frames which must undergo motion estimation.
In step 802, a decision is made of whether VHR downconversion is to be performed. If not, the process continues with step 806 offering the innovative frame-prediction and field prediction aspects of the inter-frame compression process. If VHR downconversion is to be performed, the VHR filter (see, e.g.,
The motion estimation step 806 calculates motion vectors which are stored/broadcast along with the compressed video data to facilitate broadcast quality decoding. As described above, motion estimation may well be performed on a frame- or field-basis. In accordance with one aspect of the present invention, the motion estimation of step 806 is comprised of an innovative frame-based motion estimation technique and/or an innovative even-parity field prediction motion estimation technique. With reference to the first of these two aspects of the present invention, an innovative unidirectional interpolated B-frame prediction technique is described more fully with reference to
Turning briefly to
Graphically, the temporally constrained, unidirectional interpolation of a B-frame is presented with reference to
Although contrary to the well established practice for predicting B-frame content, the innovative temporally constrained, unidirectional B-frame technique of
In addition to the innovative frame-based motion estimation technique described above with reference to
Turning to
Graphically, the even-parity field prediction process is presented with reference to
Although contrary to the well established practice of field prediction used to encode video data, the innovative even-parity field prediction technique has been empirically shown to encode data which, when decoded in accordance with the MPEG-2 standard, provides substantially similar results to the comprehensive field prediction technique of the prior art. Accordingly, those skilled in the art will appreciate that the innovative frame and field prediction techniques presented above, greatly reduce the complexity of motion estimation, facilitating greater encoder throughput while retaining the required and expected video integrity of the MPEG-2 encoded data.
In one embodiment, except for the innovative frame and field prediction constraints described above, motion estimation in accordance with prior art MPEG-2 encoders is performed, albeit at a greatly increased rate due to the innovative constraints. In alternate embodiments, process enhancements to the motion estimation process can be made by multi-resolution decomposition (also referred to as hierarchical decomposition) of the received video into two or more levels, and performing coarse motion estimation on certain levels, while performing fine motion estimation on other levels.
Once motion estimation step 806 is complete, coding decisions of whether intra- or inter-frame encoding is required are performed, step 810. In accordance with one embodiment of the present invention, the vertical and horizontal activity measures described above are utilized in step 806 to determine whether intra- or inter-frame encoding is more suitable. In one embodiment of the present invention, intra-frame encoding is performed per the innovative method of
Once the block residual is calculated in step 814, a determination of whether the block is empty can be made, step 816. If so, further determinations of whether the end of the macro-block or frame has been reached in steps 820 and 822, before the encoding process is complete. If, however, the block is not empty, the block is inter-frame encoded (DCT, quantization, entropy encoding, etc.) per
Having described the innovative intra-frame and inter-frame compression and encoding techniques of the present invention, above, some alternate embodiments for the present invention will be presented with reference to
Turning to
In accordance with this example embodiment, DLL's 1408 include a VHR filter DLL 1410, a frame motion estimation DLL 1412 and, and a field motion estimation DLL 1414 each incorporating the teachings of the present invention described above with reference to
Whether resident within a stand-alone application (e.g., video encoder 1404) or as a number of discrete DLL's 1408 which are called when required, the innovative aspects of the present invention are embodied as a plurality of executable instructions which, when executed by an appropriate processor/controller, implement the methods of
In accordance with the teachings of the present invention, VHR filter DLL 1410 downconverts the received block of data by a factor of two by replacing the data in the right half of the received block with all zeroes (see, e.g.,
As depicted herein, applications 1402 are intended to represent any of a number of specialty applications known in the art which are executable by an electronic appliance. Similarly, except for the teachings of the present invention, operating system 1406 is also intended to represent any of a number of alternative general operating systems and device drivers known in the art. Those skilled in the art will appreciate that the execution of operating system 1406 is initiated from within a basic input/output system (BIOS) (not shown). Operating system 1406 is a general software service which provides an interface between applications 1402, a video encoder application 1404 and, the DLL's 1408 incorporating the teachings of the present invention, described above. According to one embodiment of the present invention, operating system 912 is the Windows™ 95 operating system, available from Microsoft Corporation of Redmond, Wash. However, it is to be appreciated that the present invention may be used with any other conventional operating system, such as other versions of Microsoft Windows™ (for example, Windows™ 3.0, Windows™ 3.1, Windows™ NT, or Windows™ CE), Microsoft DOS, OS/2, available from International Business Machines Corporation of Armonk, N.Y., the Apple Macintosh Operating System, available from Apple Computer Incorporated of Cupertino, Calif., the NeXTSTEP® operating system available from Apple Computer Incorporated, the UNIX operating system, available from Santa Cruz Operations of Santa Cruz, Calif., the Be operating system from Be, Inc. of Menlo Park, Calif., and the LINUX operating system.
Turning to
In addition to the innovative encoding techniques described above, the inter-frame encoder 1506 utilizes a computationally efficient motion estimator 1508, which employs the temporally constrained unidirectional B-frame encoding and the even-parity field encoding techniques described above. Moreover the innovative inter-frame encoder 1506 of the present invention does not rely on reconstructed past frames as a reference, but rather utilizes the original frame, thereby eliminating the need for the reconstructing circuitry (e.g., DCT−1, Q−1 and Summing stage) and additional storage typical of prior art encoders. In one embodiment, innovative encoder 1500 is implemented on a video board accessory board of a typical home computer system, or as a constituent member of a special purpose video processing station.
In accordance with another embodiment of the present invention, the innovative encoding techniques of the present invention are embodied in software. Accordingly,
Those skilled in the art will appreciate that innovative encoder 1500 may well be embodied in any of a number of different forms. In addition to the embodiments described above, those skilled in the art will appreciate that the teachings of the present invention may well be integrated with a single integrated circuit (not shown). That is, those skilled in the art will appreciate that advances in IC fabrication technology now enable complex systems to be integrated onto a single IC. Thus, in accordance with one embodiment of the present invention, the teachings of the present invention may be practiced within an application specific integrated circuits (ASIC), programmable logic devices (PLD), microcontroller, processor and the like.
Thus, alternative embodiments for a method and apparatus for providing real-time image processing has been described. While the method and apparatus of the present invention has been described in terms of the above illustrated embodiments, those skilled in the art will recognize that the invention is not limited to the embodiments described. Thus, those skilled in the art will appreciate that the present invention can be practiced with modification and alteration within the spirit and scope of the appended claims. Accordingly, the descriptions thereof are to be regarded as illustrative instead of restrictive on the present invention.
This non-provisional patent application claims priority to provisional application No. 60/080,501 by Jeffrey McVeigh and Michael Keith for a “Method and Apparatus for Providing Real-Time MPEG-2 Image Processing”, filed on Apr. 2, 1998; as well as to non-provisional application No. 09/209,828 by Michael Keith for a “Simplified Predictive Video Encoder”, filed on Dec. 11, 1998, now U.S. Pat. No 6,904,174. Each of the foregoing applications are commonly assigned to Intel Corporation of Santa Clara, Calif. For purposes of disclosure, it is noted that the following patents/applications also claim priority to either the provisional application 60/080,501 or to the non-provisional application Ser. No. 09/209,828: U.S. Pat. No. 6,408,029, Issued Jun. 18, 2002, application Ser. No. 09/274,153, Filed Mar. 22, 1999 U.S. Pat. No. 6,574,278, Issued Jun. 3, 2003, application Ser. No. 09/274,151, Filed Mar. 22, 1999 U.S. Pat. No. 7,046,734, Issued May 16, 2006, application Ser. No. 10/339,016, Filed Jan. 8, 2003 Application Ser. No. 11/129,558, Filed Dec. 1, 2005 Application Ser. No. 09/274,157, Filed Mar. 22, 1999
Number | Name | Date | Kind |
---|---|---|---|
3716851 | Neumann | Feb 1973 | A |
4023110 | Oliver | May 1977 | A |
4131765 | Kahn | Dec 1978 | A |
4217609 | Hatori et al. | Aug 1980 | A |
4394774 | Widergren et al. | Jul 1983 | A |
4437119 | Matsumoto et al. | Mar 1984 | A |
4698672 | Chen et al. | Oct 1987 | A |
4760446 | Ninomiya et al. | Jul 1988 | A |
4837816 | Hatori et al. | Jun 1989 | A |
4864393 | Harradine et al. | Sep 1989 | A |
4901075 | Vogel | Feb 1990 | A |
5021879 | Vogel | Jun 1991 | A |
5068724 | Krause et al. | Nov 1991 | A |
5091782 | Krause et al. | Feb 1992 | A |
5093720 | Krause et al. | Mar 1992 | A |
5113255 | Nagata et al. | May 1992 | A |
5168375 | Reisch et al. | Dec 1992 | A |
5175618 | Ueda et al. | Dec 1992 | A |
5223949 | Honjo | Jun 1993 | A |
5260783 | Dixit | Nov 1993 | A |
5274442 | Murakami et al. | Dec 1993 | A |
5293229 | Iu | Mar 1994 | A |
5298991 | Yagasaki et al. | Mar 1994 | A |
5301019 | Citta | Apr 1994 | A |
5301242 | Gonzales et al. | Apr 1994 | A |
5317397 | Odaka et al. | May 1994 | A |
5329318 | Keith | Jul 1994 | A |
5343248 | Fujinami | Aug 1994 | A |
5412430 | Nagata | May 1995 | A |
5412435 | Nakajima | May 1995 | A |
RE34965 | Sugiyama | Jun 1995 | E |
5428396 | Yagasaki et al. | Jun 1995 | A |
RE35093 | Wang et al. | Nov 1995 | E |
5469208 | Dea | Nov 1995 | A |
5469212 | Lee | Nov 1995 | A |
RE35158 | Sugiyama | Feb 1996 | E |
5497239 | Kwon | Mar 1996 | A |
5510840 | Yonemitsu et al. | Apr 1996 | A |
5539466 | Igarashi et al. | Jul 1996 | A |
5543843 | Kato et al. | Aug 1996 | A |
5543847 | Kato | Aug 1996 | A |
5557330 | Astle | Sep 1996 | A |
5559557 | Kato | Sep 1996 | A |
5565920 | Lee et al. | Oct 1996 | A |
5565922 | Krause | Oct 1996 | A |
5568200 | Pearlstein et al. | Oct 1996 | A |
5587806 | Yamada et al. | Dec 1996 | A |
5625355 | Takeno et al. | Apr 1997 | A |
5650823 | Ngai et al. | Jul 1997 | A |
5652629 | Gonzales et al. | Jul 1997 | A |
5654706 | Jeong | Aug 1997 | A |
5666461 | Igarashi et al. | Sep 1997 | A |
5684534 | Harney et al. | Nov 1997 | A |
5703646 | Oda | Dec 1997 | A |
5711012 | Bottoms et al. | Jan 1998 | A |
5801778 | Ju | Sep 1998 | A |
5831688 | Yamada et al. | Nov 1998 | A |
5841939 | Takahashi et al. | Nov 1998 | A |
5852664 | Iverson et al. | Dec 1998 | A |
5887111 | Takahashi et al. | Mar 1999 | A |
5917954 | Girod et al. | Jun 1999 | A |
5946043 | Lee et al. | Aug 1999 | A |
5949948 | Krause et al. | Sep 1999 | A |
5956088 | Shen et al. | Sep 1999 | A |
5991447 | Eifrig | Nov 1999 | A |
5991503 | Miyasaka et al. | Nov 1999 | A |
6052507 | Niida et al. | Apr 2000 | A |
6061400 | Pearlstein et al. | May 2000 | A |
6064776 | Kikuchi et al. | May 2000 | A |
6081296 | Fukunaga et al. | Jun 2000 | A |
6088391 | Auld et al. | Jul 2000 | A |
6104439 | Jeong et al. | Aug 2000 | A |
6115070 | Song et al. | Sep 2000 | A |
6122317 | Hanami et al. | Sep 2000 | A |
6125146 | Frenchen et al. | Sep 2000 | A |
6141383 | Yu | Oct 2000 | A |
6144698 | Poon et al. | Nov 2000 | A |
6169821 | Fukunaga et al. | Jan 2001 | B1 |
6188725 | Sugiyama | Feb 2001 | B1 |
6217234 | Dewar et al. | Apr 2001 | B1 |
6256420 | Sako et al. | Jul 2001 | B1 |
6263024 | Matsumoto | Jul 2001 | B1 |
6272179 | Kadono | Aug 2001 | B1 |
6421385 | Uenoyama et al. | Jul 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20010053183 A1 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
60080501 | Apr 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09209828 | Dec 1998 | US |
Child | 09274152 | US |