This invention relates generally to the field of tactical and combat training and more specifically to a method and apparatus for simulating weapon explosions inside a chamber.
Simulated weaponry is used to train personnel in a realistic, but safe environment. In some cases, simulated weapons may be used to simulate damage to the outside of a building. Simulated weapons outside a building do not necessarily have a line of sight to personnel within the building. For this reason, when a building incurs simulated damage from a simulated weapon, an umpire must manually designate human causalities inside the building.
According to one embodiment of the invention, a method is provided for simulating damage inside a chamber in response to receiving a detection signal from one or more sensors outside the chamber. The method includes receiving the detection signal from the one or more sensors located outside the chamber in response to the one or more sensors detecting a simulated hit to outside the chamber. In response to receiving the detection signal, emitting light from one or more light sources to simulate damage inside the chamber.
According to another embodiment of the invention, a method is provided for simulating weapon damage inside an enclosure in response to detecting a simulated weapon hit to the outside of the enclosure. The method includes receiving a detection signal from a sensor located on the outside of the enclosure. The detection signal is sent from the sensor in response to detecting a simulated weapon hit to the outside of the enclosure. In response to receiving the detection signal, emitting light from an array of unfocused laser diodes to simulate weapon damage inside the enclosure. Simulated weapon damage is associated with the simulated weapon hit to the outside of the enclosure.
Certain embodiments of the invention may provide one or more technical advantages. A technical advantage of one embodiment may be that simulating explosions inside a chamber and associated damage due to simulated weapons hitting outside the chamber is automated. This automatic simulation eliminates the need for personnel to enter the chamber to designate causalities and other destruction inside the chamber. Another technical advantage of one embodiment may be improved realism of the simulated explosion.
Certain embodiments of the invention may include none, some, or all of the above technical advantages. One or more other technical advantages may be readily apparent to one skilled in the art from the figures, descriptions, and claims included herein.
For a more complete understanding of the present invention and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Embodiments of the present invention and its advantages are best understood by referring to
Receiver 55 inside chamber 20 may receive light 50 and determine whether target 60 inside chamber 20 received simulated damage from the simulated weapon explosion. Once receiver 55 detects light 50, target 60 may be notified that target 60 is damaged and/or can no longer participate in the training session. Accordingly, system 10 may simulate a weapon explosion and an associated damage inside chamber 20 due to simulated weapon hit 15 outside chamber 20 without a line of sight to target 60. This simulated weapon explosion may eliminate or reduce the need for umpires entering chamber 20 to designate human casualties and other damage. Such automation may improve the realism of the training session and reduce the cost of the simulation by eliminating the need for extra personnel.
Chamber 20 may refer to a space that is at least partially enclosed. Some examples of chambers 20 may include a room, a stairwell, a hallway, or a vehicle compartment. Simulated weapon hit 15 may refer to a strike from a simulated weapon. Simulated weapons may include small or heavy arms weapons such as a simulated tank, or other simulated weapons.
Sensor 30 may refer to any combination of software and/or hardware that detects simulated weapon hit 15. Sensor 30 may detect simulated weapon hit 15 by any suitable method. For example, sensor 30 may detect simulated weapon hit 15 as a laser emission, electrical signal, heat emission, vibration, or other stimulus. Examples of sensors 30 may include photoswitches or photosensors such as chemical detectors, photoresistors, photovoltaic cells, photodiodes, photomultiplier tubes, phototubes, phototransistors, optical detectors, cryogenic detectors, which detect a laser light beam or other sources of light. Sensors 30 may be located on any surface, in a structure, or any other suitable place for detecting simulated weapon hit 15. In some embodiments, one or more sensors 30 may be used to detect simulated weapon hit 15 by being placed on the outside wall of a building.
Light source 40 may refer to any source of light suitable for simulating an explosion within chamber 20 in response to a detection signal from sensor 30. One example light source 40 is described in greater detail below in conjunction with
Receiver 55 may refer to any device for detecting light 50 from light source 40 and for indicating simulated damage. Receiver 55 may be located on target 60. In one embodiment, receiver 55 may be located on a Multiple Integrated Laser Engagement System (MILES) vest. Typically, a MILES vest has several small laser receivers to detect when a soldier has been shined by a laser from a simulated small firearm.
When the MILES system registers a hit, the MILES system will look in a table to determine whether the simulated weapon is capable of damaging the target and will notify the target if damage was done.
Target 60 may refer to any combination of structures, moving vehicles, weapons, personnel, or other suitable objects subject to simulated damage by simulated weapons. In the illustrated examples, targets 60 are people. In another example, target 60 may be a weapon. In yet another example, target 60 may be a command post inside a building. In this example, one receiver 55 may be placed in the center of the command post to receive light 50 to determine destruction of the command post. In yet another example, target 60 may be the occupants of a moving vehicle. In this example, sensor 30 on the vehicle may detect the simulated hit and trigger a light source 40 inside the vehicle to simulate damage to the occupants.
In the illustrated embodiment, sensors 30 may detect simulated hit 15 from a simulated weapon. Sensors 30 may communicate detection signals to processor 320. In one case, detection signals may be communicated through a wire to processor 320. In other cases, detection signals may be communicated to processor 320 wirelessly.
Processor 320 may refer to a computing device or other processor, and/or software for accessing, retrieving, and processing a detection signal and triggering remote trigger 310 to activate light sources 40. In one embodiment, processor 320 may trigger remote trigger 310 to activate certain laser diodes within certain light sources 40. In another embodiment, processor 320 may trigger light sources 40 to activate laser diodes to emit a select amount of light energy to represent the effective range of the simulated weapon. In response to triggering, light sources 40 emit light 50 in the illustrated embodiment. Receiver 55 receives emitted light 50.
Modifications, additions, or omissions may be made to system 10 without departing from the scope of the invention. The components of system 10 may be integrated or separated according to particular needs. Moreover, the operations of system 10 may be performed by more, fewer, or other modules. For example, the operations of remote trigger 310 and processor 320 may be performed by light source 40, or the operations of processor 320 may be performed by more than one module. Additionally, operations of system 10 may be performed using any suitable logic comprising software, hardware, other logic, or any suitable combination of the preceding.
In some embodiments, light source 40 may include a plurality of unfocused laser diodes 200, other light emitters, or any other suitable sources of light. Unfocused laser diodes 200 may in some embodiments, emit light 50 in an angular distribution within a plane or alternatively, in a cone or other configuration. In some cases, unfocused laser diodes 200 may be positioned at a plurality of angles to emit light in multiple directions into chamber 20. Some embodiments of light source 40 may include modules to receive the detection signal from sensors 30 and to trigger a plurality of laser diodes 200 to emit light 50. These modules are described in greater detail below in conjunction with
In some embodiments, laser diodes 200 may be arranged within light source 40 to direct a divergence of light energy from laser diodes 200 to simulate an explosion within chamber 20. In the illustrated embodiment, five laser diodes 200b-f are arranged at seventy-two degrees around an edge of housing 220 and a single laser diode 200a is located at the center of housing 220. In other embodiments, other suitable arrangements may be used. In the illustrated embodiment, the single laser diode 200a is aimed downward, parallel to a vertical axis 240. Laser diodes 200b-f distributed along the edge of housing 220 are aimed at an angle of twelve degrees from vertical axis 240. In the illustrated example, laser diodes 200a-f are arranged within housing 220 to spray light energy in diverging directions throughout chamber 20. Other suitable arrangements may also be used to direct light 50 in other directions, including arranging each laser diode (or other source of light) directing a cone of light rather than light in a single plane.
Light source 40 may include a housing 220 in some embodiments. Housing 220 may be any suitable container for sources of light within chamber 20. In some cases, housing 220 may be camouflaged so personnel are unaware of the location of the sources of light. In the illustrated example, housing 220 is camouflaged as a smoke detector. Housing 220 may include openings for light 50 from laser diodes 200 or other light emitters. Housing 220 may have one or more faces in some embodiments. In one example, housing 220 may have a face for mounting sources of light to a surface of chamber 20. In the illustrated embodiment, housing 220 has a horizontal face 260 for mounting light source 40 on the ceiling of chamber 20. In other embodiments, housing 220 may be adapted to locate light source 40 in any portion of chamber 20 and to send light 50 to certain areas within chamber 20. In one example, housing 220 may be of a spherical shape. In some cases, housing 220 may be suspended in the center of a room so that light 50 can be emitted in different directions from housing 200. In one case, laser diodes 200 may be aimed in outward directions in a spherical-shaped housing 220 suspended in the center of the room to emit light 50 in all directions.
In some embodiments, laser diodes 200 may be arranged to emit a divergence of light throughout chamber 20. In the illustrated embodiment, laser diodes 200b-f are arranged around the edge of housing 220 at a seventy two degree spacing. Laser diodes 200b-f are aimed at an angle of twelve degrees from an axis 240 perpendicular to a face 260 in housing 220. Laser diode 200a is located near the center of housing 220 and is aimed perpendicular to face 260 of housing 220. Laser diodes 200 in the illustrated embodiment are arranged to emit light substantially throughout chamber 20 when housing 220 is mounted to the ceiling of chamber 20. More specifically, this arrangement allows laser diodes 220 to emit light downward and outward from housing 220. In some cases, housing 220 includes openings to permit light 50 to travel through. In another embodiment, the same laser diode arrangement used in the illustrated embodiment may be used to emit light 50 down a stairwell by mounting housing 220 vertically. In other embodiments, laser diodes 200 may be aimed in radial directions in a housing 220 suspended in the center of chamber 20. In this embodiment, laser diodes 200 may emit light in all directions surrounding housing 220.
In the illustrated embodiment, simulated tank 90 fires at enclosure 70 causing simulated weapons hit 10 on, for example, the southwest portion of enclosure 70. In this embodiment, simulated hit 15 activates sensor 30a on the outside of chamber 20b to indicate that the southwest portion of enclosure 70 has been hit. In the illustrated embodiment, sensor 30a triggers light sources 40a and 40b in chambers 20a and 20b which are closest to the impact site of simulated hit 15. Light sources 40a and 40b simulate explosions by emitting light 50 into chambers 20a and 20b. In this embodiment, light sources 40a and 40b may be selectively triggered by simulated hit 15 to sensor 30a; however, in other embodiments, sensor 30a may trigger light sources 40 to simulate explosions throughout enclosure 70 to simulate destruction of the entire enclosure 70. This selective damage may depend on a simulated strength of simulated hit 15 detected by sensor 30a.
At step 500, a detection signal is received from one or more sensors 30. Sensors 30 may send the detection signal in response to receiving simulated weapons hit 10 in some embodiments. In other embodiments, another suitable source may send the detection signal. For example, a software program that simulates weapon impacts may trigger sensors 30 to send the detection signal.
Simulated weapons hit 10 may trigger sensors 30 by any suitable method. In one embodiment, a laser may fire a light beam at chamber 20 triggering sensors 30. For example, a simulated small weapon may include a laser for firing at targets 60 with receivers 55 such as in laser tag. In one case, targets 60 may wear MILES vests. In another embodiment, sensors 30 may be triggered by pressure. Once triggered, sensors 30 may send a detection signal to light sources 40 within enclosure 70 in some embodiments
At step 510, the extent of simulated damage to targets 60 inside enclosure 70 associated with simulated hit 15 to the outside of enclosure 70 is determined. In some embodiments, the extent of simulated damage may refer to the type and amount of simulated damage to targets 60 inside enclosure 70. In some embodiments, the extent of simulated damage may be determined using the detection signal from sensors 30. In one embodiment, processor 320 or other system module may determine the extent of simulated damage.
The determined extent of simulated damage may be used to selectively activate light sources 40. In some cases, the determined extent of simulated damage may be used to selectively activate laser diodes 200 to emit light 50 in select directions within each chamber 20.
In one embodiment, this method may determine that the extent of simulated damage is total destruction of enclosure 70. In these embodiments, all light sources 40 in all chambers 20 of enclosure 70 are activated.
In another embodiment, this method may determine that certain chambers 20 within enclosure 70 are destroyed. In some cases, the detection signal may be used to determine which chambers 20 were destroyed. For example, the left side of a building may receive simulated hit 15. In this example, only sensors 30 on the left side of the building may have been triggered. In one embodiment of this method, the detection signal from sensors 30 triggered on the left side of the building may be analyzed to determine that the simulated damage is localized to the left side of the building. In response, only laser diodes 200 in light sources 40 located in chamber 20 on the left side of the building may be activated.
In yet another embodiment, this method may determine a destruction zone within chamber 20. A destruction zone may refer to a portion of chamber 20 incurring damage or the extent of damage to a particular target 60 in some embodiments. The detection signal may be analyzed to determine the destruction zone due to simulated hit 15. For example, a simulated weapon may have impacted an area near a building or grazed the building. In this example, a single sensor 30 closest to the impact zone may be triggered or a sensor may be triggered at an obtuse angle. The triggered sensor may send a detection signal indicating minimal damage to the corner of the room closest to the impact zone. In response, certain laser diodes 200 facing the damaged corner of the room may be triggered to send light to that corner. Any receivers 55 in that corner would receive light 50.
At step 520, light 50 is emitted in response to receiving a detection signal. In some embodiments, all laser diodes 200 within a light source 40 may be activated. In other embodiments, certain laser diodes 200 aimed at a determined destruction zone may be activated. In other embodiments, a certain amount of light 50 may be emitted in response to receiving a detection signal.
At step 530, emitted light 50 is received indicating the extent of simulated damage to target 60. In some embodiments, receiver 55 may receive emitted light from laser diodes 200 indicating simulated damage to target 60. In other embodiments, receiver 55 may receive other suitable stimulus indicating simulated damage. In some embodiments, target 60 may receive light or other stimulus from light sources 40 indicating stimulated damage. For example, target 60 may see light 50 emitted from laser diodes 200.
In some embodiments, receiver 55 may notify target 60 of the extent of damage to target 60. For example, receiver 55 may notify a target 60 that target 60 has been mortally wounded in the simulation. In this example, target 60 may be removed from the simulation exercise. In another example, receiver 55 may notify target 60 that target 60 has sustained simulated minor injuries. In this example, target 60 may choose to take measures to protect himself from further simulated damage. In another example, receiver 55 may notify a medic of the extent of damage to determine which first aid method to practice. In yet another example where target 60 is a command post, receiver 55 may notify the command post that it has been disabled and that a certain percentage of the personnel have incurred simulated damage.
In some embodiments, notification of simulated damage to target 60 is automatic. This automatic notification may eliminate or reduce the need for umpires entering chamber 20 to designate human casualties and other damage. Such automation may improve the realism of the training session and reduce the cost of the simulation by eliminating the need for extra personnel.
Receiver 55 may be suitably located in some embodiments to notify target 60 of the simulated damage. In one embodiment, receiver 55 may be attached to target 60 to receive emitted light 50 to indicate target 60 has been hit such as in laser tag. In other embodiments, receiver 55 may be mounted remotely. In some cases, receiver 55 may include an alarm to notify target 60 of simulated damage. In other cases, receiver 55 may include a light emitter to indicate simulate damage.
Modifications, additions, or omissions may be made to the method without departing from the scope of the invention. The method may include more, fewer, or other steps.. Additionally, steps may be performed in any suitable order without departing from the scope of the invention.
Although this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.
This invention was made with Government support under N61339-00-D-0001 awarded by the Naval Air Warfare Center, Training Systems Division for the Program Executive Office for Simulation, Training, and Instrumentation (PEO STRI). The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3596078 | Owens | Jul 1971 | A |
4014262 | Betts | Mar 1977 | A |
4823401 | Gammarino et al. | Apr 1989 | A |
5199874 | Campagnuolo et al. | Apr 1993 | A |
5246372 | Campagnuolo et al. | Sep 1993 | A |
5351623 | Kissel et al. | Oct 1994 | A |
5474452 | Campagnuolo | Dec 1995 | A |
5481979 | Walder | Jan 1996 | A |
6065404 | Ripingill et al. | May 2000 | A |
6411424 | Raj | Jun 2002 | B1 |
6579097 | Sampson et al. | Jun 2003 | B1 |
6965542 | Harrington et al. | Nov 2005 | B1 |
7191708 | Ouliarin | Mar 2007 | B2 |
20070264616 | Namgung | Nov 2007 | A1 |
20080187888 | Jones et al. | Aug 2008 | A1 |
20090035730 | Lindero | Feb 2009 | A1 |
20090165664 | Jones | Jul 2009 | A1 |
20100003643 | Seo | Jan 2010 | A1 |
20100058947 | Davis | Mar 2010 | A1 |
20100099059 | Burford | Apr 2010 | A1 |