Method and Apparatus for Skylight Tube

Information

  • Patent Application
  • 20120174506
  • Publication Number
    20120174506
  • Date Filed
    January 10, 2012
    13 years ago
  • Date Published
    July 12, 2012
    12 years ago
Abstract
A method and apparatus for skylight tube have been disclosed. In one version spacing between diffusers is substantially between 0.5″ to 0.75″.
Description
FIELD OF THE INVENTION

The present invention pertains to a tube. More particularly, the present invention relates to a method and apparatus for skylight tube.


BACKGROUND OF THE INVENTION

The environmental movement has placed more emphasis on natural lighting with its many documented benefits. The most natural lighting is that provided by nature itself. However, it is often not possible to directly use nature's lighting to light an area. For example, an interior of a building may not be able to directly use nature's lighting from, for example, a window. This presents a problem.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which:



FIG. 1 illustrates a network environment in which the method and apparatus of the invention may be controlled;



FIG. 2 is a block diagram of a computer system which some embodiments of the invention may employ parts of; and



FIGS. 3-29 illustrate various embodiments of the present invention.





DETAILED DESCRIPTION

A method and apparatus for a skylight tube is disclosed. In one approach an apparatus using reflective tube with insertable diffusers provides thermal insulation and light transmission. These and other embodiments of the present invention are described in the writings and drawings herewith.


In one embodiment of the invention, a light source, such as, for example, a light bulb, light emitting diode, compact fluorescent, etc. is strategically placed within a flexible reflective tube to provide artificial lighting when natural lighting is not sufficient for a user.


In one embodiment the invention may be tailored to a particular client zone. For example, in one embodiment, the exterior ambient temperature may lead to excessive heat loss or heat gain for an interior environment and so in one embodiment, diffuser lenses may be inserted/removed to adjust the thermal resistance between the exterior and interior environment.


In one embodiment of the invention a dome made of a material transparent to visible light (“light”) and possibly other radiation, for example, but not limited to, infrared radiation (e.g. clear polycarbonate, plastic, glass, etc.) is attached to a flashing made for example of, but not limited to, metal.


In one embodiment of the invention the flashing may be formed into a square type box.


In one embodiment of the invention a flange secured below the dome within the flashing's square box may join the top end of flexible (“flex”) tubing (“tube”) to the flashing.


In one embodiment of the invention the flex tube, reflects and directs sunlight to diffuser(s) below.


In one embodiment of the invention a light kit, with a light bulb socket with mounting brackets for lighting (e.g. night time) may be placed inside the flex tube.


In one embodiment of the invention one or more diffuser lenses (for example, 3-5 lenses) may be placed inside the flex tube depending upon a user requirement, for example, but not limited to, different climate zones.


In one embodiment of the invention a diffuser casing, for example, but not limited to a clam shell design, may house for example, up to 5 lenses.


In one embodiment of the invention a diffuser housing, holds the diffuser assembly and connects the lower end of the flex tube to the ceiling, of for example, a room. The housing is secured to the ceiling.


In one embodiment of the invention a decorative ring which may be paintable or of a variety of colors is attached to the diffuser housing.



FIG. 3 illustrates, generally at 300, one embodiment of the invention showing a clear dome 302 for admitting light, a flashing 304 which is secured to the dome 302 and permits mounting, for example, on a roof, a reflective flexible tubing 306, which is attached to the flashing 304 and when fully assembled to the diffuser housing 310. At 308 is a light assembly that may be mounted on top of diffuser housing 310 and emit light within the reflective flexible tubing 306. At 312 are one or more diffusers which are housed in diffuser casing 314. Diffuser casing 314 is inserted into diffuser housing 310. At 316 is a ring which attaches to diffuser housing 310.



FIGS. 4-29 illustrate embodiments of the present invention.


In one embodiment of the invention, the dome/flashing assembly is:


1) The dome: square configuration, low profile, transitioned to round flex tube.


2) The flange: make transition from square dome to round tube. Also serves as flex tube's top anchor to the flashing and the storage compartment of flex tube when it is collapsed.


3) Flashing, deep draw to form dome's square box with no welds or fasteners to create a leak-proof assembly.


In one embodiment of the invention, the diffuser assembly is:


1) Diffuser is capable of holding up to 5 lenses, providing flexibility in customization for different climate zones for best thermal insulation, solar heat gain and light transmission.


2) Diffuser casing's clam shell design with easy-to-use latches.


3) 0.62″ of spacing between lenses creates best thermal insulation. This is implemented on the placing of lens #1, 2 and 3. (see Bill of Materials in Figure).


In one embodiment of the invention, the spacing between diffuser lenses is between 0.1″ to 1.5″.


Thus a method and apparatus for skylight tube have been described.



FIG. 1 illustrates a network environment 100 from which the techniques described may be controlled, for example the light kit. The network environment 100 has a network 102 that connects S servers 104-1 through 104-S, and C clients 108-1 through 108-C. More details are described below.



FIG. 2 is a block diagram of a computer system 200 which some embodiments of the invention may employ parts of (e.g. controlling light kit) and which may be representative of use in any of the clients and/or servers shown in FIG. 1, as well as, devices, clients, and servers in other Figures. More details are described below.


Referring back to FIG. 1, FIG. 1 illustrates a network environment 100 in which the techniques described may be controlled. The network environment 100 has a network 102 that connects S servers 104-1 through 104-S, and C clients 108-1 through 108-C. As shown, several computer systems in the form of S servers 104-1 through 104-S and C clients 108-1 through 108-C are connected to each other via a network 102, which may be, for example, a corporate based network. Note that alternatively the network 102 might be or include one or more of: the Internet, a Local Area Network (LAN), Wide Area Network (WAN), satellite link, fiber network, cable network, or a combination of these and/or others. The servers may represent, for example, disk storage systems alone or storage and computing resources. Likewise, the clients may have computing, storage, and viewing capabilities. The method and apparatus described herein may be controlled by essentially any type of communicating means or device whether local or remote, such as a LAN, a WAN, a system bus, etc. For example, a network connection which communicates via for example wireless may control an embodiment of the invention having a wireless communications device. Thus, the invention may find application at both the S servers 104-1 through 104-S, and C clients 108-1 through 108-C.


Referring back to FIG. 2, FIG. 2 illustrates a computer system 200 in block diagram form, which may be representative of any of the clients and/or servers shown in FIG. 1. The block diagram is a high level conceptual representation and may be implemented in a variety of ways and by various architectures. Bus system 202 interconnects a Central Processing Unit (CPU) 204, Read Only Memory (ROM) 206, Random Access Memory (RAM) 208, storage 210, display 220, audio, 222, keyboard 224, pointer 226, miscellaneous input/output (I/O) devices 228, and communications 230. The bus system 202 may be for example, one or more of such buses as a system bus, Peripheral Component Interconnect (PCI), Advanced Graphics Port (AGP), Small Computer System Interface (SCSI), Institute of Electrical and Electronics Engineers (IEEE) standard number 1394 (FireWire), Universal Serial Bus (USB), etc. The CPU 204 may be a single, multiple, or even a distributed computing resource. Storage 210, may be Compact Disc (CD), Digital Versatile Disk (DVD), hard disks (HD), optical disks, tape, flash, memory sticks, video recorders, etc. Display 220 might be, for example, an embodiment of the present invention. Note that depending upon the actual implementation of a computer system, the computer system may include some, all, more, or a rearrangement of components in the block diagram. For example, a thin client might consist of a wireless hand held device that lacks, for example, a traditional keyboard. Thus, many variations on the system of FIG. 2 are possible.


For purposes of discussing and understanding the invention, it is to be understood that various terms are used by those knowledgeable in the art to describe techniques and approaches. Furthermore, in the description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical, and other changes may be made without departing from the scope of the present invention.


Some portions of the description may be presented in terms of algorithms and symbolic representations of operations on, for example, data bits within a computer memory. These algorithmic descriptions and representations are the means used by those of ordinary skill in the data processing arts to most effectively convey the substance of their work to others of ordinary skill in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of acts leading to a desired result. The acts are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, can refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices.


An apparatus for performing the operations herein can implement the present invention. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer, selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, hard disks, optical disks, compact disk-read only memories (CD-ROMs), and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), electrically programmable read-only memories (EPROM)s, electrically erasable programmable read-only memories (EEPROMs), FLASH memories, magnetic or optical cards, etc., or any type of media suitable for storing electronic instructions either local to the computer or remote to the computer.


The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method. For example, any of the methods according to the present invention can be implemented in hard-wired circuitry, by programming a general-purpose processor, or by any combination of hardware and software. One of ordinary skill in the art will immediately appreciate that the invention can be practiced with computer system configurations other than those described, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, digital signal processing (DSP) devices, set top boxes, network PCs, minicomputers, mainframe computers, and the like. The invention can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.


The methods of the invention may be implemented using computer software. If written in a programming language conforming to a recognized standard, sequences of instructions designed to implement the methods can be compiled for execution on a variety of hardware platforms and for interface to a variety of operating systems. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. Furthermore, it is common in the art to speak of software, in one form or another (e.g., program, procedure, application, driver, . . . ), as taking an action or causing a result. Such expressions are merely a shorthand way of saying that execution of the software by a computer causes the processor of the computer to perform an action or produce a result.


It is to be understood that various terms and techniques are used by those knowledgeable in the art to describe communications, protocols, applications, implementations, mechanisms, etc. One such technique is the description of an implementation of a technique in terms of an algorithm or mathematical expression. That is, while the technique may be, for example, implemented as executing code on a computer, the expression of that technique may be more aptly and succinctly conveyed and communicated as a formula, algorithm, or mathematical expression. Thus, one of ordinary skill in the art would recognize a block denoting A+B=C as an additive function whose implementation in hardware and/or software would take two inputs (A and B) and produce a summation output (C). Thus, the use of formula, algorithm, or mathematical expression as descriptions is to be understood as having a physical embodiment in at least hardware and/or software (such as a computer system in which the techniques of the present invention may be practiced as well as implemented as an embodiment).


A machine-readable medium is understood to include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; devices having movement in matter (e.g. electrons, atoms, etc.) caused by physical excitation or reception of electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.) which upon reception causes said movement in matter.


As used in this description, “one embodiment” or “an embodiment” or similar phrases means that the feature(s) being described are included in at least one embodiment of the invention. References to “one embodiment” in this description do not necessarily refer to the same embodiment; however, neither are such embodiments mutually exclusive. Nor does “one embodiment” imply that there is but a single embodiment of the invention. For example, a feature, structure, act, etc. described in “one embodiment” may also be included in other embodiments. Thus, the invention may include a variety of combinations and/or integrations of the embodiments described herein.


As used in this description, “substantially” or “substantially equal” or similar phrases are used to indicate that the items are very close or similar. Since two physical entities can never be exactly equal, a phrase such as ““substantially equal” is used to indicate that they are for all practical purposes equal.


It is to be understood that in any one or more embodiments of the invention where alternative approaches or techniques are discussed that any and all such combinations as may be possible are hereby disclosed. For example, if there are five techniques discussed that are all possible, then denoting each technique as follows: A, B, C, D, E, each technique may be either present or not present with every other technique, thus yielding 2̂5 or 32 combinations, in binary order ranging from not A and not B and not C and not D and not E to A and B and C and D and E. Applicant(s) hereby claims all such possible combinations. Applicant(s) hereby submit that the foregoing combinations comply with applicable EP (European Patent) standards. No preference is given any combination.


Thus a method and apparatus for skylight tube have been described.

Claims
  • 1. An apparatus comprising: a clear dome, said clear dome having 4 mounting sides;a metal flashing, said metal flashing having an opening, said clear dome said 4 mounting sides waterproof secured to said metal flashing opening with 4 retainer bars;a flange having an opening and 4 mounting sides, said flange 4 mounting sides secured to said metal flashing distal to said clear dome;a flexible reflective tube having a first opening and a second opening, said flexible reflective tube first opening optically coupled to said flange opening;a diffuser housing having an opening and a flange, said diffuser housing opening coupled to said flexible reflective tube second opening.
  • 2. The apparatus of claim 1 wherein said diffuser flange is circular in shape and has a diameter greater than a diameter of said flexible reflective tube.
  • 3. The apparatus of claim 2 further comprising a paintable decorative ring, said ring configured to be attached to said diffuser housing.
  • 4. The apparatus of claim 1 further comprising a diffuser casing, said diffuser casing configured to be attached to said diffuser housing.
  • 5. The apparatus of claim 4 wherein said diffuser casing is configured to hold one or more diffuser lenses.
  • 6. The apparatus of claim 4 wherein said diffuser casing is configured to hold two or more diffuser lenses at an adjustable distance from each other.
  • 7. The apparatus of claim 6 wherein said adjustable distance is in a range of 0.5 inch to 0.75 inch.
  • 8. The apparatus of claim 7 further comprising a light kit, said light kit configured to be positioned between said flexible reflective tube first opening and said flexible reflective tube second opening and within said flexible reflective tube.
  • 9. The apparatus of claim 7 wherein said diffuser casing has two or more circumferentially depressed regions into which an edge of said two or more diffuser lenses may be inserted.
  • 10. An apparatus comprising: a first half of a clam shell design, said first half of said claim shell design having a semicircular shape and a first rotatable clasp pivotally attached to said first half of said claim shell design and a first clasp protrusion distally located from said first rotatable clasp;a second half of said clam shell design, said second half of said claim shell design having a semicircular shape and a second rotatable clasp pivotally attached to said second half of said claim shell design and a second clasp protrusion distally located from said second rotatable clasp;a first rubber seal fixedly attached to an outer surface of said first half of said claim shell design; anda second rubber seal fixedly attached to an outer surface of said second half of said claim shell design.
  • 11. The apparatus of claim 10 wherein said first rotatable clasp is adapted to contact said second clasp protrusion, and said second rotatable clasp is adapted to contact said first clasp protrusion such that when said first rotatable clasp is in said contact with said second clasp protrusion and when said second rotatable clasp is in said contact with said first clasp protrusion said first half of said clam shell design and said second half of said clam shell design form a circular shape.
  • 12. The apparatus of claim 11 further comprising: one or more lenses, said one or more lenses circular in shape and adapted to fit a inside diameter of said circular shape.
  • 13. The apparatus of claim 12 wherein said one or more lenses are one or more diffusing lenses.
  • 14. The apparatus of claim 13 wherein one or more of said one or more diffusing lenses further comprises one or more tabs, said one or more tabs adapted to pull said one or more diffusing lenses from said circular shape.
  • 15. The apparatus of claim 14 wherein said adapted to fit said inside diameter of said circular shape further comprises a recessed area in said first half of said claim shell and a recessed area in said second half of said claim shell.
  • 16. The apparatus of claim 15 wherein said first half of said claim shell and said second half of said claim shell are interchangeable.
  • 17. A method comprising: attaching a first end of a light reflective tubing to a clear dome by using a flange adapted to be attached to a flashing via a reflector ring and a seal; andattaching a second end of said light reflective tubing to a diffuser housing using a retaining band.
  • 18. The method of claim 17 further comprising: inserting one or more diffusing lenses in said diffuser housing.
  • 19. The method of claim 18 further comprising: attaching a decorative ring to said diffuser housing.
  • 20. The method of claim 19 further comprising: inserting into said light reflective tubing a light source powered by a source selected from the group consisting of direct current, and alternating current.
RELATED APPLICATION

The present application for patent is related to U.S. Patent application No. 61/431811 entitled “Method and Apparatus for Skylight Tube” filed Jan. 11,2011, pending, and is hereby incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61431811 Jan 2011 US