The disclosure relates to an apparatus and method for spray application of various agricultural chemicals to turf surfaces and in particular to a method and spray nozzle for more evenly spraying ground surfaces such as turf grass at varying spray boom heights and/or over ground having sloped topographies.
Application of agricultural chemicals to turf grass with conventional spray nozzles and existing equipment over ground having slopes and undulations can cause uneven spray distribution. In addition, wind can cause spray drift, where fluid sprayed from a nozzle does not reach its intended surface. This results in inefficient spraying and unevenly applied fluid, where portions of a target surface receive too much or too little fluid. For example, when applying fluid such as water, fertilizer, pesticides, etc., the target soil and/or foliage may not receive an even distribution of the applied fluid.
Nozzles have been developed to address some of these problems. For example, air inclusion nozzles create droplets of fluid mixed with air, which can reduce spray drift and improve surface coverage of the fluid. However, while these conventional nozzles perform adequately when used to spray on a flat surface they fail to provide satisfactory coverage when used to spray on surfaces and undulations, or where spray boom height keeps varying or is low to the ground. For example, striping can occur when there is uneven agrochemical distribution, such as when a nozzle is further from one surface area is higher or lower than another surface area. This typically occurs when the surface being sprayed has slopes, other differences in elevation, or is otherwise not flat, which is typical in golf courses, for example.
Thus, what is needed is a spray nozzle that can provide adequate coverage over surfaces that are sloped or otherwise are not flat and/or an improved coefficient of variation when used in plurality at varying heights on a conventional spray boom. What is further needed are methods of improving the coefficient of variation of nozzle arrays and methods for spraying surfaces that are sloped or otherwise are not flat. These and other problems exist.
According to various implementations of the invention, various methods and apparatus are described for spraying surfaces such as turf having sloped surfaces.
The present invention provides a nozzle for turf sprayers comprising a hydraulic nozzle whose orifice is formed by the interaction of a slot cut though a hemispherically terminated hole, the slot taking the form inwardly bent vee whose sides are inclined towards the center creating a truncated elliptical orifice hole (an ellipsoid with flat sides). In one implementation, the sides of the bent vee cut are inclined or bent at a point approximately ⅓ of the length of the side of the slot.
In a particular embodiment, the discharge orifice that is defined by a slot having an axis, an apex, and first and second sides, and wherein each of said sides is defined by first and second corresponding wall members, wherein:
(i) said first wall members of said first and second sides extend from said apex toward their respective sides at an acute angle relative to one another in a “vee” configuration to respective opposed edges spaced from the apex, and
(ii) each of said respective second wall members extend from the edge of a corresponding respective first wall member at an obtuse angle relative to one another toward an outer surface of the tip;
(b) an inner member insertable into the lumen of the outer member, said inner member having a flange, a central ring, an extension, a lumen and at least one opening which cooperates with said plurality of air eduction openings in the outer member to educt air into the lumen of the inner member when liquid passed through the lumen of the inner member, into the extension of the outer member and out the discharge orifice of the tip of the outer member.
In another embodiment, a plurality of the inventive nozzles are associated in an array on a turf spray boom, wherein each of the respective nozzles comprise:
(a) an outer member having a flange, a central section, a cylindrical extension terminating in a tip, a lumen extending therethrough, and a plurality of air eduction openings, said tip including an outer surface and a discharge orifice that is defined by a slot having an axis, an apex, and first and second sides, and wherein each of said sides is defined by first and second corresponding wall members, wherein:
(i) said first wall members of said first and second sides extend from said apex toward their respective sides at an acute angle relative to one another in a “vee” configuration to respective opposed edges spaced from the apex, and
(ii) each of said respective second wall members extend from the edge of a corresponding respective first wall member at an obtuse angle relative to one another toward an outer surface of the tip;
(b) an inner member insertable into the lumen of the outer member, said inner member having a flange, a central ring, an extension, a lumen and at least one opening which cooperates with said plurality of air eduction openings in the outer member to educt air into the lumen of the inner member when liquid passed through the lumen of the inner member, into the extension of the outer member and out the discharge orifice of the tip of the outer member. The shape of configuration of the discharge orifice formed by the interaction of the two-sided, 4 walled (2 walls on each side) slot cut though a hemispherically terminated hole in the nozzle tip is a truncated ellipsoid.
In some implementations, a nozzle having the truncated ellipsoidal orifice may be constructed to spray a flat fan spray angle between 110 and 130 degrees and an inclination angle between 4.5 and 9.0 degrees to compensate for forward movement of a spray vehicle. In some implementations, the nozzle may spray the fluid using a flat fan spray angle of approximately 127 degrees. In some implementations, the nozzle may spray the fluid using a flat fan spray angle of approximately 120 degrees. In some implementations, the nozzle may spray the fluid using an inclination angle of approximately 4.5 degrees. In some implementations, the nozzle may spray the fluid using an inclination angle of approximately 6.5 degrees. In some implementations, the nozzle may spray the fluid using an inclination angle of approximately 9.0 degrees. In some implementations, the inclination angle may include a backward facing angle.
In some implementations, for example, various methods may be used to spray sloped surfaces, such as by using the nozzle described above. In some implementations, a method for spraying a fluid on turf having sloped surfaces may include spraying the fluid using a flat fan spray angle between 110 and 130 degrees and an inclination angle between 4.5 and 9.0 degrees. In some implementations, spraying the fluid may include spraying the fluid using a flat fan spray angle of approximately 127 degrees. In some implementations, spraying the fluid may include spraying the fluid using a flat fan spray angle of approximately 120 degrees. In some implementations, spraying the fluid may include spraying the fluid using an inclination angle of approximately 4.5 degrees. In some implementations, spraying the fluid may include spraying the fluid using an inclination angle of approximately 6.5 degrees. In some implementations, spraying the fluid may include spraying the fluid using an inclination angle of approximately 9.0 degrees. In some implementations, the inclination angle may include a backward facing angle.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more examples of implementations of the invention and, together with the description, serve to explain various principles and aspects of the invention.
According to various implementations of the invention, various methods and apparatus are disclosed for spraying plants and other foiliage such as turf, including turf growing on sloped surfaces and in particular to turf on a golf course.
Conventional turf nozzles can include a 110 degree fan angle that is sprayed vertically downward and which have an orifice formed by the interaction of a vee shaped slot cut though a hemispherically terminated hole. While these turf nozzles performed adequately on flat surfaces, striping resulted when sprayed on sloped surfaces. In addition, a poor coefficient of variation between spraying a plurality of such nozzles can result when they are used in an array on a spray boom
In some implementations, the outer member 2 includes a flange 4 and a central section 5 each sized and shaped to cooperate with a standard cap design. Specifically, the central section 5 is designed to fit within an opening the cap and the flange 4 engage the surfaces of the cap to ensure the nozzle 1 remains affixed to the cap.
In some implementations, the outer member 2 includes a generally cylindrical extension 6 that terminates in a semi-spherical tip 8. The tip 8 has a generally bent V-shaped discharge slot 10 formed by first and second sides 12 and 14. As shown in
In some implementations, nozzle 1 includes a plurality of openings 17 between the central section 5 and the cylindrical extension 6. In these implementations, the openings 17 provide a path for air to be educted into the flow stream. In some implementations, the plurality of openings (two, for example) can be arranged on the side of the nozzle cylindrical body spaced from the exterior projection 16 as can be seen, for example, in the nozzle design depicted in European registered community design RCD 001377915-0001 (air eduction openings on side).
In some implementations, outer member 2 includes an inner lumen 18 (see, e.g.,
Surrounding the lumen 18 in the area of the flange 4 is a channel 19 that is used to lock the inner member 3 to the outer member 2.
Lumen 28 narrows to a cylindrical section 32 in the area of the ring 22 and has a frusto-conical section 34 in the area of the extension 24.
When the inner and outer members are assembled, the end of the extension 24 of the inner member 3 resides within the extension 6 of the outer member 2. Also, a chamber is created between the outer wall of the extension 24 of the inner member 3 and the inner wall of the central section 5 of the outer member 2. This chamber, in combination with the openings 17 of the outer member 2 and the space between the ring 22 and the extension 24 of the inner member 3, creates a flow path through which air can be educted into the stream of liquid passing through the nozzle 1. That stream of liquid passes through the lumen 28 of the inner member 3, mixes with the air, passes through the extension 6 of the outer member 2 and then through the slot 10. The nature of the flow path and the shape of the slot 10 (examples of which are illustrated in
Table 1 illustrates various examples of dimensions 32 and 34 (measured in millimeters) and angles 36 and 38 (measured in degrees) that can achieve various angles of inclination and fan spray angles when used with various nozzle bodies of appropriate dimension. Each of dimensions 32, 34 and angles 36, 38 may have values substantially or “approximately” (i.e., within a +/−range) as illustrated in Table 1. As illustrated, in some implementations, wall 12 may be offset from the vertical axis by 1.2 to 2.5 degrees.
The dimensions of slot 10 illustrated by in
Nozzles constructed in accordance with the preferred embodiment offer a variety of advantages. First, such nozzles are preset to provide the correct delivery angle for the chemicals providing improved penetration into a crop canopy so the chemicals reach weeds hiding under crop foliage if the inventive nozzle or array thereof is used in broadcast spraying of row crops. Second, the nozzles of the present invention fit standard booms and standard nozzle body holders or caps. Third, no tools are needed to change the nozzles. Fourth, the inventive bent vee slot configuration permits the truncated ellipsoid nozzle orifices of the present invention to deliver a spray pattern having an improved coefficient of variation relative to conventional nozzles. Finally, the inventive nozzle can be constructed in a variety of sizes or designs either to fit different ISO or other sized caps, holders or configurations. For examples, nozzle designs such as those shown in European RCD 001377915-0001 can be modified with bent vee slot configuration resulting in nozzle orifices in accordance with the invention, and are considered withing the scope hereof.
According to various implementations of the invention, various methods may be used to spray surfaces including sloped surfaces, such as by using a nozzle in accordance with the invention such as 1 or a different design (e.g., European RCD 001377915-0001) as desired. In some implementations, a method for spraying a fluid on turf which may have sloped surfaces can include spraying the fluid using a flat fan spray angle between 110 and 130 degrees and an inclination angle between 4.5 and 9.0 degrees. In some implementations, spraying the fluid may include spraying the fluid using a flat fan spray angle of approximately 127 degrees. In some implementations, spraying the fluid may include spraying the fluid using a flat fan spray angle of approximately 120 degrees. In some implementations, spraying the fluid may include spraying the fluid using an inclination angle of approximately 4.5 degrees. In some implementations, spraying the fluid may include spraying the fluid using an inclination angle of approximately 6.5 degrees. In some implementations, spraying the fluid may include spraying the fluid using an inclination angle of approximately 9.0 degrees. In some implementations, the inclination angle may include a backward facing angle.
In some implementations of the invention, a boom 94 is coupled to reservoir 120 and receives the fluid for distribution via attached nozzles 1 (illustrated in
In some implementations of the invention, air inclusion nozzle 1 (
In other implementations, a plurality of nozzles having a bent vee slot as described in
By doing so, problems associated with spraying sloped surfaces or variations in boom height may be mitigated.
The following examples are provided for illustration purposes and should not be considered as limiting the scope of the invention. General description of screening methods: Following the method of ISO 5682-1 and/or ISO/WD 5682-1 “Equipment for crop protection—Spraying equipment—Part 1, the coefficient of variability between a plurality of spray nozzles on a spray boom operating at various heights is tested. 5 nozzles are used with the test bench. The test method of ISO 5682-1 and/or ISO/WD 5682-1 is followed except for width of the slots in the test bench.
Although described herein as a turf nozzle, the nozzle and methods for spraying sloped surfaces may be used to spray any surface having sloped topographies. A reference symbol appearing in different figures represents the same feature, structure, or characteristic in the different figures. For example, different figures may illustrate different views of an air inclusion nozzle, where a figure may reuse a reference symbol from a prior figure for convenience. As such, a reference symbol appearing in two or more different figures represents the same feature, structure or characteristic as described in a prior figure.
As would be appreciated by those skilled in the art, according to common practice, the various features of the drawings discussed herein are not necessarily drawn to scale, and that dimensions of various features, structures, or characteristics of the drawings may be expanded or reduced to more clearly illustrate various implementations of the invention described herein.
Implementations of the invention may be described as including a particular feature, structure, or characteristic, but every aspect or implementation may not necessarily include the particular feature, structure, or characteristic. Further, when a particular feature, structure, or characteristic is described in connection with an aspect or implementation, it will be understood that such feature, structure, or characteristic may be included in connection with other implementations, whether or not explicitly described. Thus, various changes and modifications may be made to the provided description without departing from the scope or spirit of the invention. As such, the specification and drawings should be regarded as exemplary only, and the scope of the invention to be determined solely by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/050944 | 1/17/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61754964 | Jan 2013 | US |