The present disclosure is directed to process control systems and, more particularly, field devices such as pressure regulators and pilot loading mechanisms for pressure regulators used in process control systems.
Process control systems, such as distributed or scalable process control systems like those used in chemical, petroleum or other processes, typically include one or more process controllers communicatively coupled to one or more field devices via analog, digital or combined analog/digital buses. The field devices, which may include, for example, control valves, valve positioners, switches and transmitters (e.g., temperature, pressure and flow rate sensors), perform functions within the process such as opening or closing valves and measuring process parameters. The process controller receives signals indicative of process measurements made by the field devices and/or other information pertaining to the field devices, and uses this information to execute or implement one or more control routines to generate control signals, which are sent over the buses to the field devices to control the operation of the process. Information from each of the field devices and the controller is typically made available to one or more applications executed by one or more other hardware devices, such as host or user workstations, personal computers or computing devices, to enable an operator to perform any desired function regarding the process, such as setting parameters for the process, viewing the current state of the process, modifying the operation of the process, etc.
In some situations, such as when leak testing or sensor calibration is to be performed, pressure levels may need to be stabilized and/or reduced to zero in the process control system. Additional valves and supporting input and output lines may thus be installed in the processor control system. For example, additional valves may be installed on the end(s) of pipelines or vessels in the process control system. In turn, one or more of the field devices are no effectively longer controlled. This prevents pressure fluctuations, which would normally occur as a result of the field devices being controlled, thereby achieving the desired goal of stabilizing pressure levels, and/or reducing them to zero, in the process control system.
One aspect of the present disclosure includes a method of stabilizing pressure in an intelligent regulator assembly having a pilot device and a regulator. The pilot device includes an inlet port coupled to a source of supply pressure and having an inlet valve, an exhaust port having an exhaust valve, an outlet port configured to output a controlled pressure to the regulator, and an on-board controller communicatively coupled to the inlet valve and the exhaust valve. The on-board controller is operable to control the inlet valve and the exhaust valve to control the pressure delivered to the regulator. The on-board controller includes a memory, a processor, and logic stored on the memory. The method includes receiving, at the on-board controller, a request to activate a suspend control mode. The method also includes activating, via the on-board controller, the suspend control mode, the activating including adjusting the inlet valve and the exhaust valve, and suspending control of the inlet valve and the exhaust valve.
The present disclosure is directed to an intelligent regulator assembly having an pilot device, which can be a field device of a process control system, for example. More specifically, the pilot device provides a suspend control mode that is beneficial for applications in which total pressure stability is required.
Referring now to
In additional detail, the process controller 11 of the process control system 10 of the version depicted in
As mentioned, the controller 11 is illustrated as being communicatively connected to the field devices 15, 16, 17, 18, 19, 20, 21, and 22 using a hardwired communication scheme which may include the use of any desired hardware, software and/or firmware to implement hardwired communications, including, for example, standard 4-20 mA communications, and/or any communications using any smart communication protocol such as the FOUNDATION® Fieldbus communication protocol, the HART® communication protocol, etc. The field devices 15, 16, 17, 18, 19, 20, 21, and 22 may be any types of devices, such as sensors, control valve assemblies, transmitters, positioners, etc., while the I/O cards 26 and 28 may be any types of I/O devices conforming to any desired communication or controller protocol. In the embodiment illustrated in
In addition, the process control system 10 depicted in
If desired, the transmitters 60, 61, 62, 63, 64 can constitute the sole link between various process sensors (transmitters) and the process controller 11 and, as such, are relied upon to send accurate signals to the controller 11 to ensure that process performance is not compromised. The transmitters 60, 61, 62, 63, 64, often referred to as process variable transmitters (PVTs), therefore may play a significant role in the control of the overall control process. Additionally, the control valve assembly 71 may provide measurements made by sensors within the control valve assembly 71 or may provide other data generated by or computed by the control valve assembly 71 to the controller 11 as part of its operation. Of course, as is known, the control valve assembly 71 may also receive control signals from the controller 11 to effect physical parameters, e.g., flow, within the overall process.
The process controller 11 is coupled to one or more I/O devices 73 and 74, each connected to a respective antenna 75 and 76, and these I/O devices and antennas 73, 74, 75, 76 operate as transmitters/receivers to perform wireless communications with the wireless field devices 61, 62, 63, 64 and 71 via one or more wireless communication networks. The wireless communications between the field devices (e.g., the transmitters 60, 61, 62, 63, 64 and the control valve assembly 71) may be performed using one or more known wireless communication protocols, such as the WirelessHART® protocol, the Ember protocol, a WiFi protocol, an IEEE wireless standard, etc. Still further, the I/O devices 73 and 74 may implement protocol stack operations used by these communication protocols to receive, decode, route, encode and send wireless signals via the antennas 75 and 76 to implement wireless communications between the controller 11 and the transmitters 60, 61, 62, 63, 64 and the control valve assembly 71.
As illustrated in
Referring now to
The regulator 102 includes a valve body 110 and a control assembly 112. The valve body 110 defines an inlet 114, an outlet 116, and a gallery 118 defining a seating surface 120. The control assembly 112 is carried within the valve body 110 and includes a control element 122 operably connected to a diaphragm assembly 124. The control element 122 is movable between a closed position in sealing engagement with the seating surface 120 and an open position spaced away from the seating surface 120 in response to pressure changes across the diaphragm assembly 124. As depicted, the diaphragm assembly 124 includes a diaphragm 126 disposed within a diaphragm cavity 128 of the valve body 110 of the regulator 102. A bottom surface 130 of the diaphragm 126 is in fluid communication with the outlet 116 of the valve body 110 and a top surface 132 of the diaphragm 126 is in fluid communication with the pilot device 104 via a pilot opening 150 in the valve body 110.
The pilot device 104 includes a valve body 134, an inlet valve 136, an exhaust valve 138, a pressure sensor 140, and an outlet adaptor 142. The valve body 134 defines an inlet port 144, an exhaust port 146, and an outlet port 148. The inlet port 144 is adapted to be connected to a source of supply gas for loading the dome 152 of the regulator 102, as will be described. As depicted, the inlet valve 136 is disposed adjacent to the inlet port 144, the exhaust valve 138 is disposed adjacent to the exhaust port 146, and the outlet adaptor 142 extends from the outlet port 148 and to the pilot opening 150 in the valve body 110. Thus, the outlet adaptor provides 142 fluid communication between the pilot device 104 and the regulator 102. The pressure sensor 140 is disposed in the valve body 134 of the pilot device 104 at a location between the inlet and outlet valves 136, 138. As such, the pressure sensor 140 is operable to sense the pressure between the inlet and outlet valves 136, 138, as well as in the outlet port 148, the outlet adaptor 142, and the diaphragm cavity 128 adjacent to the top surface 132 of the diaphragm 126. This portion of the diaphragm cavity 128 can be referred to as the dome 152 of the regulator 102. In one version of the pilot device 104 the inlet and exhaust valves 136, 138 can be solenoid valves such as Pulse Width Modulation (PWM) solenoid valves and the pressure sensor 104 can be a pressure transducer. Moreover, the inlet and exhaust valves 136, 138 and the pressure sensor 140 can be communicatively coupled to an on-board controller 154, which can store logic and/or direct some or all of the functionality of the pilot device 104, as will be described below.
Still referring to
Specifically, during normal operation, the pressure at the outlet 116 of the regulator 102 is controlled and maintained as desired by adjusting the pressure in the dome 152 of the regulator 102. This is achieved via operation of the pilot device 104 and feedback pressure sensor 106. For example, in one version, the feedback pressure sensor 106 detects the pressure at the outlet 116 every 25 milliseconds and transmits a signal to the on-board controller 154 of the pilot device 104. The on-board controller 154 compares this signal, which is indicative of the pressure at the outlet 116, to a desired set-point pressure and determines if the outlet pressure is less than, equal to, or greater than the set-point pressure. Based on this determination, the pilot device 104 manipulates either or both of the inlet and exhaust valves 136, 138 to adjust the pressure in the dome 152. That is, if the sensed outlet pressure is lower than the desired set-point pressure, the on-board controller 154 activates the inlet valve 136 (e.g., instructs the inlet valve 136 to open and the exhaust valve 138 to close). In this configuration, gas enters the inlet port 144 of the pilot device 104 and increases the pressure in the dome 152, which causes the diaphragm assembly 124 to urge the control element 122 downward relative to the orientation of
Based on the foregoing description, it should be appreciated that the pilot device 104 and the feedback pressure sensor 106 operate in combination with each other to intermittently, yet frequently, monitor the pressure at the outlet 116 of the regulator 102 and adjust the pressure in the dome 152 until the pressure at the outlet 116 is equal to the set-point pressure.
With reference to
The communications interface 208, which may be, for example, a universal serial bus (USB) port, an Ethernet port, or some other port or interface, is provided to enable or facilitate electronic communication between the pilot device 104 and the computing device 108. This electronic communication may occur via any known method, including, by way of example, USB, RS-232, RS-485, WiFi, Bluetooth, or any other suitable communication connection.
The logic 212 includes one or more routines and/or one or more sub-routines, embodied as computer-readable instructions stored on the memory 204. The pilot device 104, particularly the processor 200, may execute the logic 212 to cause the processor 200 to perform actions related to the configuration, management, maintenance, diagnosis, and/or operation of the pilot device 104. The logic 212 may, when executed, cause the processor 200 to receive and/or obtain signals or requests from the personal computing device 108, determine the contents of any received and/or obtained signals or requests, monitor the pressure detected by the pressure sensor 140, open and/or close the inlet and/or exhaust valves 136, 138, suspend control of the opened and/or closed inlet and/or exhaust valves 136, 138, and/or perform other desired functionality.
Turning to
As shown in
The communications interface 258, which may be, for example, a universal serial bus (USB) port, an Ethernet port, or some other port or interface, is provided to enable or facilitate electronic communication between the personal computing device 108 and the pilot device 104. This electronic communication may occur via any known method, including, by way of example, USB, RS-232, RS-485, WiFi, Bluetooth, or any other suitable communication connection.
The application 262 includes computing logic, such as one or more routines and/or one or more sub-routines, embodied as computer-readable instructions stored on the memory 254 or another memory. The personal computing device 108, particularly the processor 250, may execute the logic to cause the processor 250 to perform actions related to the configuration, management, maintenance, diagnosis, and/or operation (e.g., control or adjustment) of the components of the assembly 100 (e.g., the pilot device 104). The application 262 may facilitate automatic interaction and/or manual interaction with the pilot device 104. For example, the application 262 may facilitate performance of an automated tuning procedure on the pilot device 104. The application 262 may facilitate manual interaction for a user of the personal computing device 108 with the pilot device 104. To this end, the application may include or provide the user with a user interface 266 that facilitates user interaction with (e.g., control of) the pilot device 104.
With or via the user interface 266, the user may select or request activation of a suspend control mode in which control of the other components of the assembly 100 (e.g., the regulator 102) by the pilot device 104 is suspended, as will be described in greater detail below. The user may also utilize the user interface 266 to manually tune the pilot device 104, program a set point of the pilot device 104, adjust proportional, derivative, and/or integral values and/or integral limits and/or dead band parameters, set control modes, perform calibration, set control limits, set diaphragm protection values, run diagnostic procedures (e.g., a solenoid leak test), and the like.
As described above, during normal operation of the assembly 100, the pressure at the outlet port 148, and, in turn, the pressure in the dome 152, is controlled (e.g., adjusted) based on the set-point pressure and the determined pressure at the outlet 116 of the regulator 102. When, for example, the on-board controller 154 determines that the set-point pressure is higher than the pressure at the outlet 116, such that the pressure at the outlet port 148 and the pressure in the dome 152 needs to be increased, the on-board controller 154 activates the inlet valve 136. In turn, gas enters the inlet port 144 of the pilot device 104, the pressure at the outlet port 148 and in the dome 152 increases, and, ultimately, the pressure at the outlet 116 increases. When, however, the on-board controller 154 determines that the set-point pressure is lower than the pressure at the outlet 116, such that the pressure at the outlet port 148 and the pressure in the dome 152 needs to be increased, the on-board controller 154 activates the exhaust valve 138. In turn, gas in the dome 152 exhausts out through the exhaust port 146 of the pilot device 104, decreasing the pressure at the outlet port 148 and in the dome 152, and, ultimately, the pressure at the outlet 116 decreases. Such a process is iteratively and continuously performed.
In some situations, however, pressure stability in the assembly 100 may be desirable. In other words, in some situations, the changes or fluctuations in pressure (at the outlet port 148, in the dome 152, at the outlet 116, etc.) inherent in the normal operation described above may not be desirable. Pressure stability may, for example, be desirable when an operator of the assembly 100 is conducting or performing a leak test, calibrating a sensor, or performing some other task that requires pressure stability in the assembly 100. By, for example, stabilizing the pressure in the assembly, and monitoring the pressure levels subsequent to this stabilization, the operator can determine whether any components of the assembly 100 are leaking or otherwise faulty. If, for example, the pressure levels are stabilized, but the pressure at the outlet 116 has decreased, the operator may deduce that there are one or more leaks in the assembly 100.
The present embodiments aim to achieve this pressure stability by providing a suspend control mode that, when activated or initiated, disrupts (e.g., suspends, freezes, or stops) the normal process described above. When the suspend control mode is activated, the control algorithm (e.g., the PID algorithm) run or employed by the pilot device 104 is suspended, frozen, or stopped. In other words, when the suspend control mode is activated, the on-board controller 154 stops controlling (e.g., adjusting) the components of the pilot device 104, such as, for example, the inlet valve 136 and/or the exhaust valve 138. Since the on-board controller 154 can no longer control the valves 136, 138, the pilot device 104 is, in essence, no longer responsive to (i.e., the pilot device 104 essentially ignores) the other components of the assembly 100 (e.g., the feedback sensor 106), such that the feedback loop is effectively stopped and, in turn, the pressure values in the assembly 100 are frozen, locked, or maintained.
In other embodiments, the on-board controller 154 may receive the request from another computing device (e.g., the controller 11) or the request may be received locally (i.e., entered directly into or on the pilot device 104). Further yet, the on-board controller 154 may, instead of receiving the request, receive data (e.g., a signal) indicative of a leak testing, sensor calibration, or some other activity requiring pressure stabilization, from which the on-board controller 154 may infer the request.
Based on (e.g., in response to) the received request, the on-board controller 154 activates or initiates the suspend control mode (block 304). When activated, the suspend control mode generally involves the on-board controller 154 adjusting the inlet valve 136 and the exhaust valve 138 (block 308) and then suspending control of the adjusted inlet valve 136 and the exhaust valve 138 (block 312).
In some embodiments, the suspend control mode involves the on-board controller 154 closing the inlet valve 136, closing the exhaust valve 138, and suspending control of the closed inlet valve 136 and the closed exhaust valve 138. Since the inlet valve 136 and the exhaust valve 138 are closed, no gas can enter the inlet port 144 of the pilot device 104 and no gas in the dome 152 can be exhausted out through the exhaust port 146 of the pilot device 104. Moreover, because the on-board controller 154 has suspended control of the closed valves 136, 138, the valves 136, 138 cannot be controlled (i.e., opened). In turn, the pressure in the assembly 100, particularly the pressure at the outlet port 148, in the dome 152, and at the outlet 116 of the regulator 102, is frozen, maintained, or held constant. This happens in spite of any information or data received from other components of the assembly 100. For example, the on-board controller 154 may continue to receive feedback information from the pressure sensor 106. However, because the on-board controller 154 is operating in the suspend control mode, the on-board controller 154 will not respond to this feedback information as it normally would.
In other embodiments, the suspend control mode may involve the on-board controller 154 adjusting the inlet valve 136 and/or the exhaust valve 138 in some other way. For example, the on-board controller 154 may close the inlet valve 136, open the exhaust valve 138, and then suspend control of the closed inlet valve 136 and the open exhaust valve 138.
So long as it is desirable to maintain or freeze the pressure in the assembly 100, particularly the pressure at the outlet port 148, in the dome 152, and at the outlet 116 of the regulator 102, the pilot device 104, particularly the on-board controller 154, may continue running or operating in the suspend control mode. The pilot device 104 may operate in the suspend control mode for any length of time (e.g., 30 minutes, 1 day, etc.), depending on the task that is being performed (e.g., sensor calibration, leak testing).
When it is no longer necessary or desirable to maintain or freeze the pressure in the assembly 100, the suspend control mode may be deactivated. The suspend control mode may be deactivated in a manner similar to how the suspend control mode was activated. In turn, the assembly 100, particularly the pilot device 104, may return to a normal operation.
Based on the foregoing description, it should be appreciated that the devices and methods described herein provide for a suspend control feature that is highly advantageous for applications, such as leak detection or sensor calibration, in which total stability, particularly pressure stability, is critical. By providing such a feature without requiring the installation of additional valves and supporting input and output lines for those valves, the disclosed devices and methods are simpler to install and utilize, more reliable, and may have a longer useful life than known process control systems.
The priority benefit of U.S. Provisional Patent Application No. 61/830,538, filed Jun. 3, 2013, is hereby claimed and the entire contents thereof are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61830538 | Jun 2013 | US |