This invention relates to digital radio broadcasting, and more particularly to methods and apparatus for storing and replaying received digital radio broadcasting signals.
Digital radio broadcasting technology delivers digital audio and data services to mobile, portable, and fixed receivers. One type of digital radio broadcasting, referred to as in-band on-channel (IBOC) digital audio broadcasting (DAB), uses terrestrial transmitters in the existing Medium Frequency (MF) and Very High Frequency (VHF) radio bands. IBOC DAB signals can be transmitted in a hybrid format including an analog modulated carrier in combination with a plurality of digitally modulated carriers or in an all-digital format wherein the analog modulated carrier is not used. Using the hybrid mode, broadcasters may continue to transmit analog AM and FM simultaneously with higher-quality and more robust digital signals, allowing themselves and their listeners to convert from analog to digital radio while maintaining their current frequency allocations.
One feature of digital transmission systems is the inherent ability to simultaneously transmit both digitized audio and data. Thus the technology also allows for wireless data services from AM and FM radio stations. The broadcast signals can include metadata, such as the artist, song title, or station call letters. Special messages about events, traffic, and weather can also be included. For example, traffic information, weather forecasts, news and sports scores, can all be scrolled across a radio receiver's display while the user listens to a radio station.
IBOC DAB technology can provide digital quality audio, superior to existing analog broadcasting formats. Because each IBOC DAB signal is transmitted within the spectral mask of an existing AM or FM channel allocation, it requires no new spectral allocations. IBOC DAB promotes economy of spectrum while enabling broadcasters to supply digital quality audio to the present base of listeners.
Multicasting, the ability to deliver several programs or data streams over one channel in the AM or FM spectrum, enables stations to broadcast multiple streams of data on separate supplemental or sub-channels of the main frequency. For example, multiple streams of data can include alternative music formats, local traffic, weather, news and sports. The supplemental channels can be accessed in the same manner as the traditional station frequency using tuning or seeking functions. For example, if the analog modulated signal is centered at 94.1 MHz, the same broadcast in IBOC DAB can include supplemental channels 94.1-1, 94.1-2, and 94.1-3. Highly specialized programming on supplemental channels can be delivered to tightly targeted audiences, creating more opportunities for advertisers to integrate their brand with program content. As used herein, multicasting includes the transmission of one or more programs in a single digital radio broadcasting channel or on a single digital radio broadcasting signal. Multicast content can include a main program service (MPS), supplemental program services (SPS), program service data (PSD) and/or other broadcast data. The National Radio Systems Committee, a standard setting organization sponsored by the National Association of Broadcasters and the Consumer Electronics Association, adopted an IBOC standard, designated NRSC-5A, in September 2005. NRSC-5A, the disclosure of which is incorporated herein by reference, sets forth the requirements for broadcasting digital audio and ancillary data over AM and FM broadcast channels. The standard and its reference documents contain detailed explanations of the RF/transmission subsystem and the transport and service multiplex subsystem for the system. Copies of the standard can be obtained from the NRSC at http://www.nrscstandards.org/standards.asp. HD Radio™ technology, developed by iBiquity Digital Corporation, is an implementation of the NRSC-5A IBOC standard. Further information regarding HD Radio™ technology can be found at www.hdradio.com and www.ibiquity.com.
Other types of digital radio broadcasting systems include satellite systems such as XM Radio, Sirius and WorldSpace, and terrestrial systems such as Digital Radio Mondiale (DRM), Eureka 147 (branded as DAB), DAB Version 2, and FMeXtra. As used herein, the phrase “digital radio broadcasting” encompasses digital audio broadcasting including in-band on-channel broadcasting, as well as other digital terrestrial broadcasting and satellite broadcasting.
It would be desirable to provide users with methods and apparatus for storing and replaying received digital radio broadcasting signals. Moreover, it would be desirable for a user to: schedule the recording of a particular program or select a program for recording based on genre or other program-related information; record multiple programs at once; and listen to one program while recording one or more different programs. It would also be desirable for a user to be able to navigate through stored program content, during playback, based on program service data or using fast forward and rewind commands. It would further be desirable to provide the user with the capability of managing memory space for stored program content, such as by deleting files individually, collectively based on certain criteria, or using an auto-erase function.
In a first aspect, a method for receiving and processing a digital radio broadcasting signal includes: receiving a digital radio broadcasting signal including encoded content in a first format; processing the encoded content to convert the encoded content into a second format; storing the encoded content in a second format; and decoding the stored encoded content to recover decoded content.
In another aspect, a receiver for receiving and processing a digital radio broadcasting signal, includes: an input for receiving a digital radio broadcasting signal including encoded content in a first format; a processor for processing the encoded content to convert the encoded content into a second format; and a memory for storing the encoded content in a second format, wherein the processor decodes the stored encoded content to recover decoded content.
a and 9b are diagrams of an IBOC DAB logical protocol stack from the broadcast perspective.
Referring to the drawings,
At the studio site, the studio automation equipment supplies main program service (MPS) audio 42 to the EASU, MPS data 40 to the exporter, supplemental program service (SPS) audio 38 to the importer, and SPS data 36 to the importer. MPS audio serves as the main audio programming source. In hybrid modes, it preserves the existing analog radio programming formats in both the analog and digital transmissions. MPS data, also known as program service data (PSD), includes information such as music title, artist, album name, etc. Supplemental program service can include supplementary audio content as well as program associated data.
The importer contains hardware and software for supplying advanced application services (AAS). A “service” is content that is delivered to users via an IBOC DAB broadcast, and AAS can include any type of data that is not classified as MPS or SPS. Examples of AAS data include real-time traffic and weather information, navigation map updates or other images, electronic program guides, multicast programming, multimedia programming, other audio services, and other content. The content for AAS can be supplied by service providers 44, which provide service data 46 to the importer via an application program interface (API). The service providers may be a broadcaster located at the studio site or externally sourced third-party providers of services and content. The importer can establish session connections between multiple service providers. The importer encodes and multiplexes service data 46, SPS audio 38, and SPS data 36 to produce exporter link data 24, which is output to the exporter via a data link.
The exporter 20 contains the hardware and software necessary to supply the main program service and station information service (SIS) for broadcasting. SIS provides station information, such as call sign, absolute time, position correlated to GPS, etc. The exporter accepts digital MPS audio 26 over an audio interface and compresses the audio. The exporter also multiplexes MPS data 40, exporter link data 24, and the compressed digital MPS audio to produce exciter link data 52. In addition, the exporter accepts analog MPS audio 28 over its audio interface and applies a pre-programmed delay to it to produce a delayed analog MPS audio signal 30. This analog audio can be broadcast as a backup channel for hybrid IBOC DAB broadcasts. The delay compensates for the system delay of the digital MPS audio, allowing receivers to blend between the digital and analog program without a shift in time. In an AM transmission system, the delayed MPS audio signal 30 is converted by the exporter to a mono signal and sent directly to the STL as part of the exciter link data 52.
The EASU 22 accepts MPS audio 42 from the studio automation equipment, rate converts it to the proper system clock, and outputs two copies of the signal, one digital (26) and one analog (28). The EASU includes a GPS receiver that is connected to an antenna 25. The GPS receiver allows the EASU to derive a master clock signal, which is synchronized to the exciter's clock by use of GPS units. The EASU provides the master system clock used by the exporter. The EASU is also used to bypass (or redirect) the analog MPS audio from being passed through the exporter in the event the exporter has a catastrophic fault and is no longer operational. The bypassed audio 32 can be fed directly into the STL transmitter, eliminating a dead-air event.
STL transmitter 48 receives delayed analog MPS audio 50 and exciter link data 52. It outputs exciter link data and delayed analog MPS audio over STL link 14, which may be either unidirectional or bidirectional. The STL link may be a digital microwave or Ethernet link, for example, and may use the standard User Datagram Protocol or the standard TCP/IP.
The transmitter site includes an STL receiver 54, an exciter 56 and an analog exciter 60. The STL receiver 54 receives exciter link data, including audio and data signals as well as command and control messages, over the STL link 14. The exciter link data is passed to the exciter 56, which produces the IBOC DAB waveform. The exciter includes a host processor, digital up-converter, RF up-converter, and exgine subsystem 58. The exgine accepts exciter link data and modulates the digital portion of the IBOC DAB waveform. The digital up-converter of exciter 56 converts from digital-to-analog the baseband portion of the exgine output. The digital-to-analog conversion is based on a GPS clock, common to that of the exporter's GPS-based clock derived from the EASU. Thus, the exciter 56 includes a GPS unit and antenna 57. An alternative method for synchronizing the exporter and exciter clocks can be found in U.S. patent application Ser. No. 11/081,267 (Publication No. 2006/0209941 A1), the disclosure of which is hereby incorporated by reference. The RF up-converter of the exciter up-converts the analog signal to the proper in-band channel frequency. The up-converted signal is then passed to the high power amplifier 62 and antenna 64 for broadcast. In an AM transmission system, the exgine subsystem coherently adds the backup analog MPS audio to the digital waveform in the hybrid mode; thus, the AM transmission system does not include the analog exciter 60. In addition, the exciter 56 produces phase and magnitude information and the analog signal is output directly to the high power amplifier.
IBOC DAB signals can be transmitted in both AM and FM radio bands, using a variety of waveforms. The waveforms include an FM hybrid IBOC DAB waveform, an FM all-digital IBOC DAB waveform, an AM hybrid IBOC DAB waveform, and an AM all-digital IBOC DAB waveform.
The hybrid waveform includes an analog FM-modulated signal, plus digitally modulated primary main subcarriers. The subcarriers are located at evenly spaced frequency locations. The subcarrier locations are numbered from −546 to +546. In the waveform of
The upper primary extended sidebands include subcarriers 337 through 355 (one frequency partition), 318 through 355 (two frequency partitions), or 280 through 355 (four frequency partitions). The lower primary extended sidebands include subcarriers −337 through −355 (one frequency partition), −318 through −355 (two frequency partitions), or −280 through −355 (four frequency partitions). The amplitude of each subcarrier can be scaled by an amplitude scale factor.
In addition to the ten main frequency partitions, all four extended frequency partitions are present in each primary sideband of the all-digital waveform. Each secondary sideband also has ten secondary main (SM) and four secondary extended (SX) frequency partitions. Unlike the primary sidebands, however, the secondary main frequency partitions are mapped nearer to the channel center with the extended frequency partitions farther from the center.
Each secondary sideband also supports a small secondary protected (SP) region 110, 112 including 12 OFDM subcarriers and reference subcarriers 279 and −279. The sidebands are referred to as “protected” because they are located in the area of spectrum least likely to be affected by analog or digital interference. An additional reference subcarrier is placed at the center of the channel (0). Frequency partition ordering of the SP region does not apply since the SP region does not contain frequency partitions.
Each secondary main sideband spans subcarriers 1 through 190 or −1 through −190. The upper secondary extended sideband includes subcarriers 191 through 266, and the upper secondary protected sideband includes subcarriers 267 through 278, plus additional reference subcarrier 279. The lower secondary extended sideband includes subcarriers −191 through −266, and the lower secondary protected sideband includes subcarriers −267 through −278, plus additional reference subcarrier −279. The total frequency span of the entire all-digital spectrum is 396,803 Hz. The amplitude of each subcarrier can be scaled by an amplitude scale factor. The secondary sideband amplitude scale factors can be user selectable. Any one of the four may be selected for application to the secondary sidebands.
In each of the waveforms, the digital signal is modulated using orthogonal frequency division multiplexing (OFDM). OFDM is a parallel modulation scheme in which the data stream modulates a large number of orthogonal subcarriers, which are transmitted simultaneously. OFDM is inherently flexible, readily allowing the mapping of logical channels to different groups of subcarriers.
In the hybrid waveform, the digital signal is transmitted in primary main (PM) sidebands on either side of the analog FM signal in the hybrid waveform. The power level of each sideband is appreciably below the total power in the analog FM signal. The analog signal may be monophonic or stereo, and may include subsidiary communications authorization (SCA) channels.
In the extended hybrid waveform, the bandwidth of the hybrid sidebands can be extended toward the analog FM signal to increase digital capacity. This additional spectrum, allocated to the inner edge of each primary main sideband, is termed the primary extended (PX) sideband.
In the all-digital waveform, the analog signal is removed and the bandwidth of the primary digital sidebands is fully extended as in the extended hybrid waveform. In addition, this waveform allows lower-power digital secondary sidebands to be transmitted in the spectrum vacated by the analog FM signal.
The AM hybrid IBOC DAB signal format in one example comprises the analog modulated carrier signal 134 plus OFDM subcarrier locations spanning the upper and lower bands. Coded digital information representative of the audio or data signals to be transmitted (program material), is transmitted on the subcarriers. The symbol rate is less than the subcarrier spacing due to a guard time between symbols.
As shown in
The power of subcarriers in the digital sidebands is significantly below the total power in the analog AM signal. The level of each OFDM subcarrier within a given primary or secondary section is fixed at a constant value. Primary or secondary sections may be scaled relative to each other. In addition, status and control information is transmitted on reference subcarriers located on either side of the main carrier. A separate logical channel, such as an IBOC Data Service (IDS) channel can be transmitted in individual subcarriers just above and below the frequency edges of the upper and lower secondary sidebands. The power level of each primary OFDM subcarrier is fixed relative to the unmodulated main analog carrier. However, the power level of the secondary subcarriers, logical channel subcarriers, and tertiary subcarriers is adjustable.
Using the modulation format of
In practice, many of the signal processing functions shown in the receivers of
a and 9b are diagrams of an IBOC DAB logical protocol stack from the transmitter perspective. From the receiver perspective, the logical stack will be traversed in the opposite direction. Most of the data being passed between the various entities within the protocol stack are in the form of protocol data units (PDUs). A PDU is a structured data block that is produced by a specific layer (or process within a layer) of the protocol stack. The PDUs of a given layer may encapsulate PDUs from the next higher layer of the stack and/or include content data and protocol control information originating in the layer (or process) itself. The PDUs generated by each layer (or process) in the transmitter protocol stack are inputs to a corresponding layer (or process) in the receiver protocol stack.
As shown in
The receiver includes memories 358 and 359 for use by the processor, which may share a memory bus for communicating with the processor, and memory 360 for storing program content selected by the user. Memory 360 is preferably a non-removable storage device such as a multimedia card (MMC). Other suitable types of memory devices may be used, such as a hard disc, flash memory, USB memory, memory stick, etc.
In addition, the host controller performs command processing functions, including file system functions and SAP (store and play, also called store and replay) control functions. File system functions can include initializing and formatting the file system used by the storage device, determining the status of the storage device, determining the status of the files stored on the storage device, acquiring file descriptions, deleting files, and updating a file directory. SAP control functions can include storing digital audio programs, enabling or disabling playback mode, playing back digital audio programs, navigating stored files during playback, and displaying playback and storage status information. Representative navigation commands can include fast forward, rewind, pause, re-start, move forward to next PSD message, and move back to the previous PSD message. To store program content, the processor processes the baseband signal according to the logical protocol stack from the receiver perspective to produce encoded, encapsulated packets 361 for storage by the storage device.
While a receiver preferably processes a signal through Layer 2 and the transport functions, and then stores encoded, encapsulated audio packets and corresponding program service data, as shown in
Optionally, a user can select whether the content in the files is stored as encoded, encapsulated packets pursuant to the logical protocol stack, or converted into another format such as MP3. Thus, the encoded, encapsulated packets may be transcoded into another coded format, stored in the new format, and decoded upon playback. Alternatively, the encoded encapsulated packets may be decoded, re-encoded into a new format, stored, and then decoded upon playback.
The PDUs and/or packets comprised of coded audio and/or data are referred to as encoded content. The encoded content can be derived from more than one program, such as when the digital radio signal employs multicasting. Storing encoded content allows the receiver to efficiently store a plurality of programs, or portions of programs, received on a single digital radio signal, with a single tuner. The encoded content is then subjected to further processing for playback. When the stored encoded content is derived from multiple programs, the content corresponding to any one of the recorded programs can be selected for playback at a time.
The processor shown in
Recorded content can be stored as discrete files. The files are stored using a file allocation table (FAT) file system. New files will be written to the spaces occupied by deleted files. For example, if a user has previously recorded 12 files and then later deletes files 2, 8 and 11, a new file will utilize the newly available memory. Each file is assigned a unique file name. Any file-naming convention may be used. One system strings together information relevant to the file content, including broadcast frequency, time and date, program type, program number, program name, and station name. This information may alternatively be stored as part of the file's content. A file may also include parameters such as total file time, codec mode, number of compressed (coded) streams present, the amount of audio gain for the receiver to apply to the digital audio of a currently selected program, bit rate, program sound processing, program access permissions, content ID, number of PSD packets, and navigation flags. The maximum file size is based on the amount of memory storage available. The memory used can be of any size suitable for storing content, and is preferably at least 512 MB. Given a data rate of 96 Kbps, a memory of 512 MB would allow storage of approximately 10 hours of program content.
Program service data messages, when PSD is available, and/or ID3 tags are preferably stored with each file so that during playback a user can be provided with a description of the recorded content, including information such as title, artist, album, genre, and other information. For further information regarding ID3 tags, see the standard and specification documents available at www.id3.org. While playing back the stored content, a Get_PSD command can be used by the host controller to retrieve PSD messages, which are then decoded by the host controller. If the host controller is retrieving PSD information during the recording of a live broadcast, then PSD messages for the digital audio program will be stored. If the host controller is not retrieving PSD information during the recording of a live broadcast, PSD messages for the digital audio program will not be stored. If the station is not transmitting any PSD information, then zero PSD messages will be stored during the recording of the live broadcast. PSD messages may also be used to advance through the stored files for playback. During active recording, the PSD source is in the live digital audio stream. During playback, the PSD source is in the stored digital audio file. The display of “live” or “current” PSD information is not possible when in the playback mode. If active recording and playback of the same program are occurring at the same time and the Get_PSD command is issued, the host controller will receive the PSD message that is stored with the recorded file. The current PSD message that is associated with the active recording (on-the-air) will not be sent to the host controller. If active recording and playback for different programs are occurring at the same time and the Get_PSD command is issued, the host controller will receive the PSD message that is stored with the recorded file. The current PSD message that is associated with the active recording (on-the-air) is not accessible and subsequently will not be sent to the host controller.
Preferably, a user has several options for recording program content, which can include AM or FM digital content and main or supplemental programming. For example, by pushing the appropriate button on the user interface of the receiver, a user can begin to record a program as it is being broadcast. The receiver records the content until the memory is full, the signal is lost or tuned out, or the user stops the recording. A user can also program a predetermined duration for the recording. Thus, when a listener hears a program being broadcast and desires to begin recording, the receiver will record the program until the predetermined duration has expired, the memory is full, the signal is lost or tuned out, or the user stops the recording. A user can also schedule the recording of a program on a particular station starting at a particular date and time and lasting for a particular duration. At the preset time, the receiver automatically tunes to the selected station and begins recording for the indicated duration until the station is tuned out, the memory is full, or the listener stops the recording.
A user can concurrently record multiple programs (i.e., including multicast content) broadcast on a single channel. The user can listen to a main program while recording one or more supplemental programs, listen to a supplemental program while recording a main program and one or more supplemental programs, or listen to one supplemental program while recording one or more supplemental programs and/or a main program. The number of programs that can be recorded simultaneously is determined by the number of supplemental programs being broadcast at a particular channel. In one example, an IBOC DAB waveform can support up to eight multicast programs on a single channel, all of which can be recorded at one time.
The IBOC DAB signal can be processed as described above to obtain demultiplexed main program service and supplemental program service encoded packets as well as the corresponding program service data. If the user desires to listen to one of the main or supplemental programs being broadcast, then the corresponding encoded packets are decoded, converted from digital to analog, and sent to an audio output device. If the user desires to record one or more of the main or supplemental programs being broadcast, then the corresponding encoded packets for each of the desired programs are stored in separate files along with the corresponding program service data in the format as described above. Thus, each program selected by the user for recording is stored in a separate file that can later be selected by the user for playback, at which time the encoded packets are decoded, converted from digital to analog, and sent to an audio output device.
A user can also program the receiver to record supplemental programs based on program genre or program type preference selected by the user. The receiver will then monitor the received digital radio signal for the desired program genre or a program type and store that program genre or a program type when it is detected. For example, the receiver can automatically record a supplemental program when it is traffic-based. To implement this functionality, the receiver stores a listener's preferences and automatically records any supplemental programs that meet these preferences. The recording automatically stops whenever the program's genre changes. A receiver can use the Station Information Service (SIS) to identify the type of programs broadcast on a particular channel. SIS preferably contains a field for identifying program type. For example, an 8 bit Program Service Type field corresponds to the nationally defined Radio Broadcast Data System (RDBS), as described in the NRSC-4-A standard. A user can also select the duration and frequency (hourly, daily, weekly, etc.) for recording program content of a particular genre, and the user can select to have a new file replace a previously recorded file of the same genre so that during playback the user only listens to the most current program content.
Moreover, a broadcaster may elect to use available bandwidth to broadcast non-streaming program objects, such as pre-recorded programs. For example, a broadcaster may create or receive recordings of various television or radio programs. The broadcaster can then broadcast these programs on an IBOC waveform and a receiver can store those programs that a user desires, based on associated data such as title or program type. Once a complete program object has been received and stored by the receiver, the user can select that program for playback. As described above, the program would be stored as encoded, encapsulated packets which are decoded upon playback. Because the program objects are not being broadcast for real-time listening, the content can be transferred as a unit in faster or slower than real-time depending on available bandwidth, or it may be divided up into smaller pieces and then reassembled by the receiver.
In another embodiment, when the user is listening to previously stored content, the receiver can scan a plurality of digital radio signals for the desired program genre or a program type and then store that program genre or program type when it is detected. This automatic scanning and recording can also be implemented if the user is not listening to currently received or stored content. Thus, a single tuner can perform the scanning function if the receiver is playing back a stored file or otherwise is not tuned to a particular station for listening by the user.
To allow still further recording capability, the receiver may include an additional tuner that can scan the available broadcasts for content that matches a user's preferences. Adding one or more additional tuners also allows a user to record a program on one station while listening to a program on another.
In one embodiment, when recording, the receiver display includes a visual indication of the quality of the audio being received and recorded. If the digital signal is lost, then the recording will automatically stop and recommence when the digital signal is acquired, unless the user chooses not to do so by setting corresponding user preferences. The receiver display also shows a memory usage indication to the user, such as the amount of memory used or remaining, or the amount of time used or remaining. Based on this indication, the user can control the amount or duration of additional recording. When the memory becomes full, the receiver can display an appropriate indication to the user. If the memory becomes full during recording, the recording will automatically stop unless an auto-erase function has been enabled. When the auto-erase function is enabled, the receiver automatically deletes recorded content or stored files when the memory is full, based on various criteria such as the type of file, the age of the file, or whether the file has been marked as low or high priority or “do not erase” by the user. If auto-erase is not enabled, then when the memory is full, the user is notified that files should be manually deleted. The user can also select the number of days to store a particular file. After the specified number of days has passed, the stored file is automatically deleted.
To replay stored program content, the processor receives encoded audio and data from the storage device and further processes the signal according to the logical protocol stack in order to produce decoded audio and data 348 and 349. Playback is independent of channel conditions; thus, the receiver does not need to be tuned to a particular station. Moreover, a receiver in playback mode can use the same blend algorithm as live audio such that the receiver can blend to mute if the audio quality is poor. The receiver may display an indication of the quality of a stored audio file such as by expressing a percentage of the compressed audio in a particular file that is bad. Based on this indication, the host controller may not play back a file that reaches a certain percentage threshold, such as 50%. Preferably, a user has several options for playing back stored content. For example, a user could select to play a specific file or to play all stored files continuously. A user can also navigate through stored content in various ways in order to select files for playback. One such way is by using rewind and forward functions. For example, a fast forward function allows a user to skip from one file to the next or to advance through a file in intervals, such as 10, 30 or 60 second intervals. Similarly, a rewind function allows a user to skip to a previous file or to go back within a file in intervals, such as 10, 30 or 60 second intervals. A user can also move forward to the next PSD message, or move backward to the previous PSD message. In either case, the receiver will begin playback from the location in the file corresponding to the newly selected PSD message. To facilitate a user's selection of which file to play, the receiver can display stored files in a variety of ways, such as by date and time of recording or program title, for example. A user can also scan the program service data of stored files in order to preview the contents of a stored file and then select a file desired for playback. When a listener desires to stop listening to a particular recorded program, the user may insert a marker, which will allow the user to resume listening to the file or content piece from the marked position, even after power-off, instead of replaying the file from the beginning.
The above-described receiver provides audio output in two modes: Live mode and Playback mode. When the receiver is in Live mode, the audio source is a real-time over-the-air signal, which the user can also record. In Playback mode, the audio source is a stored digital file. When in Playback mode, the receiver may be tuned to a particular station and the program content from that station can be recorded.
The Tuner Preset/Channel Select buttons 1 to 8 also prompt the user to select any additional programs to record, if available. An indicator corresponding to the multicast channel will light up (for example, glow yellow) to indicate that the program is available to record. Recording of any additional programs can be initiated by pressing the Tuner Preset/Channel Select button for the respective program.
Recording for any program can be stopped by manually pressing the Tuner Preset/Channel Select button for the respective program or by the recording durations entered in the HD Now™ Recording Preferences menu. Recording for all programs can be stopped by manually pressing the Stop button.
The user interface also includes a display 422 that provides various information to the user. The Stereo Indicator 424 displays “Stereo” if no digital signal is detected, and the radio is receiving an analog FM stereo signal. The digital audio availability indicator (DAAI) Bars 426 indicate the HD Radio™ signal strength if an HD Radio™ signal is being received. The Clock field 428 displays the time of day in hours and minutes (HH:MM). The Frequency field 430 indicates the tuner's current RF frequency setting. The Call Sign field 432 displays the SIS station short name on AM and FM HD Radio™ stations or RBDS call sign parameter on analog FM stations. If the HD Radio™ station uses extended SIS, the Extended SIS Station field 434 displays the station slogan, otherwise it displays the SIS long name. If the HD Radio™ station uses extended SIS the Extended SIS Station Message field 436 displays the station message, otherwise this field is blank.
Channel (CH) Indicators 438, 440 indicate multicast program numbers. The multicast program that the user is currently listening to can be highlighted, for example, in yellow. In this example, a maximum of two programs can be displayed at one time, so if the station is broadcasting three or more multicast programs, the program numbers will scroll.
Program Service Data (PSD) Display fields 442, 444 indicate the song title and artist if an HD Radio™ signal is being received. If in the analog FM mode and the station is transmitting RBDS information, PSD Display 1 will display the RBDS radio text message. The PSD information of all the available channels on a multicast station will be displayed. The PSD display preferences can be set by the user.
The Text Display area 446 can be used to display ‘prompt’ messages where user interaction is required. It could also be used to display the EPG or other text (traffic, weather, stocks, etc.). This region of the display screen can also be used to display the album art of the song being played based on user preferences.
The listener will be able to set the display preferences as chosen. For example, the listener can choose to display the PSD information of all the multicast programs on a particular frequency or can choose to display the associated album art of the song being broadcast.
The store and replay preferences in the receiver can be set by pressing SETUP and selecting the Display Preferences.
To schedule recording at a preset time on a selected station or frequency, the user can access the preferences menu by pressing SETUP, selecting HD Now™ PREFERENCES, selecting SCHEDULED RECORDING, and entering the Scheduled Recording settings.
A Scheduled Recordings List display 530 allows a listener to show all the scheduled recordings setup on the receiver.
Program type preferences can be set by using the Setup menu to display Program Type preferences. Then the listener can input his/her choices for using the Program Type to schedule a recording or to program presets. This is accomplished by pressing SETUP, selecting HD Now™ PREFERENCES, and selecting PROGRAM TYPE RECORDING.
A PRESET SETTING is provided to allow the listener to PRESET program types—ON or OFF. Various program types can be preset. The listener may automatically record the program or channel (MPS or SPS) currently being listened to by pressing the RECORD button and the appropriate CHANNEL SELECT button. The duration of recording can be changed in fixed intervals by repeatedly pressing the UP, DOWN and ENTER Control Keys. First the user would press the RECORD button. Then the CHANNEL SELECT buttons for the available channels are lit yellow, and the memory usage indicator is displayed for 10 seconds. The CHANNEL SELECT button No. 1 can be pressed to record the current station on Channel 1. The recording will commence for the default duration, which is until the listener presses STOP, a tune-out occurs, or the memory is full. The indicator for CHANNEL SELECT button No. 1 will be lit red.
To change the duration of recording, the user can press the ENTER Control Key, and then press the UP Control Key. A default value of for example 30 minutes will be displayed. The duration of recording can be chosen using the UP, DOWN and ENTER Control Keys in values of: 30, 45, 60, 90, 120, 240 minutes. Then the ENTER button can be pressed to choose the duration desired.
To stop recording, the selected CHANNEL SELECT button or the STOP button can be pressed. The recording will also stop if the listener tunes to another station or frequency. The recording will also stop if the storage memory is full and the auto-erase option is not enabled.
To record an alternate program or programs when a station is multicasting, the listener will be able to record any program on the same station in addition to the program being listened to. The listener will also be able to commence multiple recordings of various multicast programs. The listener can record supplemental programs while listening to the main program or other supplemental programs.
To initiate recording, the user can press RECORD. Then the CHANNEL SELECT buttons for the available channels will be lit yellow, and the memory usage indicator is displayed for 10 seconds. Next the user presses the desired CHANNEL SELECT button to record the desired channel. The recording will commence for the default duration, which is until the listener presses STOP, a tune-out occurs, or the memory is full. The indicator for recorded CHANNEL SELECT will be lit red.
To change the duration of recording, the user can select the desired channel being recorded using the UP, DOWN Control Key, and press the ENTER Control Key. The default value that is displayed is 30 minutes. Then the duration of recording can be chosen using the UP, DOWN and ENTER Control Keys in values of: 30, 45, 60, 90, 120 or 240 minutes. Next the ENTER button is pressed to choose the duration desired.
To stop recording, the user can press the selected CHANNEL SELECT button. To stop recording for all the channels being recorded, the user can press the STOP button. The recording will also stop if the listener tunes to another station or frequency. The recording will also stop if the storage memory is full and the auto-erase option is not enabled.
The channel being listened to can be highlighted. The channels being recorded can display a small Record Indicator. The user can press the desired CHANNEL SELECT button to record the desired channel. The recording will commence for the default duration, which is until the listener presses STOP, a tune-out occurs, or the memory is full.
The channel being listened to will remain fixed on the display. The remaining available channels will scroll vertically as required. If desired, the listener can tune to the desired channel using the Control Keys or the Tune Up/Tune Down Keys and press RECORD to begin recording the channel tuned to.
To play back recorded Files, the listener would press the HD Now™ button. The receiver will display a list of all the recorded files (sorted by time of recording by default). The live broadcast is still on, until the listener presses the PLAY button.
The listener will select the desired file to play back using the Control Keys, and press the PLAY button or the ENTER button to commence playback. The PSD of the selected file is scrolled. The SKIP buttons (<< and >>) can be used to start playing the previous file or the next file in the list. The Rewind or Fast Forward buttons (< and >) can be used to fast-forward or rewind within the file being played back. The STOP button can stop playback.
The user can press the AM or FM buttons at any time to return to the live broadcast. A marker will be placed in the file that was being played so that if the user desires to return to listening to that file, playing will resume at the same point in the program where the playing was stopped. Similarly, at any time during playback the listener can choose a different file and press the PLAY button to begin playback of that file. A marker will be placed in the file that was initially being played, and the receiver will resume playback of that file at the point indicated by the marker.
Before playing a recorded file, the listener will be able to preview the contents of the selected file by scrolling through the PSD information or ID3 tags associated with the contents of that file. To preview a file, the user can press the HD Now™ button. The receiver will display a list of all the recorded files (sorted by time of recording by default). The live broadcast is still on, until the listener presses the PLAY button.
Next the user can select the desired file to playback using the Control Keys, and press the “skip next” or “skip previous” arrow Control Keys to scroll through the PSD content of the selected file. The read bar indicator will show the progress within the file. At the desired PSD location the listener will be able to play back the file based on the PSD location by pressing the PLAY button.
While navigating through a file using PSD message and the end of the file is reached, the listener will be returned to the HD Now™ screen displaying the list of recorded files. The user can press the HD Now™ button to go back to the list of recorded files.
To navigate within a file (fast-forward/rewind), the listener can use the Forward or Rewind buttons. This advances or reverses the file in 10-second intervals, which increases to 20 seconds and 30 seconds and multiples up to a maximum of 2 minutes the longer the FF button is pressed.
When the storage memory is full, the user can manually delete files to store more programs or content. To delete files, the user can press SETUP, select HD Now™ PREFERENCES, select FILE MANAGEMENT, select the desired file using the Control Keys, select DELETE for the selected file, and press ENTER to delete the selected file. The user is presented with a confirmation to delete.
Then the user can press the AM or FM button to return to a live broadcast or the HD Now™ button to return to playback. If the storage memory is full while recording, the listener is provided with an indication at least 95% before the memory is filled to delete files.
The user can use the Control Keys and the ENTER key to choose between MANAGE FILES or CANCEL RECORDING, press CANCEL RECORDING to stop recording and delete files at a later time, or press MANAGE FILES to manually delete files.
The recording will continue as the listener manually deletes files that are not needed. At this point, the user can press the AM or FM button to return to the station being recorded.
When the receiver storage memory is full while recording, the files can be deleted automatically without any user intervention by enabling the Auto-Erase feature. To set up Auto-Erase, the user can press SETUP, select HD Now™ PREFERENCES, select FILE MANAGEMENT, and set the Auto-Erase to ON. While recording, if the storage memory if full while recording, auto-erase enables the recording will continue by continuously over-writing the stored files beginning from the oldest file.
By using the Control Keys and the ENTER key the user can choose between CONTINUE RECORDING and CANCEL RECORDING. Then the user can press CANCEL RECORDING to stop recording and delete files at later time, or press CONTINUE RECORDING to continue recording by automatically deleting files from the storage memory.
Auto-Erase will automatically delete oldest recorded files and the current recording will continue until memory is full. If the current recording fills up the entire memory, the listener will then have to manually delete files not needed.
The listener will be able to play back any recorded file while simultaneously recording a live broadcast. While recording, the user can press the HD Now™ button. The list of recorded files will be displayed. Then the user can select the desired file to play back using the Control Keys, and press the PLAY button or the ENTER button to commence playback. The recording and playback of the live broadcast will continue.
The user can press the AM or FM buttons at any time to return to the respective live broadcast being recorded. To return to playback, the user can press the HD Now™ button once again and press the PLAY button. Playback of the selected file will begin where it was left off earlier.
The listener will be able record a live broadcast during a playback session without interrupting the playback. The RECORD and CHANNEL SELECT buttons can be used to set a recording while in the HD Now™ screen. The station name and the channel numbers appear above the respective CHANNEL SELECT buttons. The time durations can be set using the Control Keys as described previously and the CHANNEL SELECT buttons can be used to stop the recording.
To switch to a live broadcast and set recording, the user can press the AM or FM button. Playback will be paused and a marker inserted into the file so that playback can resume at the same point in the program. Then the display switches to the live broadcast. Next the user can press the RECORD button and the respective CHANNEL SELECT button to start recording. The recording durations can be set using the Control Keys. The user can press the HD Now™ button to return to the playback session. The last file played is automatically played back.
To stop the playback while switching to a live broadcast and set recording, the user can press the STOP Button, or alternatively, press the AM or FM button twice. The display switches the live broadcast. Next the user can press the RECORD button and the respective CHANNEL SELECT button to start recording. The recording durations can be set using the Control Keys. The user can press the HD Now™ button to return to playlist of recorded files to select a file to playback.
In some instances, the listener may experience a weak radio signal and may go in and out of coverage while recording a program. To address this condition, the user can set the Dropout Tolerance in the File Management settings in the SETUP menu. In one example, by default the number of dropouts allowed while recording is ‘4’. When the signal is lost while recording, the listener is given an indication that recording has stopped due to a lost signal. A ‘(1)’ in parenthesis indicates the first instance of the signal loss. The recording will continue when the HD Radio™ signal is re-acquired. If the listener decided to tune to another station in poor signal conditions the recording will stop permanently. If the signal loss occurs more than ‘4’ times as entered in the SETUP, the listener is given an indication that recording will not continue.
When recording is automatically commenced on acquiring back a signal, the recording is stored on the receiver as a separate file. Using a separate file prevents storing long periods of silence in the same file and provides an indication to the listener that there has been an interruption in the recording of a particular program.
An optional feature is HD UPDATE™. Using this feature, the listener has the capability to record short durations (or segments) of selected Program Types. The receiver will automatically record the program based on the program type specified at the selected station frequency. Each recording of the program will overwrite the previous recorded content and the listener is presented with the most updated program content. The Program Types can include: NEWS, SPORTS, WEATHER, EMERGENCY, TRAFFIC, TALK, and INFORMATION. The listener can also use the Preset buttons for Program Types. The HD UPDATE™ feature can be enabled or disabled—ON or OFF.
The HD UPDATE™ Start Time can be selected through the Hour: 1-12, Minutes: 00, 15, 30, 45 and AM/PM fields using the drop-down list. The current time is displayed as the default. The Duration parameter allows the user to specify how long to record a program. The user has the option to select values of 2, 5, 10, 15 minutes. This allows the recording to stop after a specified amount of time, without requiring the user to press the Stop button.
The Occurrence parameter specifies the frequency of the particular scheduled recording. The options are Daily, or Weekly. The SAVE button is used to specify that the user wants to save the entered schedule. The NEXT button allows the user to create another program type-based recording event—HD UPDATE™. If Yes, then another scheduled recording screen is presented.
The recording of a program will be stopped when the listener tunes to a different frequency or station while recording. If the receiver is tuned to a different frequency while recording, the listener is provided with a ‘caution’ message that the recording will stop if tuned out. An option to continue the action or to cancel the action is provided. The user can press CANCEL to continue recording and stay tuned to the same station, or CONTINUE to cancel the recording and tune-out of the current station.
While the present invention has been described in terms of its preferred embodiment, it will be understood by those skilled in the art that various modifications can be made to the disclosed embodiment without departing from the scope of the invention as set forth in the claims.
This application is a divisional application of U.S. patent application Ser. No. 13/187,597, for a “Method And Apparatus For Store And Replay Functions In A Digital Radio Broadcasting Receiver”, filed Jul. 21, 2011, which is a divisional application of U.S. patent application Ser. No. 11/644,083, for a “Method And Apparatus For Store And Replay Functions In A Digital Radio Broadcasting Receiver”, filed Dec. 22, 2006, now U.S. Pat. No. 8,104,446, all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5584051 | Goken | Dec 1996 | A |
5696899 | Kalwitz | Dec 1997 | A |
5790958 | McCoy et al. | Aug 1998 | A |
5815671 | Morrison | Sep 1998 | A |
6018612 | Thomason et al. | Jan 2000 | A |
6021320 | Bickford et al. | Feb 2000 | A |
6078592 | Spiero | Jun 2000 | A |
6332175 | Birrell et al. | Dec 2001 | B1 |
6563805 | Ma et al. | May 2003 | B1 |
6564003 | Marko et al. | May 2003 | B2 |
6608994 | Wegener et al. | Aug 2003 | B1 |
6609097 | Costello et al. | Aug 2003 | B2 |
6622007 | Linden | Sep 2003 | B2 |
6697608 | King-Smith | Feb 2004 | B2 |
6785656 | Patsiokas et al. | Aug 2004 | B2 |
6834156 | Marko et al. | Dec 2004 | B1 |
6876835 | Marko et al. | Apr 2005 | B1 |
6904264 | Frantz | Jun 2005 | B1 |
6925489 | Curtin | Aug 2005 | B1 |
6928262 | Kanemitsu | Aug 2005 | B1 |
6965770 | Walsh et al. | Nov 2005 | B2 |
7020217 | Parsons et al. | Mar 2006 | B1 |
7050773 | Bi | May 2006 | B2 |
7058376 | Logan et al. | Jun 2006 | B2 |
7062147 | Cooper et al. | Jun 2006 | B2 |
7117365 | Rump et al. | Oct 2006 | B1 |
7263648 | Blackburn et al. | Aug 2007 | B2 |
7272843 | Nejime et al. | Sep 2007 | B1 |
7372915 | Sako et al. | May 2008 | B1 |
7454166 | Patsiokas et al. | Nov 2008 | B2 |
7733983 | Kroeger et al. | Jun 2010 | B2 |
20010044664 | Mueller et al. | Nov 2001 | A1 |
20020047921 | Folio | Apr 2002 | A1 |
20020106987 | Linden | Aug 2002 | A1 |
20030033325 | Boogaard | Feb 2003 | A1 |
20030070172 | Matsuzaki et al. | Apr 2003 | A1 |
20030093476 | Syed | May 2003 | A1 |
20030194968 | Young | Oct 2003 | A1 |
20040063399 | Milbar | Apr 2004 | A1 |
20040064208 | Sinha et al. | Apr 2004 | A1 |
20050065625 | Sass | Mar 2005 | A1 |
20050091683 | Sheynman et al. | Apr 2005 | A1 |
20060116161 | Lee et al. | Jun 2006 | A1 |
20060156343 | Jordan | Jul 2006 | A1 |
20070011182 | Chiu | Jan 2007 | A1 |
20070058931 | Ohnuma et al. | Mar 2007 | A1 |
20070077026 | Park | Apr 2007 | A1 |
20070082607 | Hong et al. | Apr 2007 | A1 |
20070153888 | Kim et al. | Jul 2007 | A1 |
20070189712 | Hirayama et al. | Aug 2007 | A1 |
20070300262 | Kim | Dec 2007 | A1 |
20080130686 | Milbar | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
1073222 | Jan 2001 | EP |
Entry |
---|
“Digital Radio Mondiale (DRM); Distribution and Communications Procotol (DCP)”, ETSI TS 102 821, ETSI Standards, Lis, Sophia Antipolis, Cedex, France, vol. BC, No. V1.2.1, Oct. 1, 2005, 41 pgs. |
Number | Date | Country | |
---|---|---|---|
20140056227 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13187597 | Jul 2011 | US |
Child | 14067627 | US | |
Parent | 11644083 | Dec 2006 | US |
Child | 13187597 | US |