The present invention relates generally to the drilling, completion and production of subsea wells for petroleum products such as natural gas and crude oil. The present invention concerns a method and apparatus for containment of any fluids/gas and other forms of escaped material from a seafloor well head and/or blowout preventer (BOP) system by the use of a hermetically sealable dual encapsulating system that allows for bleed or circulation through existing riser connections. More particularly, the present invention concerns an encapsulation system that is installed when well drilling is initiated and which is normally maintained in an open or retracted condition, but is closed about a subsea wellhead/BOP installation located at the seabottom responsive to detection of an excessive pressure condition or detection of other well, wellhead or formation parameters that provide an indication of actual or potential well leakage or blowout at the wellhead.
It is a principal feature of the present invention to provide a novel containment system for subsea wellheads which is normally open to permit access to a subsea by equipment or personnel and which will be closed in response to detection of design parameters to provide a pressure containing encapsulation of the wellhead to prevent or minimize the effect of a well blowout;
It is another feature of the present invention to provide a novel containment system for subsea wellheads which has a valving capability for permitting release of well pressure upon closing and then selectively or sequentially closing its valving system to ensure containment and to minimize the mechanical stresses that otherwise may occur upon rapid closure of the containment system under well pressure.
It is also a feature of the present invention to provide a novel containment system for which is capable of containing any fluids/gas and other forms of escaped material from seafloor wellheads and blowout preventer (BOP) systems by the use of hermetically sealed dual encapsulating system that allows for bleed of and circulation through existing riser connections.
It is an even further of the present invention to provide a novel wellhead leakage or blowout containment system that employs a concrete base that is an extension of the typical seafloor base plate arrangement and provides for hydraulic, pneumatic or electric powered movement of encapsulation ¼ spheres or wedges along guide members or tracks that are mounted to the base plate or drilling template.
It is another feature of the present invention to provide a novel wellhead and BOP stack containment system that can be controlled from a remote location and/or which can be designed for automatic control in response to the sensing of undesirable wellhead and BOP conditions.
It is also a feature of the present invention to provide a novel containment system that is designed for pressure build-up control, such as by means of selectively or automatically operated valves, thus permitting gradual pressure increase with one or more sealed spaces to minimize the potential for structural failure of pressure containing components by the shock and stress of sudden pressure increase.
It is a feature of the present invention to provide a novel wellhead and BOP containment system that is designed to permit controlled bleeding of contained pressure so that petroleum constituents are prevented from being released into the seawater in the event of leakage.
Briefly, the various objects and features of the present invention are realized through the provision of a base plate that is an extension of a standard base plate for well drilling and which has guide members such as tracks mounted thereto. Substantially ¼ spherical inner and outer encapsulating closure members are mounted for movement along the guide members or tracks and each have rubber or rubber-like sealing members that establish hermetic sealing with the base plate. The encapsulating closure members each have seal joint structure including sealing components that establish high pressure resisting sealing with one another and with risers that extend from the wellhead or BOP stack when the encapsulating closure members are hydraulically, pneumatically or electrically moved from their normal retracted positions to closed and hermetically sealed condition.
The inner and outer encapsulating closure members are moved to closed positions sequentially and the inner encapsulating closure members are perforated to permit leakage during closing movement so that leakage pressure will not prevent complete closure and sealing of the enclosures to one another. The perforations will be selectively closed and sealed after the inner encapsulating enclosure has been closed and sealed. Closure of the perforation can be accomplished by valve members, which can be controlled remotely or can be set for automatic closure at selected pressure ranges. The valves permit gradual increase of pressure within the closed and sealed inner encapsulating enclosure and ensure that the integrity of the wall structure will not be over-stressed or ruptured by sudden increase in pressure.
After the inner encapsulating closure mechanism has been closed and sealed and its valves have closed the perforations the outer encapsulating closure mechanism will be moved from its retracted position to its closed and sealed condition, thus establishing a dual pressure containment system to maintain a safe condition of the leaking wellhead or BOP stack system until the well can be serviced and restored to a safe condition.
The present invention concerns a method to contain any fluids, gases or mixtures thereof and any other forms of escaped material from seafloor wellheads and BOP systems by the use of a hermetically sealable dual encapsulating system that allows for bleed of and circulation through existing wellhead riser connections.
The system of the present invention uses a concrete base that is an extension of the typical seafloor base plate arrangement. The quarter spheres or wedges of the encapsulation system are mounted on the base plate and can move along guides. This quarter sphere or wedge movement is hydraulically, pneumatically or electrically controlled from the surface and from a remote location.
System designed to be controlled multiple ways, by surface from the production platform of drilling unit, from remote location such as helicopters, ships, shore location, etc. or automatically when extraordinary events trigger the set mechanism on the sea floor. The BOP encapsulation system is designed to contain pressures and leaks of any type of fluids and hydrocarbons that can affect the environment. Security domes close and seal over the existing blow-out prevention (typical) stacks and form a total encapsulation of all evading fluids and gases which can then be “drained” from the primary and secondary encapsulation domes by built-in pressure relief and escape devices.
Briefly, a riser pipe (1) connects the existing BOP stack (11) that comprises the spherical (13) and the Ram type BOP (12) via a ball joint (14) to surface. This is the basic set-up for most offshore well drilling operations. This can vary, and it is intended that the invention will cover all possible sea bottom combinations as the size of the encapsulation system can vary according to needs and design.
The encapsulation system consists of two concentrically arranged substantially hemispherical fluid and pressure containment domes, a primary dome (4) and a secondary dome (6). These domes are each defined by a pair of dome quarter sections that are laterally moveable relative to one another to an open condition permitting well drilling operations and a closed and sealed condition establishing sealed encapsulation of the BOP unit and sealing with the riser pipe. The quarter hemispherical dome sections of the primary dome are linearly moveable by hydraulic rams and are guided during movement. The quarter hemispherical sections of the secondary are guided during linear movement by spaced guide and actuation rails that are fixed to the drilling template or to extensions of the template. Both domes have a top sealing elements that will close around respective primary and secondary sealing skirts that are mounted to the riser pipe. These seals each have pressure responsive positive sealing capability . . . they increase sealing power when the internal pressure increases. Seals cover the entire range of contact points of both domes. The bottom seals on the secondary dome, (16) and the face seals (19) as well as the bottom seals on the primary dome (17) and the face seals of the primary dome (18) are all of the same positive seal capability and are pressed together for the outer or secondary dome by a rail traction system (9) and for the primary dome by a hydraulic arm pulling system (10). Upon activating the primary dome (4) will move to close once activated by one of the methods available. When moving to close the pressure escape gates (8) on this dome remain open until such time that the primary dome is fully closed. At this point the pressure escape gates (8) will close to trap the increasing pressure. As the pressure increases, the seals will also expand and fully contain the escaping fluids and gases. Once the primary dome (4) is in place the secondary dome (6) closes over the primary dome to ensure back-up safety and full hermetic sealing by means of the various positive seals (7, 19 and 16). With the system now in control of the events of the blow out or fluid escape, thru the well places various pressure relief valves and piping system (20 and 21) the pressure can now be controlled and bled off to surface of drained in a receptacle on surface.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the preferred embodiment thereof which is illustrated in the appended drawings, which drawings are incorporated as a part hereof.
It is to be noted however, that the appended drawings illustrate only a typical embodiment of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
In the Drawings:
Referring now to the drawings and first to
The drill pipe 20 extends through a pipe column or riser pipe structure 26 having a slip joint 28 that accommodates any vertical movement of the platform by wave action of the sea surface. The column or riser extends downwardly to a blowout preventer (BOP) stack 30 that is anchored at or near the sea bed 14, typically by being mounted to a base plate or drilling template 32 that is anchored to the sea bed by means of any suitable anchor devices. The drilling template 32 is typically composed of reinforced concrete; however, it may be composed of a metal, such as steel, a composite of concrete and steel or other suitable materials as desired. Basically, the drilling template is in the form of a plate-like structure defining a plurality of well drilling locations and having a generally planar upper surface 34. A plurality of anchor members 33 extend through openings in the base plate and penetrate a sufficient depth into the formation material of the sea floor to secure the base plate or drilling template against movement. Should an extraordinary event be detected, such as leakage of the BOP unit, an actual or potential well blowout, or any unusual well anomaly, it is desirable to provide an effective means for quickly and effectively encapsulating the BOP unit and developing a positive seal with the riser pipe 26 to prevent the leakage of well fluid from the BOP Unit and other well control apparatus to the marine environment.
A BOP encapsulation system having an open condition permitting drilling activity and having a closed condition establishing sealed encapsulation of the BOP stack 30, is shown generally at 36 at the lower portion of
Referring to
A primary sealing skirt 50 is mounted to the riser member 26 and defines a number of downwardly and outwardly extending sealing fingers 52 that are positioned for engagement and sealing with respect to top sealing elements 54 and 55 that are present at the upper central portions of each of the quarter dome members 42 and 44. The top sealing elements 54 and 55 have an undulating or wave-like circumferential configuration, thus establishing positive sealing with the downwardly and outwardly extending sealing fingers 52 of the sealing skirt 50. When the primary dome sections 42 and 44 are closed, as shown in
The secondary encapsulation dome 40 is also defined by a pair of quarter spherical dome sections 60 and 62 which are each mounted for linear movement along spaced guide tracks or rails 64 and 66. The dome sections 60 and 62 are moved during opening and closing by rotary drive rollers 68 or other movable supports and are independently moved by a suitable motive mechanism 70 such as a hydraulic drive system, pneumatic actuator system, and electric motor drive system or the like. The secondary encapsulation dome 40 may be closed after, simultaneously with, or in desired sequence with closing of the primary encapsulation dome 38. The secondary dome sections 60 and 62 also define upper seal members 72 and 74, that are preferably of wave-like form, and which are positioned for sealing engagement with a downwardly and outwardly oriented secondary sealing skirt 76 that is affixed to the riser pipe 26. The secondary sealing skirt 76 defines an undulating seal configuration of wave-like circumferential form that is defined by a plurality of sealing fingers 78. The secondary dome sections 60 and 62 also define curved edge or face seals 80 and 82 that are also of undulating or wave-like geometrical form, similar or identical to the face or edge seal configuration that is shown in
The partially hemispherical closure members 60 and 62 of the secondary BOP encapsulation dome 40 are each of a size to enclose the BOP stack 30, including the ram type BOP devices and the annular or spherical BOP unit 31, and to enclose and establish a substantially concentric, spaced relation with the outer surface of the primary encapsulation dome 38. The secondary encapsulation dome essentially functions as a back-up encapsulator, with the space or chamber 84, between the primary and secondary encapsulation domes, arranged to capture and control any fluid that might leak from the primary encapsulation dome. The enclosure that is defined by the secondary encapsulation dome also has a pressure containing capability due to the pressure enhanced edge or face seals 86 and 88 thereof. Any fluid pressure leakage from the primary encapsulation dome will enter the space 84 between the primary and secondary encapsulation domes and will be effectively contained by the secondary encapsulation dome and thus will be prevented from contaminating the marine environment. The primary encapsulation dome is provided with a valve controlled bleed fitting 90 that permits captured fluid, leaked from the BOP stack 30 or the wellhead apparatus, to be bled from the primary encapsulation dome and conducted via a conduit system, not shown, to a suitable receiver, such as fluid recovery vessel at the surface of the seal or to a safety line that is connected with a production flow line. Likewise, the secondary encapsulation dome is provided with a valve controlled bleed fitting 92 through which any collected fluid or gas pressure within the space 84 can be bled to a suitable collector line to a suitable receiver. The control valves of the bleed fittings 90 and 92 of the primary and secondary encapsulation domes can be controlled from a control unit located on the drilling or production platform, or can be controlled from a nearby surface vessel, helicopter, airplane or from a shore based control system as desired.
In the event of a condition of leakage of pressurized gas, liquid, or any other well fluid from the BOP stack 30, it is appropriate that the quarter sections of the primary encapsulation dome are enabled to become completely closed and sealed prior to a substantial build-up of pressure within the dome. To accomplish this feature, the quarter sections 42 and 44 of the primary encapsulation dome 38 are provided with a plurality of pressure escape gate mechanisms shown generally at 94, and which are shown in greater detail in
The wall structure 96 of the primary encapsulation dome defines a plurality of vent ports 98 each having an inner sealing surface 100 located circumferentially about the ports. Each of the escape gate valve plate members also defines a curved concave plate surface 101 which is oriented to face inwardly, toward the direction of pressure within the primary encapsulation dome. Thus, the plate valve members have less thickness at the central portion thereof, so that any pressure responsive flexing thereof will tend to enhance their sealing capability with the sealing surfaces 100 about the ports 98. For each escape gate, a valve plate member 102 defines a generally planar sealing surface 104 that is supported by a lever member 106 that extends from an actuator member 108, such as a hydraulic actuator.
Normally, the escape gate valve plate member 102 is positioned in a retracted, non-sealing relationship with respect to the sealing surface 100 around the escape port so that fluid pressure leakage into the primary encapsulation dome will be bled through the ports 98, thus minimizing the pressure build-up within the primary encapsulation dome. Fluid pressure build-up will not prevent the dome sections 42 and 44 from being moved to their closed and sealed positions by the hydraulic actuation system 48. The hydraulic arms 48 will thus impart sufficient traction force to each of the dome sections 42 and 44 to draw the primary dome sections together, even when leakage is occurring, so that the seals of the primary dome sections will establish initial sealing as the dome sections are moved into engagement. This feature permits the arms to be selectively actuated by an actuator system responsive to pressure detection, thus moving the dome sections 42 and 44 to their closed positions, with the face seals 56 and 58 engaged and establishing initial sealing.
As the dome sections are closed, the upper seal geometry thereof establishes initial sealing with the seal geometry 52 of the primary seal skirt 50 and the edge or face sealing members become initially sealed. After this initial sealing has been accomplished, the various escape gate mechanisms may be actuated concurrently or sequentially, thereby permitting pressure within the primary encapsulation dome to build up in controlled manner. This feature ensures that the dome sections are not required to close against rapidly increasing pressure, but are permitted to become closed and initially sealed. Thereafter, fluid pressure acts on the seal configuration, as shown in
As shown in the top or plan view of
After the primary dome sections have been moved to their completely closed positions and initial sealing has been accomplished and the escape gates have been closed, in absence of leaked pressure, the space 84 between the primary and secondary encapsulation domes, will typically be balanced with the hydrostatic pressure of the seawater at the depth of the BOP. At this point, the valve closure plates of the escape gates will be closed in a manner that will permit gradual pressure increase within the space between the primary encapsulation dome and the BOP stack. If desired, the escape gate mechanisms may be closed sequentially to permit sufficiently gradual pressure increase within the inner encapsulating enclosure to ensure against the occurrence of damaging shock to its metal structure. The primary encapsulation dome is designed to accommodate the pressure conditions that will be expected, for example 15,000 psi or more in the case of deep wells. Upon well blow-out, or detected pressure conditions threatening blow-out, the pressure containment system of the present invention has been designed to encapsulate the basic offshore blow-out preventive systems and prevent massive leakage of oil/gas fluids from the BOP stack 30 to the surrounding marine environment.
The BOP encapsulation system allows interfitting sections of a primary encapsulation dome 38 to be pulled over the existing BOP stack 30 and to close around and establish effective pressure responsive sealing with the riser 26 to which has been attached a pressure ring sealing Skirt 50 that matches the geometric configuration of the sealing elements 54 of the sections of the primary encapsulation dome 38. Upon closing, the pressure, once it exceeds the hydrostatic pressure of the seawater at BOP depth, will be contained by closing the sealable pressure escape gates 98. This slow closing allows the pressure to build up in controlled manner, without causing excessive stress of the components of the primary encapsulation dome 38. As pressure increase, and the hydraulic pulling arms 48 have secured the seal contact of the primary dome, the seals 56 and 58 that are designed to increase sealing capability as pressure increases the primary dome will be situated such that the BOP stack 30 and riser 26 are now totally encapsulated. While the sealable pressure escape gates 98 are slowly closing, the secondary encapsulation dome 40, as a back-up safety device, will start closing over the primary encapsulation dome, being moved forwardly along the installed rails 64 and 66 by means of power driven drive wheels 68. The sealing elements of the secondary dome, the skirt seal 76 around the circumference of the riser 26 and the face seals 80 and 82 are also pressure responsive and increase their sealing capability in response to increase of pressure in the space 84 between the primary and secondary encapsulation domes. Build up of pressure within both domes can be bled off by controlling the valve controlled fittings 90 and 92 located on the primary encapsulation dome 38 and on the secondary encapsulation dome 40.
The BOP encapsulation system 36 can be controlled by signals transmitted from surface or can be triggered by either pressure variables or detection of oil and gas. All controls that accomplish closing and sealing of the encapsulation system can also be programmed such that any movement and activity is systematically executed while triggered by pre-set pressure variations or variations in chemical environment. Overriding of the operational control system is controlled from surface or by remote control from either ship, airplane, helicopter, or from a shore based control facility.
A. Open Position.
A typical riser 26 connects the standard blow out preventer stack 30 from the sea bottom to the surface. This set-up includes a slip joint (not shown) to compensate for the wave action at the sea surface. sealing skirts 50 and 76 are attached to the riser, they form seals between the primary and secondary encapsulation domes and the riser upon closing of the dome sections of the encapsulator.
In normal open position the quarter spherical dome sections 42 and 44 of the primary encapsulation dome 38 are positioned in spaced relation and are located at opposite sides of the blow-out preventer stack 30. The two sections of the primary encapsulation dome 38 are each provided with a number of closeable escape gates 98 and, for sealing, are also provided with a skirt sealing section 54 and face sealing sections 80 and 82. The primary encapsulation dome sections are connected with several hydraulically activated sealing rods 48 that apply traction force to accomplish movement of the primary dome sections toward one another and into sealing engagement with one another. One or more valve controlled pressure relief conduits 90 are connected with the primary encapsulation dome and serve to permit pressure within the primary dome to be controllably bled away and conducted to a suitable receiver.
The secondary encapsulation dome 40 serves a back-up system and for additional safety. In its open position, the two sections of the secondary encapsulation dome are located on opposite sides of the BOP stack and on opposite sides of the primary encapsulation dome 38, essentially as shown in
B. Intermediate Closing Position.
Upon receiving a signal from the drilling platform, remote control, shore base or from a chemically activated control system, the hydraulic closing arms 48 will retract and pull both sections 42 and 44 of the primary encapsulation dome 38, together until the skirt seals 50, 72 and 74 and the face seals 56 and 58 become engaged and establish initial sealing. At this time the pressure escape gates 98 remain open for pressure venting until the primary encapsulation dome of the encapsulation system is completely closed and sealed. The pressure escape gates 98 are hydraulically controlled and fully sealable as described above in connection with
With the primary encapsulation dome 38 completely closed, the dome encapsulates the BOP stack 30 and establishes pressure enhanced sealing about the riser 26 and with the sealable pressure escape gates 94 closed, the escape of fluids is controlled and any build-up of pressure, above a predetermined pressure level, can be bled off through the valve controlled bleed fitting 90 to a suitable receptacle, such as a surface vessel or flow line.
C. Secondary Dome Sealing and Back-Up Safety.
In order to ensure total sealing and control of pressurized fluid and gas escape, the secondary encapsulation dome sections 60 and 62 are moveable from an open position to a closed and sealed condition to encapsulate the closed and sealed primary encapsulation dome set-up. The secondary dome sections 50 and 62 are moved by a rotary drive wheel 68 attached to the rails (6) and allows full closure of the dome.
Sealing of the secondary encapsulation dome 40 is achieved by the use of positive sealing elements in the second riser skirt seal mechanism 72, 74, 76 and 78 and in the sealing elements that are situated on the dome face seal section 80, the bottom dome seal section 81 and circumferential sealing section 83 and 85 between the base plate or drilling template 32 and the secondary dome body 40.
Salient Features
In view of the foregoing it is evident that the present invention is one well adapted to attain all of the objects and features hereinabove set forth, together with other objects and features which are inherent in the apparatus disclosed herein.
As will be readily apparent to those skilled in the art, the present invention may easily be produced in other specific forms without departing from its spirit or essential characteristics. The present embodiment is, therefore, to be considered as merely illustrative and not restrictive, the scope of the invention being indicated by the claims rather than the foregoing description, and all changes which come within the meaning and range of equivalence of the claims are therefore intended to be embraced therein.
Applicants hereby claim the benefit of U.S. Provisional Patent Application No. 61/465,563 filed on Mar. 21, 2011 by Henk H. Jelsma, Jean Claude Bret, and Heiner P. T. Hartwich, and entitled “Seabottom Encapsulating System For Underwater Blowout Containment”, which Provisional Patent Application is incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
61465563 | Mar 2011 | US |