Not applicable.
1. Field of the Invention
This invention relates generally to the field of gaseous fuel carburetion. More specifically, the invention relates to a low-Btu gas carburetion system and method for use with a consumer such as an engine generator that may be operated intermittently.
2. Background of the Invention
The production of energy is critical to the economic survival of developed nations. The use of recoverable sources of energy provides advantages to process industries in terms of efficiency and economy and may decrease negative environmental impact. Successful utilization of low-Btu gases for fuel may provide such advantages. Low-Btu gases include, among others, biogas or digester gas, landfill gas, associated oil well gas, and manufactured gases from either fossil fuels or biomass gasification.
Existing methods of providing gaseous fuels to engine generator systems are limited to gases having heating values of 500 Btu/scf and greater. These methods are not feasible with low-Btu fuels. Although fuel injection systems have been disclosed for low-Btu gas control, the development of pressure-based carburetion methods for low-Btu gas has not been successful. Commercial carburetion for high-Btu fuels includes diaphragm and venturi mixers for control of the air-to-fuel ratio. In high-Btu carburetion, air is typically naturally aspirated, and fuel is supplied by a zero-pressure regulator The zero-pressure regulator maintains a consistent pressure differential between the air and fuel supply to the carburetor, which may be important for proper mixing within the carburetor geometry. High-Btu carburetors for fuels such as natural gas operate at volumetric air-to-fuel ratios of 10:1, where the heating value of the fuel is 1000 Btu/scf. In contrast, a typical low-Btu fuel requires an air-to-fuel ratio of 1:1, where the heating value of the fuel is 100 Btu/scf. The significant volume of additional gas to be mixed with air in a low-Btu carburetor cannot be addressed with high-Btu geometry carburetors. Additionally, while high-Btu fuel is typically supplied from a gas source that may be intermittently supplied, low-Btu fuel is typically supplied continuously from a source such as, for example, a gasifier. Gas sources such as gasifiers are generally operated continuously to maintain proper reactor temperature and consistent gas quality. It is undesirable and impracticable to interrupt the continuous production of gas. A need exists, therefore, for a means to couple a continuous source of low-Btu gas to a consumer such as an engine generator that may be operated intermittently and to provide the proper air-to-fuel ratio to the consumer.
Methods for adapting low-Btu gas (producer gas, biomass gas, or syngas) to engine generator systems have remained limited to manual valve mixing or electronic control. The integration of an engine generator with a continuous source of low-Btu gas has not previously been demonstrated in the art.
U.S. Pat. No. 4,278,064 by Regueiro describes a fuel control system for a dually fueled power unit. The patent discloses a gasifier coupled to a diesel engine with electronically controlled valves specific for load control. The object of the invention is to control the dual fueling of the engine by electronic fuel injection and does not address traditional pressure-based carburetion.
U.S. Pat. No. 5,070,851 by Janisch discloses a traditional pressure-based air-gas mixer or carburetor intended for low-Btu gas specific to Briggs and Stratton engines, which are typical small engines used for lawnmowers and other small engine applications. The object of the invention is to supplement gasoline fuel. Janisch does not address large natural gas or diesel engine generation sets and the means by which large engine generators can be supplied low-Btu gas at the correct air-to-fuel ratio. Janisch does not address a means for coupling a continuous gas supply to an intermittent consumer via a gas outlet.
Other methods of introducing gas to piston engines include fumigation. U.S. Pat. No. 4,694,802 by Lowi refers to previous fumigation efforts and describes a means comprising variable area venturi. Lowi does not address the application of low-Btu gas or the application of a gas outlet device for coupling a continuous gas supply to an intermittent consumer.
U.S. Pat. No. 5,895,507 by Southards describes a diesel engine coupled to a black liquor gasification process. Specifics regarding the coupling of the process to the diesel engine are not claimed. King et al. in U.S. Pat. No. 5,724,948 reveals a method for applying biogas to an internal combustion engine. King et al. employs a standard gaseous carburetor for fuels having heating values above 500 Btu/scf and does not address the challenges concerning the implementation of low-Btu fuels. Vinyard in U.S. Pat. No. 6,805,107 provides a method for dual-fuel operation of an engine utilizing syngas and propane. Vinyard does not address pressure-based air-gas mixing or carburetion, but rather discloses electronic control.
Accordingly, there is an ongoing need for a carburetion system and method for supplying low-Btu gas at the proper volumetric air-to-gas ratio from a continuous gas source to a consumer such as an engine generator that may be intermittently operated and to which the continuous gas source may be permanently coupled.
These and other needs in the art are addressed by the presently disclosed carburetion system. The carburetion system comprises a low-Btu gas inlet, a gas outlet, a zero-pressure regulator, and at least one pressure-based air-gas mixer capable of maintaining a volumetric air-to-gas ratio of no more than 2:1. In embodiments, the gas outlet comprises a flare device. In embodiments, the zero-pressure regulator is coupled to a load control valve. In embodiments, the carburetion system further comprises a low-Btu gas source. In embodiments, the low-Btu gas source is a continuous gas source. In embodiments, the low-Btu gas source is a gasifier. In embodiments, the low-Btu gas source is a biomass gasifier. In embodiments, the low-Btu gas source is a gas-producing oil well. In embodiments, the carburetion system comprises a plurality of air-gas mixers. In certain arrangements, the plurality of air-gas mixers are connected in series. In embodiments, the at least one pressure-based air-gas mixer comprises a venturi mixer. In embodiments, the venturi air-gas mixer comprises at least one venturi gas intake and at least one venturi air intake. In embodiments, the venturi air-gas mixer comprises a plurality of venturi gas intakes. In specific embodiments, the carburetion system comprises at least one venturi air-gas mixer comprising at least one venturi gas intake and at least one venturi air intake, wherein the at least one venturi gas intake has a cross-sectional area at least equal to the cross-sectional area of the at least one venturi air intake. In embodiments, the at least one pressure-based air-gas mixer comprises a diaphragm mixer. In embodiments, the at least one pressure-based air-gas mixer is capable of maintaining a volumetric air-to-gas ratio of from about 1:1 to about 2:1. In embodiments, the at least one pressure-based air-gas mixer is capable of maintaining a volumetric air-to-gas ratio of about 1:1. In embodiments, the carburetion system is coupled to a consumer. In embodiments, the carburetion system is coupled to a consumer that is capable of being operated intermittently. In embodiments, the consumer is an engine generator. In embodiments, the engine generator is selected from the group consisting of gas turbines, microturbines, and piston engines.
The needs in the art enumerated above are also addressed herein via a method of adapting a low-Btu gas source with a consumer, the method comprising: when the consumer is not in operation, diverting a low-Btu gas to a gas outlet; and, when the consumer is in operation: diverting low-Btu gas to a zero-pressure regulator in order to balance gas pressure with air pressure, passing low-Btu gas to at least one pressure-based air-gas mixer that is capable of maintaining a volumetric air-to-gas ratio of no more than 2:1, mixing the low-Btu gas with air in the air-gas mixer to form an air-gas mixture, and sending the air-gas mixture to the consumer. In embodiments, the low-Btu gas source is continuous. In embodiments, the consumer of the method is an engine generator. In embodiments, the at least one pressure-based air-gas mixer comprises a venturi mixer. Alternatively, the at least one pressure-based air-gas mixer comprises a diaphragm mixer. In embodiments, passing low-Btu gas to at least one pressure-based air-gas mixer that is capable of maintaining a volumetric air-to-gas ratio of no more than 2:1 comprises passing the low-Btu gas through a plurality of air-gas mixers. In some embodiments of the method comprising a plurality of air-gas mixers, the plurality of air-gas mixers are connected in series. In some embodiments of the method comprising a plurality of air-gas mixers, low-Btu gas is supplied to the plurality of air-gas mixers in parallel and air is supplied to the plurality of air-gas mixers in series. In some embodiments of the method comprising a plurality of air-gas mixers, the air-gas mixers comprise diaphragm mixers. In some embodiments of the disclosed method, the at least one pressure-based air-gas mixer is capable of maintaining a volumetric air-to-gas ratio of from about 1:1 to about 2:1. In certain embodiments of the method, the at least one pressure-based air-gas mixer is capable of maintaining a volumetric air-to-gas ratio of about 1:1.
The method and apparatus of the present disclosure incorporate a gas outlet to enable a consumer to operate intermittently while permanently coupled to a gas source that may be continuously supplied.
Also herein disclosed are pressure-based air-gas mixers suitable for use with low-Btu gas streams, the consumers of which prefer air-to-gas ratios lower than air-to-gas ratios suitable for high-Btu gas streams. One disclosed air-gas mixer suitable for incorporation in the system and method of the present disclosure is a venturi air-gas mixer comprising at least one venturi gas intake and at least one venturi air intake wherein the at least one venturi gas intake has a cross-sectional area at least equal to the cross-sectional area of the at least one venturi air intake whereby the venturi air-gas mixer is capable of maintaining a volumetric air-to-gas ratio of no more than about 1:1.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
Certain terms are used throughout the following description and claims to refer to particular system components. This document does not intend to distinguish between components that differ in name but not function.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion and, thus, should be interpreted to mean “including, but not limited to . . . ”.
“Low-Btu gas” refers to any fuel gas that has a heating value of less than 500 Btu/scf.
The term “intermittent consumer” is used to refer to any consumer that is capable of intermittently consuming low-Btu gas. The use of the term “intermittent” conveys the capability of the consumer to operate intermittently although, in certain embodiments, the consumer may be capable of continuous operation.
“Engine generator” refers to any machinery or device that consumes some type of fuel in order to generate energy.
“Pressure-based air-gas mixer” refers to any mechanical device used to mix air and fuel gas that does not rely on electronics or sensors.
System Overview
The system and method of the present disclosure will now be described with reference to
Gas Source/Gas
In
Gas Outlet and Zero-Pressure Regulator
In embodiments, low-Btu gas source 101 is connected to gas outlet 103 and zero-pressure regulator 104. Gas from gas source 101 and low-Btu gas inlet 102 may be diverted to gas outlet 103 or to zero-pressure regulator 104. In certain embodiments, a valve or switch (not shown) serves to control the supply of gas from gas source 101 to gas outlet 103 and zero-pressure regulator 104.
In embodiments, gas outlet 103 comprises a flare device to flare low-Btu gas to the atmosphere. A process flare is often associated with an oil well gas source. Gas outlet 103 may serve to ensure proper gas pressure to consumer 110. Alternatively, gas outlet 103 is coupled to a gas pipeline or to a storage device, as is known in the art.
Gas is diverted to gas outlet 103 when carburetion system 100 is not in use, thus allowing gas source 101 to be continuously supplied to and connected with carburetion system 100 even during periods when consumer 110 is not in use. When carburetion system 100 is in use, low-Btu gas may be diverted to zero-pressure regulator 104 rather than to gas outlet 103. Zero-pressure regulator 104 serves to maintain the consistency of the air-to-gas ratio in a pressure-based air-gas mixer 107 by equalizing, via connection 106, the pressure of low-Btu gas entering pressure-based air-gas mixer 107 at mixer gas inlet 105 with the pressure of incoming air entering the at least one pressure-based air-gas mixer 107 at air supply inlet 109. Zero-pressure regulator 104 may be any suitable regulator as known to those of skill in the art. In particular embodiments, zero-pressure regulator 104 is coupled to load control valve 111. In embodiments comprising load control valve 111, load control valve 111 works in conjunction with zero-pressure regulator 104 to adjust the flow of gas to obtain the proper ratio of air-to-gas in pressure-based air-gas mixer 107. Typically, load control valve 111 is manually operated. Alternatively, load control valve 111 is electronically controlled by, for example, a computer.
Air-Gas Mixer
The system of the present disclosure comprises one or more pressure-based air-gas mixers 107. Air-gas mixer 107 may be any mixer known to those of skill in the art to provide a consistent air-to-gas ratio to consumer 110 in the range of from about 2:1 to about 1:1. The geometry of air-gas mixer 107 accommodates the increased volume of gas that is mixed with low-Btu gas as compared to air-gas mixers processing high-Btu gas. In the embodiment of
Venturi Mixer
In certain embodiments, pressure-based air-gas mixer 107 comprises a venturi mixer. A suitable venturi mixer 200 is depicted in
Diaphragm Mixer(s)
In embodiments, the carburetion system of the present disclosure comprises one or more diaphragm mixers. In the embodiment shown schematically in
Intermittent Consumer
Referring back to
Method
Another aspect of the present disclosure is a method of supplying a mixture having an appropriate air-to-low-Btu gas ratio to a consumer that may be operated intermittently, the low-Btu gas being supplied by a low-Btu gas source that may be operated continuously. The method enables a low-Btu gas source to operate continuously regardless of the potential intermittency of the consumer. The method will now be described with reference to
When consumer 110 (e.g., engine generator) is operating, low-Btu gas is diverted to zero-pressure regulator 104 to balance the gas pressure between low-Btu gas at air-gas mixer gas inlet 105 with the pressure of air entering air-gas mixer 107 via air supply inlet 109; balance is maintained via connection 106. In particular embodiments, the gas pressure is further adjusted by the use of load control valve 111 which is coupled to zero-pressure regulator 104. Low-Btu gas from zero-pressure regulator 104 enters pressure-based air-gas mixer 107 wherein air and gas are mixed at the appropriate ratio for use in consumer 110. In alternative embodiments, the air and gas are mixed in pressure-based air-gas mixer 107 to a volumetric ratio of from about 1:1 to about 2:1. In embodiments, the air and gas are mixed in pressure-based air-gas mixer 107 to a volumetric ratio of about 1:1. In alternative embodiments, the air and gas are mixed in pressure-based air-gas mixer 107 to a volumetric ratio of about 2:1. In embodiments, low-Btu gas from zero-pressure regulator 104 is divided into a plurality of streams and fed in a parallel manner to a plurality of pressure-based diaphragm air-gas mixers 322 (see
Air-gas mixture from pressure-based air-gas mixer 107 and having the desired air-to-gas ratio for use as fuel passes through consumer intake manifold 108 to consumer 110. In embodiments, consumer 110 is an engine generator. Suitable engine generators include, without limitation, gas turbines, microturbines, piston engines, diesel engines, and combinations thereof.
While the preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Accordingly, the scope of protection is not limited by the description set out above, but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims.
The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated herein by reference in their entirety, to the extent that they provide exemplary, procedural, or other details supplementary to those set forth herein. The discussion of a reference in this disclosure is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application.
This application claims benefit from provisional patent application Ser. No. 60/780,704 filed Mar. 9, 2006, which is hereby incorporated herein by reference in its entirety for all purposes as if reproduced in full below.
Number | Name | Date | Kind |
---|---|---|---|
3650155 | McJones | Mar 1972 | A |
4070146 | Straitz, III | Jan 1978 | A |
4111170 | Nakajima et al. | Sep 1978 | A |
4169441 | Hirano et al. | Oct 1979 | A |
4381641 | Madgavkar et al. | May 1983 | A |
4489562 | Snyder et al. | Dec 1984 | A |
4531462 | Payne | Jul 1985 | A |
4694792 | Uuskallio | Sep 1987 | A |
4859173 | Davis, Jr. et al. | Aug 1989 | A |
5240409 | Xiong | Aug 1993 | A |
5261382 | Nikolai | Nov 1993 | A |
5809979 | Tsuda et al. | Sep 1998 | A |
5957681 | Hansen | Sep 1999 | A |
6092364 | Stellwagen | Jul 2000 | A |
6201029 | Waycuilis | Mar 2001 | B1 |
6932052 | Fulton | Aug 2005 | B1 |
20020019180 | Yoshida et al. | Feb 2002 | A1 |
20020112403 | Pope et al. | Aug 2002 | A1 |
20030191199 | O'Rear | Oct 2003 | A1 |
20040011050 | Inoue | Jan 2004 | A1 |
20040011053 | Murakami et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
309044 | Mar 1989 | EP |
Entry |
---|
International Search Report dated Feb. 26, 2008. |
Number | Date | Country | |
---|---|---|---|
20070209642 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60780704 | Mar 2006 | US |