1. Field
The present disclosure relates generally to communication systems, and more particularly, to techniques for supporting downlink communications in a heterogeneous wireless communication network.
2. Background
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power). Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency divisional multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example of an emerging telecommunication standard is Long Term Evolution (LTE). LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP). It is designed to better support mobile broadband Internet access by improving spectral efficiency, lower costs, improve services, make use of new spectrum, and better integrate with other open standards using OFDMA on the downlink (DL), SC-FDMA on the uplink (UL), and multiple-input multiple-output (MIMO) antenna technology. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
For example, a wireless communication network may include a number of evolved Node Bs (eNBs) that can support communication for a number of user equipments (UEs). A UE may communicate with an eNB via the downlink and uplink. The downlink (or forward link) refers to the communication link from the eNB to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the eNB.
An eNB may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the eNB may observe interference due to transmissions from neighbor eNBs. On the uplink, a transmission from the UE may cause interference to transmissions from other UEs communicating with the neighbor ENBs. This interference may degrade performance on both the downlink and uplink. As such, interference coordination schemes for wireless communications networks are desired.
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Various aspects of the disclosure may relate to the delivery of broadcast system information to user equipment in a wireless communication network, where the network uses interference coordination schemes that may conflict with the required transmission timing of the broadcast system information. These aspects may also include methods to deliver such information in light of the need to maintain support for legacy devices that do not support new delivery methods. These various aspects may include, but are not limited to, the negotiation of orthogonal resource allocation to avoid conflicts, the shifting or duplication of the broadcast system information based on interference coordination schemes, and the introduction of new or modified information delivery methods.
According to one aspect, a method for facilitating one or more interference coordination schemes is provided. The method may include determining broadcast channel scheduling information for one or more broadcasts of a payload by a broadcast channel associated with a first base station based on one or more broadcast channel interference coordination schemes, wherein reception of the broadcast channel associated with the first base station is interfered at least in part based on one or more transmissions from a second base station. Moreover, the method may include receiving the payload based on the determined broadcast channel scheduling information.
Yet another aspect relates to at least one processor configured to facilitate one or more interference coordination schemes. The processor may include a first module for determining broadcast channel scheduling information for one or more broadcasts of a payload by a broadcast channel associated with a first base station based on one or more broadcast channel interference coordination schemes, wherein reception of the broadcast channel associated with the first base station is interfered at least in part based on one or more transmissions from a second base station. Moreover, the processor may include a second module for receiving the payload based on the determined broadcast channel scheduling information.
Still another aspect relates to a computer program product comprising a computer-readable medium. The computer program product may include a computer-readable medium including a first set of codes for causing a computer to determine broadcast channel scheduling information for one or more broadcasts of a payload by a broadcast channel associated with a first base station based on one or more broadcast channel interference coordination schemes, wherein reception of the broadcast channel associated with the first base station is interfered at least in part based on one or more transmissions from a second base station. The computer program product may further include a computer-readable medium including a second set of codes for causing the computer to receive the payload based on the determined broadcast channel scheduling information.
Yet another aspect relates to an apparatus. The apparatus may include means for determining broadcast channel scheduling information for one or more broadcasts of a payload by a broadcast channel associated with a first base station based on one or more broadcast channel interference coordination schemes, wherein reception of the broadcast channel associated with the first base station is interfered at least in part based on one or more transmissions from a second base station. Moreover, the apparatus may include means for receiving the payload based on the determined broadcast channel scheduling information.
Another aspect relates to an apparatus. The apparatus may include a interference coordination module for determining broadcast channel scheduling information for one or more broadcasts of a payload by a broadcast channel associated with a first base station based on one or more broadcast channel interference coordination schemes, wherein reception of the broadcast channel associated with the first base station is interfered at least in part based on one or more transmissions from a second base station. Further, the apparatus may include a receiver for receiving the payload based on the determined broadcast channel scheduling information.
According to one aspect, another method for facilitating one or more interference coordination schemes is provided. The method may include transmitting, by the first base station, broadcast channel scheduling information for a payload associated with the first base station based on one or more broadcast channel interference coordination schemes, wherein interference from a second base station interferes with reception of the broadcast channel scheduling information broadcast by the first base station. Moreover, the method may include transmitting the payload based on the one or more broadcast channel interference schemes.
Yet another aspect relates to at least one processor configured to facilitate one or more interference coordination schemes. The processor may include a first module for transmitting, by a first base station, broadcast channel scheduling information for a payload associated with the first base station based on one or more broadcast channel interference coordination schemes, wherein interference from a second base station interferes with reception of the broadcast channel scheduling information broadcast by the first base station. Moreover, the processor may include a second module for transmitting the payload based on the one or more broadcast channel interference schemes.
Still another aspect relates to a computer program product comprising a computer-readable medium. The computer program product may include a computer-readable medium including a first set of codes for causing a computer to transmit broadcast channel scheduling information for a payload associated with the first base station based on one or more broadcast channel interference coordination schemes, wherein interference from a second base station interferes with reception of the broadcast channel scheduling information broadcast by the first base station. The computer program product may further include a computer-readable medium including a second set of codes for causing the computer to transmit the payload based on the one or more broadcast channel interference schemes.
Yet another aspect relates to an apparatus. The apparatus may include means for transmitting, by a first base station, broadcast channel scheduling information for a payload associated with the first base station based on one or more broadcast channel interference coordination schemes, wherein interference from a second base station interferes with reception of the broadcast channel scheduling information broadcast by the first base station. Moreover, the apparatus may include means for transmitting the payload based on the one or more broadcast channel interference schemes.
Another aspect relates to an apparatus. The apparatus may include an interference coordination module for transmitting, by a first base station, broadcast channel scheduling information for a payload associated with the first base station based on one or more broadcast channel interference coordination schemes, wherein interference from a second base station interferes with reception of the broadcast channel scheduling information broadcast by the first base station. Further, the apparatus may include a transmitter for transmitting the payload based on the one or more broadcast channel interference schemes.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawing by various blocks, modules, components, circuits, steps, processes, algorithms, etc. (collectively referred to as “elements”). These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium. The computer-readable medium may be a non-transitory computer-readable medium. A non-transitory computer-readable medium include, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip), an optical disk (e.g., compact disk (CD), digital versatile disk (DVD)), a smart card, a flash memory device (e.g., card, stick, key drive), random access memory (RAM), read only memory (ROM), programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium may also include, by way of example, a carrier wave, a transmission line, and any other suitable medium for transmitting software and/or instructions that may be accessed and read by a computer. The computer-readable medium may be resident in the processing system, external to the processing system, or distributed across multiple entities including the processing system. The computer-readable medium may be embodied in a computer-program product. By way of example, a computer-program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
E-UTRAN includes evolved Node B (eNB) 106 and other eNBs 108. The eNB 106 provides user and control plane protocol terminations toward UE 102. The eNB 106 may be connected to other eNBs 108 via an X2 interface (i.e., backhaul). The eNB 106 may also be referred to by those skilled in the art as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), or some other suitable terminology. The eNB 106 provides an access point to EPC 110 for a UE 102. Examples of UEs 102 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA), a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player), a camera, a game console, or any other similar functioning device. UE 102 may also be referred to by those skilled in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
The eNB 106 is connected by an S1 interface to EPC 110. EPC 110 includes a Mobility Management Entity (MME) 112, other MMEs 114, a Serving Gateway 116, and a Packet Data Network (PDN) Gateway 118. MME 112 is the control node that processes the signaling between UE 102 and EPC 110. Generally, MME 112 provides bearer and connection management. All user IP packets are transferred through Serving Gateway 116, which itself is connected to PDN Gateway 118. PDN Gateway 118 provides UE IP address allocation as well as other functions. PDN Gateway 118 is connected to Operator's IP Services 122. Operator's IP Services 122 include the Internet, the Intranet, an IP Multimedia Subsystem (IMS), and a PS Streaming Service (PSS).
The modulation and multiple access scheme employed by access network 200 may vary depending on the particular telecommunications standard being deployed. In LTE applications, OFDM is used on the DL and SC-FDMA is used on the UL to support both frequency division duplexing (FDD) and time division duplexing (TDD). As those skilled in the art will readily appreciate from the detailed description to follow, the various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB). EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. These concepts may also be extended to Universal Terrestrial Radio Access (UTRA) employing Wideband-CDMA (W-CDMA) and other variants of CDMA, such as TD-SCDMA; Global System for Mobile Communications (GSM) employing TDMA; and Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, and Flash-OFDM employing OFDMA. UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization. CDMA2000 and UMB are described in documents from the 3GPP2 organization. The actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
The eNB 204 may have multiple antennas supporting MIMO technology. The use of MIMO technology enables eNB 204 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity.
In the detailed description that follows, various aspects of an access network will be described with reference to a MIMO system supporting OFDM on the downlink. OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol. The subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers. In the time domain, a guard interval (e.g., cyclic prefix) may be added to each OFDM symbol to combat inter-OFDM-symbol interference. The uplink may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PARR).
Various frame structures may be used to support the DL and UL transmissions.
A resource grid may be used to represent two time slots, each time slot including a resource block. The resource grid is divided into multiple resource elements. In LTE, a resource block contains 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements. Some of the resource elements, as indicated as R 302, 304, include DL reference signals (DL-RS). The DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 302 and UE-specific RS (UE-RS) 304. UE-RS 304 are transmitted only on the resource blocks upon which the corresponding physical downlink shared channel (PDSCH) is mapped. The number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
A UE may be assigned resource blocks 410a, 410b in the control section to transmit control information to an eNB. The UE may also be assigned resource blocks 420a, 420b in the data section to transmit data to the eNB. The UE may transmit control information in a physical uplink control channel (PUCCH) on the assigned resource blocks in the control section. The UE may transmit only data or both data and control information in a physical uplink shared channel (PUSCH) on the assigned resource blocks in the data section. A UL transmission may span both slots of a subframe and may hop across frequency as shown in
The radio protocol architecture may take on various forms depending on the particular application.
In
In the user plane, L2 layer 508 includes a media access control (MAC) sublayer 510, a radio link control (RLC) sublayer 512, and a packet data convergence protocol (PDCP) 514 sublayer, which are terminated at the eNB on the network side. Although not shown, the UE may have several upper layers above L2 layer 508 including a network layer (e.g., IP layer) that is terminated at PDN gateway 108 (see
PDCP sublayer 514 provides multiplexing between different radio bearers and logical channels. PDCP sublayer 514 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs. RLC sublayer 512 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ). MAC sublayer 510 provides multiplexing between logical and transport channels. MAC sublayer 510 is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs. MAC sublayer 510 is also responsible for HARQ operations.
In the control plane, the radio protocol architecture for the UE and eNB is substantially the same for physical layer 506 and L2 layer 508 with the exception that there is no header compression function for the control plane. The control plane also includes a radio resource control (RRC) sublayer 516 in Layer 3. RRC sublayer 516 is responsible for obtaining radio resources (i.e., radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
TX processor 616 implements various signal processing functions for the L1 layer (i.e., physical layer). The signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at UE 650 and mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), M-phase-shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)). The coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 674 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by UE 650. Each spatial stream is then provided to a different antenna 620 via a separate transmitter 618TX. Each transmitter 618TX modulates an RF carrier with a respective spatial stream for transmission.
At UE 650, each receiver 654RX receives a signal through its respective antenna 652. Each receiver 654RX recovers information modulated onto an RF carrier and provides the information to receiver (RX) processor 656.
RX processor 656 implements various signal processing functions of the L1 layer. RX processor 656 performs spatial processing on the information to recover any spatial streams destined for UE 650. If multiple spatial streams are destined for UE 650, they may be combined by RX processor 656 into a single OFDM symbol stream. RX processor 656 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT). The frequency domain signal includes a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, is recovered and demodulated by determining the most likely signal constellation points transmitted by eNB 610. These soft decisions may be based on channel estimates computed by channel estimator 658. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by eNB 610 on the physical channel. The data and control signals are then provided to controller/processor 659.
Controller/processor 659 implements the L2 layer described earlier in connection with
In the UL, a data source 667 is used to provide upper layer packets to controller/processor 659. Data source 667 represents all protocol layers above the L2 layer (L2). Similar to the functionality described in connection with the DL transmission by eNB 610, controller/processor 659 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocations by eNB 610. Controller/processor 659 is also responsible for HARQ operations, retransmission of lost packets, and signaling to eNB 610.
Channel estimates derived by a channel estimator 658 from a reference signal or feedback transmitted by eNB 610 may be used by TX processor 668 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by TX processor 668 are provided to different antenna 652 via separate transmitters 654TX. Each transmitter 654TX modulates an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at eNB 610 in a manner similar to that described in connection with the receiver function at UE 650. Each receiver 618RX receives a signal through its respective antenna 620. Each receiver 618RX recovers information modulated onto an RF carrier and provides the information to a RX processor 670. RX processor 670 implements the L1 layer.
Controller/processor 659 implements the L2 layer described earlier in connection with
EPS 100 described in relation to
In LTE, an eNB may send broadcast control information and data to a UE. The eNB may send a Physical HARQ Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH) in the first M symbol periods of each subframe (not shown in
A number of resource elements may be available in each symbol period. Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may include a real or complex value. Resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs). Each REG may include four resource elements in one symbol period. The physical control format indicator channel (PCFICH) may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0. The PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in symbol periods 0, 1 and 2. The PDCCH may occupy 9, 18, 32 or 64 REGs, which may be selected from the available REGs, in the first M symbol periods. Certain combinations of REGs may be allowed for the PDCCH.
A UE may be within the coverage of multiple eNBs. One of these eNBs may be selected to serve the UE. The serving eNB may be selected based on various criteria such as received power, pathloss, signal-to-noise ratio (SNR), etc.
A UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering eNBs. A dominant interference scenario may occur due to restricted association. For example, in
A dominant interference scenario may also occur due to range extension, which is a scenario in which a UE connects to an eNB with lower pathloss and lower SNR among all eNBs detected by the UE. For example, in
To address such dominant interference scenarios, a LTE system may use time division multiplexing (TDM) resource partitioning schemes. Using TDM, subframes may be assigned a “type”, such as “protected” (U) and “not-use” (N). In LTE, a 8 ms periodicity TDM may be selected in order to align with HARQ processing.
Additionally, as noted above, each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes. Certain transmissions may be assigned to occupy defined subframes, so as to provide devices with a repeated known structure. For example, a system information block type 1 (SIB1) may be scheduled to be transmitted every even radio frame (e.g., every 20 subframes).
In operation, in a dominate interference scenario, these differing periodicities (10 ms vs. 8 ms) may cause interference issues for signals which may use a strict 10 ms periodicity (e.g., SIB1, paging). For example, at certain instances, signals with an 8 ms periodicity transmitted from an aggressor eNB, may interfere with the ability of a UE to receive and decode signals with a 10 ms periodicity transmitted from a victim eNB.
To remedy these potential interference issues, communications in a dominant interference scenario may be supported by one or more interference coordination schemes (e.g., broadcast channel interference coordination schemes). Generally, such interference coordination schemes allow a UE to receive one or more instances of broadcast channel scheduling information, and the UE may in turn use the broadcast channel scheduling information to obtain a payload that may experience interference.
One interference coordination scheme may enable frequency allocation coordination among a first eNB and a second eNB. In such an aspect, the first eNB (e.g., victim eNB) and the second eNB (e.g., aggressor eNB) may coordinate frequency allocation of broadcast channel scheduling information so as to limit potential interference for reception of a payload (e.g., SIB1, paging, etc.) by a UE. Another interference coordination scheme may enable various resources to be reallocated between a second eNB (e.g., an aggressor eNB) and a first eNB (e.g., a victim eNB). For example, in one aspect, the aggressor eNB may transmit broadcast scheduling information for the victim eNB during a timeslot in which a UE may experience interference when attempting to receive a signal from the victim eNB. In another aspect, broadcast scheduling information, received from an aggressor eNB may indicate a clean timeslot for reception of a payload from the victim eNB. In another aspect, scheduling for payload transmissions may be hard coded in a system based on various factors, such as but not limited to, eNB power class. In other words, a UE may schedule reception of a payload from a pico eNB at a timeslot defined for pico eNB payload transmission. Another interference coordination scheme may enable a broadcast scheduling information and/or a payload to be communicated multiple times. The following sections include further discussion of various interference coordination schemes with reference to
I. Allocation of Orthagonal Transmission Resources in Accordance with SIB Transmissions
II. Rescheduling of SIB Transmissions in Accordance with Allocated Transmission Resources
While
If a XSI-RNTI grant is successfully decoded at subframe n-m, the content of said grant may be used to decode a transmission 1032 from eNB 1010b including a data channel (e.g., PDSCH) which carries payload 1040 (subframe n in this example).
Similarly, for paging, a new identity cross subframe paging radio network temporary identifier (XP-RNTI) may be introduced. In such an aspect, a cross-subframe PDCCH grant with a XP-RNTI may be transmitted before paging occasions even if subframe is marked as non-available (N). In one aspect, UE 1020a may be operable to try to decode broadcast channel scheduling information with a received SI-RNTI on subframes used for the payload transmission. In such an aspect, if decoded correctly, the received scheduling information may supersede hard-coded information.
For example, frequency resource and modulation and coding schemes (MCS) used for a payload may be hard-coded and known to UE 1020a. Further, frequency resource may depend on cell identity or power class. In one aspect, hard-coded default channel settings may be defined based on a power class and cell identity for the first eNB. For example, a macro eNB power class may have different settings, than a femto eNB power class, which may include different settings than a pico eNB power class. As such, UE 1020a may use this a-priori information for the decoding of data channel of subframes carrying the payload, without the need for corresponding control channel decoding with a control channel identifier.
III. Double Transmission of SIB1
If both XSI-RNTI 1134 and SI-RNTI 1136 grants are relevant to the same payload 1138 transmission and both are decoded correctly, UE 1120a may compare their content. If the XSI-RNTI and SI-RNTI grants are different, UE 1120a may choose one of them at random, choose one based on some metric (e.g., likelihood metric), skip to the next SIB1 opportunity, try to soft-combine them, etc. The selected/combined content may then be used to decode the payload in subframe n. If XSI-RNTI grant is not received correctly in the above mentioned window, UE 1120a may monitor PDCCH of subframe n for a SI-RNTI grant.
In other words, eNB 1110b may transmit 1132 broadcast channel scheduling information 1134 and a payload 1138 (e.g., SIB1) twice, first in subframe 5 of even radio frames (for legacy UEs) and, second in another second location 1136 (for advanced UEs). The second location may include a protected (U) subframe. For example, a payload may be transmitted in U subframes with a periodicity that is close to 20 ms (in order to reduce excessive overhead usage due to payload transmission). For 8 ms TDM partitions, a second payload may be sent using a U subframe with a 16 ms SIB1 periodicity. The payload scheduling may be determined based on the Static Resource Partitioning Information (SRPI). A payload may be sent in subframe n if:
SRPI[n % 8]=U,
SRPI[0,1, . . . ,n % 8−1]≠U, and
floor((n % 80)/8)mode 2=0.
In one aspect, SRPI may have values of U for a protected subframe, N for non-usable subframes, and X for other subframes.
In another aspect, interference coordination module 930 may be operable to transmit various system information block types during protected subframes. For example, eNB may want to schedule transmission of system information blocks in protected subframes, with a periodicity greater than 8 subframes.
In an aspect, communication in a dominant interference scenario may be supported by one or more interference coordination schemes, such as broadcast channel interference coordination schemes. Various apparatuses and methods associated with the above described interference coordination schemes are provided with reference to
In
UE 1200 can additionally include memory 1208 that is operatively coupled to processor 1206 and that can store data to be transmitted, received data, information related to available channels, data associated with analyzed signal and/or interference strength, information related to an assigned channel, power, rate, or the like, and any other suitable information for estimating a channel and communicating via the channel. Memory 1208 can additionally store protocols and/or algorithms associated with estimating and/or utilizing a channel (e.g., performance based, capacity based, etc.). In one aspect, memory 1208 can include default channel settings 1210, as discussed with reference to
Further, processor 1206 can provide means for determining broadcast channel scheduling information for one or more broadcasts of a payload by a broadcast channel associated with a first base station (e.g., eNB) based on one or more broadcast channel interference coordination schemes. In one aspect, reception of the broadcast channel associated with the first base station is interfered at least in part based on one or more transmissions from a second base station. Process 1206 can further provide means for receiving the payload based on the determined broadcast channel scheduling information.
It will be appreciated that data store (e.g., memory 1208) described herein can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory. By way of illustration, and not limitation, nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable PROM (EEPROM), or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Memory 1208 of the subject systems and methods may include, without being limited to, these and any other suitable types of memory.
UE 1200 can further include interference coordination module 1230 to facilitate communications in a high interference environment. In one aspect, interference coordination module 1230 may be operable during high interference conditions (e.g., such as depicted in
In one aspect, broadcast channel analysis module 1232 may include cross subframe identifier module 1234. In one aspect, a first instance of broadcast channel scheduling information may be used to reference a payload that may be received during a later subframe. In such an aspect, the first instance may be referred to as a cross subframe identifier. Cross subframe identifier module 1234 may be operable to monitor for a cross subframe identifier.
Interference coordination module 1230 may further include data channel analysis module 1236 to facilitate accessing a transmitted payload from a first eNB while the UE is in the presence of a second eNB causing interference. In one aspect, various payloads communicated in the data channel resources may be orthogonally allocated. In such an aspect, an interfering eNB may not transmit on resource blocks (RBs) assigned for payload transmission from the first eNB.
In one aspect, as discussed with reference to
Additionally, UE 1200 may include user interface 1240. User interface 1240 may include input mechanisms 1242 for generating inputs into communications device 1200, and output mechanism 1242 for generating information for consumption by the user of UE 1200. For example, input mechanism 1242 may include a mechanism such as a key or keyboard, a mouse, a touch-screen display, a microphone, etc. Further, for example, output mechanism 1244 may include a display, an audio speaker, a haptic feedback mechanism, a Personal Area Network (PAN) transceiver etc. In the illustrated aspects, output mechanism 1244 may include a display operable to present media content that is in image or video format or an audio speaker to present media content that is in an audio format.
With reference to
Interference coordination system 1300 includes computer platform 1302 that can transmit and receive data across wired and wireless networks, and that can execute routines and applications. Computer platform 1302 includes memory 1304, which may include volatile and nonvolatile memory such as read-only and/or random-access memory (ROM and RAM), EPROM, EEPROM, flash cards, or any memory common to computer platforms. Further, memory 1304 may include one or more flash memory cells, or may be any secondary or tertiary storage device, such as magnetic media, optical media, tape, or soft or hard disk. Further, computer platform 1302 also includes processor 1330, which may be an application-specific integrated circuit (“ASIC”), or other chipset, logic circuit, or other data processing device. Processor 1330 may include various processing subsystems 1332 embodied in hardware, firmware, software, and combinations thereof, that enable the functionality of interference coordination system 1300 and the operability of the system on a wired or wireless network.
In one aspect, processor 1330 may provide means for communicating broadcast channel scheduling information for a payload associated with a first base station based on one or more broadcast channel interference coordination schemes. In one aspect, interference from a second base station interferes with reception of the broadcast channel scheduling information broadcast by the first base station. Processor 1330 may also provide means for transmitting the payload based on the one or more broadcast channel interference schemes.
Computer platform 1302 further includes communications module 1350 embodied in hardware, firmware, software, and combinations thereof, that enables communications among the various components of service provider system 1300, as well as between service provider system 1300, devices 206, and eNBs 204. Communication module 1350 may include the requisite hardware, firmware, software and/or combinations thereof for establishing a wireless communication connection. According to described aspects, communication module 1350 may include the necessary hardware, firmware and/or software to facilitate wireless broadcast, multicast and/or unicast communication of requested content items, control information, etc.
Computer platform 1302 further includes metrics module 1340 embodied in hardware, firmware, software, and combinations thereof, that enables metrics received from device 206, eNB 204, etc., corresponding to, among other things, interference levels for data communicated with devices 206. In one aspect, interference coordination system 1300 may analyze data received through metrics module 1340 to modify possible interference coordination schemes for future communications with device 206.
Memory 1304 of interference coordination system 1300 includes interference coordination module 1310 operable to facilitate communications with a UE in high interference environments. In one aspect, interference coordination module 1310 may include broadcast channel scheduling schemes 1312 and data channel coordination schemes 1314. In one aspect, broadcast channel scheduling schemes 1312 may include using an interfering eNB to broadcast payload scheduling information for an eNB experiencing interference. In another aspect, broadcast channel scheduling schemes 1312 may include providing a scheduling grant in a previous (clean) subframe for a payload. In other words, the scheduling grant may point to a payload of a different subframe (e.g., cross subframe scheduling). Further, if the interfered with eNB (e.g., victim node) transmits cross-subframe grant in a protected subframe, e.g., where aggressor node(s) do not transmit their control channel information, cross-subframe grant may be decoded correctly. Existing legacy UEs may ignore cross-subframe grants, and may still try to decode control channel scheduling information for a payload on the subframe that corresponds to the payload.
In one aspect, data control coordination schemes 1314 may include orthogonally allocating resources. In other words, data channel resources may be orthogonally allocated. In such an aspect, an interfering eNB may not transmit on resource blocks (RBs) assigned for payload transmission from the first eNB. In one aspect, over-the-backhaul negotiations among eNBs of frequency resources may be used for payload RB allocation. In another aspect, resource allocation may depend on power class of the eNB and may be hard coded.
In one aspect, interference coordination module 1310 may be operable to transmit data during subframes in which the about described payload is to be transmitted. In one aspect, an aggressor eNB (e.g., femto) may not transmit data in RBs where victim eNB is transmitting the payload. By contrast, a victim eNB (e.g., macro) may or may not transmit data in RBs where an aggressor is transmitting SIB1. For example, data transmission may only occur to UEs not under the femto coverage area.
In another aspect, even with frequency resource orthogonalization, scheduling information may still be jammed on subframes used for payload delivery. In such an aspect, interference coordination module 1310 may be operable to enable the victim eNB to refrain transmitting any data, to transmit data only to UEs not in aggressor's coverage, to transmit data to any UE, to facilitate allocation of scheduling information transmissions among different power class, to prompt a UE to perform interference cancellation, etc.
In still another aspect, if a subframe n is used for payload (e.g., SIB1) delivery, and a UE attempting to communicate with a victim eNB is scheduled for uplink (e.g., physical uplink shared channel (PUSCH)) transmission in subframe n−4, an ACK/NACK transmitted in PHICH of subframe n may be jammed. In such an aspect, interference coordination module 1310 may allow victim eNB to refrain from scheduling any UL transmission in subframe n−4 (overhead), to schedule UL data in subframe n−4 only from UEs not in aggressor's coverage, to facilitate allocation of transmissions among different power class, to prompt a UE to perform interference cancellation, etc.
In one aspect, control channel information may be transmitted through a data channel. For example, as described in
Furthermore, R-PDCCH may be used to help SIB1 delivery and paging. For example, besides the SI-RNTI based grant in PDCCH, a duplicate grant may be added inside the R-PDCCH of the same subframe. In such an aspect, a Rel-10 UE may attempt to decode the PDCCH. If the attempt fails, the Rel-10 UE may try to decode a duplicate SI-RNTI grant added to the R-PDCCH. In one aspect, negotiations of protected resources may occur between aggressor and victim nodes, not only for data payload (PDSCH) but for grant information (e.g., R-PDCCH resources).
In another aspect, a Multi-Media Broadcast over a Single Frequency Network (MBSFN) subframe may be used for protection of the SIB1/paging subframes used by aggressor. In one such aspect, a control information subframe occasion used by victim eNB may be timed to coincide with an aggressor eNB MBSFN subframe. In one aspect, the PDSCH region may be cleared, thus both R-PDCCH and a corresponding payload may be decoded. One advantage of such an aspect, is that it may not use FDM resource orthogonalization (and corresponding negotiations) between victim and aggressor eNBs.
In addition, the method further includes receiving the payload based on the determined broadcast channel scheduling information (1504). In one aspect, the payload associated with the first eNB is broadcast based on default scheduling information that may be hard coded into a UE. In such an aspect, the default scheduling information may depend on: a power class of the first ENB, a cell identity for the first eNB, etc. In one aspect, a payload may include: paging message, SIB1, SIB2, SIB3, SIB4, SIB5, etc. In another aspect, the receiving may include receiving the payload associated with first eNB during a first subframe. In such an aspect, a payload associated with the second eNB may be transmitted by the second eNB during the first subframe, and the payload associated with first eNB and the payload associated with the second eNB are allocated to separate frequency resources. In such an aspect, the separate frequency resources may be allocated either statically, or negotiated between the first eNB and second eNB over a back-haul network connection. In one aspect, a received power for the first eNB may be less than a received power for the second eNB. In one aspect, the first eNB may be a pico cell and the second eNB may be a macro cell. In one aspect, the first eNB may be a macro cell and the second eNB may be a femto cell.
In another aspect, one of the one or more broadcast channel interference coordination schemes may include receiving a second instance of the broadcast channel scheduling information using a data channel. In such an aspect, broadcast channel scheduling information may be embedded in the PDSCH orthogonally distinct from content being transmitted by the second eNB. Further, in such an aspect, the data channel may include a PDSCH, and the second instance of the broadcast channel scheduling information may be embedded in the PDSCH in a location. The broadcast channel scheduling information is orthogonally distinct from content being transmitted by the second eNB. Still further, in such an aspect, the location for the second instance of the broadcast channel scheduling information may be negotiated between the first and second eNBs. In such an aspect, the second instance of the broadcast channel scheduling information may be embedded in a MBSFN subframe for the first eNB. Further, in such an aspect, the MBSFN subframe for the first eNB may be aligned with a MBSFN subframe for the second eNB.
Referring to
In another configuration, apparatus 102 for wireless communication includes means for determining broadcast channel scheduling information for one or more broadcasts of a payload by a broadcast channel associated with a first eNB based on one or more broadcast channel interference coordination schemes. Further, reception of the broadcast channel associated with the first eNB is interfered with at least in part based on one or more transmissions from a second eNB. Apparatus 102 for wireless communication includes means for receiving the payload based on the determined broadcast channel scheduling information. Apparatus 102 may further include means for receiving the broadcast channel scheduling information from a broadcast by the second eNB. In such an aspect, the broadcast from the second eNB includes broadcast information for the second eNB and the broadcast channel scheduling information associated with the first eNB, and the second eNB obtains the broadcast channel scheduling information from the first eNB over a back-haul network connection. Apparatus 102 may further include means for receiving the broadcast channel scheduling information for the payload in a first subframe, and means for receiving the payload in a second subframe using the broadcast channel scheduling information received in the first subframe. Apparatus 102 may further include means for receiving a first instance of the broadcast channel scheduling information in a first subframe, means for receiving a second instance of the broadcast scheduling information in a second subframe, means for determining that the first instance and the second instance of the broadcast scheduling information are different, and means for obtaining a third instance of the broadcast channel scheduling information. In such an aspect, the means for obtaining may further include means for selecting either the first broadcast channel scheduling information or the second instance of the broadcast and ignoring the non-selected instance. The means for obtaining may further include means for applying a likelihood metric to both the first instance and the second instance of the broadcast scheduling information to determine the more likely instance. The means for obtaining may further include means for soft-combining the first instance and the second instance of the broadcast scheduling information to generate the third instance. Apparatus 102 may further include means for receiving a second payload. In such an aspect, the second payload is transmitted in a first subframe, the first subframe is a protected subframe for the first eNB, and the second payload includes at least one of: a SIB2, SIB3, SIB4 or SIB5. Apparatus 102 may further include means for receiving a second instance of the payload in a first subframe, the first subframe is not a protected subframe for the first eNB, and the second eNB backs off to allow the second instance of the payload to be received. For apparatus 102, the back-off may be configured for at least one of means for reducing transmission power by the second eNB, or means for avoiding transmissions by the second eNB on one or more subframes used by the first eNB to transmit the second instance of the payload. Apparatus 102 may further include means for receiving the payload associated with first eNB during a first subframe. In such an aspect, a payload associated with the second eNB is transmitted by the second eNB during the first subframe, and the payload associated with first eNB and the payload associated with the second eNB are allocated to separate frequency resources. The aforementioned means includes TX Processor 668, RX Processor 656, and controller/processor 659.
It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
This application claims the benefit of U.S. Provisional Application Ser. No. 61/323,853, entitled “METHOD AND APPARATUS FOR SUPPORTING COMMUNICATIONS IN A HETEROGENEOUS NETWORK” and filed on Apr. 13, 2010, which is expressly incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4857863 | Ganger et al. | Aug 1989 | A |
5051625 | Ikeda et al. | Sep 1991 | A |
5587678 | Dijkmans | Dec 1996 | A |
5745012 | Oka et al. | Apr 1998 | A |
5748019 | Wong et al. | May 1998 | A |
5786734 | Park | Jul 1998 | A |
5949259 | Garcia | Sep 1999 | A |
5973512 | Baker | Oct 1999 | A |
5982246 | Hofhine et al. | Nov 1999 | A |
6040744 | Sakurai et al. | Mar 2000 | A |
6147550 | Holloway | Nov 2000 | A |
6151492 | Melin | Nov 2000 | A |
6167240 | Carlsson et al. | Dec 2000 | A |
6222851 | Petry | Apr 2001 | B1 |
6359869 | Sonetaka | Mar 2002 | B1 |
6504830 | Ostberg et al. | Jan 2003 | B1 |
6556094 | Hasegawa et al. | Apr 2003 | B2 |
6653878 | Nolan | Nov 2003 | B2 |
6677799 | Brewer | Jan 2004 | B1 |
6724813 | Jamal et al. | Apr 2004 | B1 |
6734747 | Ishikawa et al. | May 2004 | B1 |
6819168 | Brewer | Nov 2004 | B1 |
6819195 | Blanchard et al. | Nov 2004 | B1 |
7019551 | Biesterfeldt | Mar 2006 | B1 |
7129798 | Aoyama et al. | Oct 2006 | B2 |
7142059 | Klein et al. | Nov 2006 | B2 |
7420395 | Kuramasu | Sep 2008 | B2 |
7630339 | Laroia et al. | Dec 2009 | B2 |
7652533 | Wang et al. | Jan 2010 | B2 |
7710212 | Seliverstov | May 2010 | B2 |
7742444 | Mese et al. | Jun 2010 | B2 |
7786779 | Chang et al. | Aug 2010 | B2 |
7795902 | Yella | Sep 2010 | B1 |
7817666 | Spinar et al. | Oct 2010 | B2 |
7843886 | Johnson et al. | Nov 2010 | B2 |
7859314 | Rutkowski et al. | Dec 2010 | B2 |
7924066 | Gagne et al. | Apr 2011 | B2 |
7940740 | Krishnamurthy et al. | May 2011 | B2 |
8010151 | Kim et al. | Aug 2011 | B2 |
8058928 | Terzioglu | Nov 2011 | B2 |
8077670 | Fan et al. | Dec 2011 | B2 |
8085875 | Gore et al. | Dec 2011 | B2 |
8155069 | Chun et al. | Apr 2012 | B2 |
8174995 | Malladi | May 2012 | B2 |
8228827 | Jeong et al. | Jul 2012 | B2 |
8363697 | Grob et al. | Jan 2013 | B2 |
8446869 | Lee et al. | May 2013 | B2 |
20030043928 | Ling et al. | Mar 2003 | A1 |
20050064873 | Karaoguz et al. | Mar 2005 | A1 |
20050096061 | Ji et al. | May 2005 | A1 |
20050254555 | Teague et al. | Nov 2005 | A1 |
20050260990 | Huang et al. | Nov 2005 | A1 |
20060098604 | Flammer | May 2006 | A1 |
20060166693 | Jeong et al. | Jul 2006 | A1 |
20070064669 | Classon et al. | Mar 2007 | A1 |
20070087691 | Lee et al. | Apr 2007 | A1 |
20070104166 | Rahman et al. | May 2007 | A1 |
20070153719 | Gopal | Jul 2007 | A1 |
20070167181 | Ramesh et al. | Jul 2007 | A1 |
20070242763 | Li et al. | Oct 2007 | A1 |
20070253355 | Hande et al. | Nov 2007 | A1 |
20080008212 | Wang et al. | Jan 2008 | A1 |
20080013500 | Laroia et al. | Jan 2008 | A1 |
20080056193 | Bourlas et al. | Mar 2008 | A1 |
20080075032 | Balachandran et al. | Mar 2008 | A1 |
20080106297 | Jao | May 2008 | A1 |
20080130588 | Jeong et al. | Jun 2008 | A1 |
20080205322 | Cai et al. | Aug 2008 | A1 |
20080212514 | Chen | Sep 2008 | A1 |
20080219236 | Love et al. | Sep 2008 | A1 |
20080220791 | Cho et al. | Sep 2008 | A1 |
20080227449 | Gholmieh et al. | Sep 2008 | A1 |
20080253300 | Wakabayashi et al. | Oct 2008 | A1 |
20080254804 | Lohr et al. | Oct 2008 | A1 |
20080260000 | Periyalwar et al. | Oct 2008 | A1 |
20080260062 | Imamura | Oct 2008 | A1 |
20080268859 | Lee et al. | Oct 2008 | A1 |
20080285513 | Jung et al. | Nov 2008 | A1 |
20090046605 | Gao et al. | Feb 2009 | A1 |
20090046674 | Gao et al. | Feb 2009 | A1 |
20090069023 | Ahn et al. | Mar 2009 | A1 |
20090088175 | Pelletier et al. | Apr 2009 | A1 |
20090103500 | Malkamaki et al. | Apr 2009 | A1 |
20090109915 | Pasad et al. | Apr 2009 | A1 |
20090131065 | Khandekar et al. | May 2009 | A1 |
20090135769 | Sambhwani et al. | May 2009 | A1 |
20090154458 | Kim et al. | Jun 2009 | A1 |
20090175214 | Sfar et al. | Jul 2009 | A1 |
20090196165 | Morimoto et al. | Aug 2009 | A1 |
20090196249 | Kawamura et al. | Aug 2009 | A1 |
20090196250 | Feng et al. | Aug 2009 | A1 |
20090197631 | Palanki et al. | Aug 2009 | A1 |
20090201880 | Aghili et al. | Aug 2009 | A1 |
20090213769 | Shen et al. | Aug 2009 | A1 |
20090238117 | Somasundaram et al. | Sep 2009 | A1 |
20090239590 | Parkvall | Sep 2009 | A1 |
20090252077 | Khandekar et al. | Oct 2009 | A1 |
20090257371 | Nishio | Oct 2009 | A1 |
20090257390 | Ji et al. | Oct 2009 | A1 |
20090264077 | Damnjanovic | Oct 2009 | A1 |
20090268684 | Lott et al. | Oct 2009 | A1 |
20090274086 | Petrovic et al. | Nov 2009 | A1 |
20090298498 | Pisut et al. | Dec 2009 | A1 |
20090312024 | Chen et al. | Dec 2009 | A1 |
20090325626 | Palanki et al. | Dec 2009 | A1 |
20100008282 | Bhattad et al. | Jan 2010 | A1 |
20100022250 | Petrovic et al. | Jan 2010 | A1 |
20100029282 | Stamoulis et al. | Feb 2010 | A1 |
20100034135 | Kim et al. | Feb 2010 | A1 |
20100034158 | Meylan | Feb 2010 | A1 |
20100035600 | Hou et al. | Feb 2010 | A1 |
20100067472 | Ball et al. | Mar 2010 | A1 |
20100069076 | Ishii et al. | Mar 2010 | A1 |
20100080154 | Noh et al. | Apr 2010 | A1 |
20100091919 | Xu et al. | Apr 2010 | A1 |
20100110964 | Love et al. | May 2010 | A1 |
20100128690 | McBeath et al. | May 2010 | A1 |
20100144317 | Jung et al. | Jun 2010 | A1 |
20100232373 | Nory et al. | Sep 2010 | A1 |
20100240386 | Hamabe et al. | Sep 2010 | A1 |
20100246521 | Zhang et al. | Sep 2010 | A1 |
20100254268 | Kim et al. | Oct 2010 | A1 |
20100254329 | Pan et al. | Oct 2010 | A1 |
20100254344 | Wei et al. | Oct 2010 | A1 |
20100260156 | Lee et al. | Oct 2010 | A1 |
20100265870 | Cai et al. | Oct 2010 | A1 |
20100272059 | Bienas et al. | Oct 2010 | A1 |
20100290372 | Zhong et al. | Nov 2010 | A1 |
20100304665 | Higuchi | Dec 2010 | A1 |
20100309803 | Toh et al. | Dec 2010 | A1 |
20100309867 | Palanki et al. | Dec 2010 | A1 |
20100309876 | Khandekar et al. | Dec 2010 | A1 |
20100322180 | Kim et al. | Dec 2010 | A1 |
20100323611 | Choudhury | Dec 2010 | A1 |
20100331030 | Nory et al. | Dec 2010 | A1 |
20110007673 | Ahn et al. | Jan 2011 | A1 |
20110013554 | Koskinen | Jan 2011 | A1 |
20110032890 | Wu | Feb 2011 | A1 |
20110038271 | Shin et al. | Feb 2011 | A1 |
20110044227 | Harrang et al. | Feb 2011 | A1 |
20110044261 | Cai et al. | Feb 2011 | A1 |
20110051684 | Li et al. | Mar 2011 | A1 |
20110053603 | Luo et al. | Mar 2011 | A1 |
20110064037 | Wei et al. | Mar 2011 | A1 |
20110081865 | Xiao et al. | Apr 2011 | A1 |
20110116364 | Zhang et al. | May 2011 | A1 |
20110116437 | Chen et al. | May 2011 | A1 |
20110134875 | Ding et al. | Jun 2011 | A1 |
20110149771 | Abeta et al. | Jun 2011 | A1 |
20110149813 | Parkvall et al. | Jun 2011 | A1 |
20110170503 | Chun et al. | Jul 2011 | A1 |
20110182245 | Malkamaki et al. | Jul 2011 | A1 |
20110188481 | Damnjanovic et al. | Aug 2011 | A1 |
20110190024 | Seong et al. | Aug 2011 | A1 |
20110194514 | Lee et al. | Aug 2011 | A1 |
20110199986 | Fong et al. | Aug 2011 | A1 |
20110201279 | Suzuki et al. | Aug 2011 | A1 |
20110205982 | Yoo et al. | Aug 2011 | A1 |
20110211503 | Che et al. | Sep 2011 | A1 |
20110243075 | Luo et al. | Oct 2011 | A1 |
20110249643 | Barbieri et al. | Oct 2011 | A1 |
20110268032 | Kim et al. | Nov 2011 | A1 |
20110274066 | Tee et al. | Nov 2011 | A1 |
20110275394 | Song et al. | Nov 2011 | A1 |
20110310789 | Hu et al. | Dec 2011 | A1 |
20110310830 | Wu et al. | Dec 2011 | A1 |
20110317624 | Luo et al. | Dec 2011 | A1 |
20120026892 | Nakao et al. | Feb 2012 | A1 |
20120033588 | Chung et al. | Feb 2012 | A1 |
20120033627 | Li et al. | Feb 2012 | A1 |
20120033647 | Moon et al. | Feb 2012 | A1 |
20120039180 | Kim et al. | Feb 2012 | A1 |
20120039208 | Aydin | Feb 2012 | A1 |
20120087250 | Song et al. | Apr 2012 | A1 |
20120088516 | Ji et al. | Apr 2012 | A1 |
20120093097 | Che et al. | Apr 2012 | A1 |
20120106481 | Cho et al. | May 2012 | A1 |
20120108239 | Damnjanovic et al. | May 2012 | A1 |
20120108255 | Jo et al. | May 2012 | A1 |
20120155366 | Zirwas et al. | Jun 2012 | A1 |
20120182958 | Pelletier et al. | Jul 2012 | A1 |
20120212260 | Chen et al. | Aug 2012 | A1 |
20120236798 | Raaf et al. | Sep 2012 | A1 |
20120281656 | Hooli et al. | Nov 2012 | A1 |
20130005344 | Dimou et al. | Jan 2013 | A1 |
20130077543 | Kim et al. | Mar 2013 | A1 |
20130077576 | Abe et al. | Mar 2013 | A1 |
20130229933 | Ji et al. | Sep 2013 | A1 |
20130250927 | Song | Sep 2013 | A1 |
20140036838 | Yoo et al. | Feb 2014 | A1 |
20140146798 | Damnjanovic et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
1311968 | Sep 2001 | CN |
101018220 | Aug 2007 | CN |
101090281 | Dec 2007 | CN |
101155399 | Apr 2008 | CN |
101262680 | Sep 2008 | CN |
101316267 | Dec 2008 | CN |
101400130 | Apr 2009 | CN |
101483511 | Jul 2009 | CN |
101499882 | Aug 2009 | CN |
101505498 | Aug 2009 | CN |
101686580 | Mar 2010 | CN |
1811711 | Jul 2007 | EP |
2076066 | Jul 2009 | EP |
H06350514 | Dec 1994 | JP |
09501038 | Jan 1997 | JP |
09327060 | Dec 1997 | JP |
H1118144 | Jan 1999 | JP |
2001231077 | Aug 2001 | JP |
2003506960 | Feb 2003 | JP |
2005277570 | Oct 2005 | JP |
2006345405 | Dec 2006 | JP |
2007529915 | Oct 2007 | JP |
2008017325 | Jan 2008 | JP |
2008500764 | Jan 2008 | JP |
2008500766 | Jan 2008 | JP |
2008172357 | Jul 2008 | JP |
2008301493 | Dec 2008 | JP |
2009527939 | Jul 2009 | JP |
2010506446 | Feb 2010 | JP |
2010081446 | Apr 2010 | JP |
2010516163 | May 2010 | JP |
2010519784 | Jun 2010 | JP |
2010536256 | Nov 2010 | JP |
2010541492 | Dec 2010 | JP |
2011505088 | Feb 2011 | JP |
2011505091 | Feb 2011 | JP |
2011507391 | Mar 2011 | JP |
2011516000 | May 2011 | JP |
2013502841 | Jan 2013 | JP |
20100018453 | Feb 2010 | KR |
2305902 | Sep 2007 | RU |
2007105748 | Aug 2008 | RU |
2369965 | Oct 2009 | RU |
0111804 | Feb 2001 | WO |
2004066104 | Aug 2004 | WO |
2004079949 | Sep 2004 | WO |
WO-2005019705 | Mar 2005 | WO |
WO-2005062798 | Jul 2005 | WO |
2005071867 | Aug 2005 | WO |
WO 2005109705 | Nov 2005 | WO |
2005125053 | Dec 2005 | WO |
WO-2006020021 | Feb 2006 | WO |
2006099546 | Sep 2006 | WO |
WO-2007080892 | Jul 2007 | WO |
2007097672 | Aug 2007 | WO |
WO 2007097671 | Aug 2007 | WO |
WO 2007108630 | Sep 2007 | WO |
2007129537 | Nov 2007 | WO |
2007129620 | Nov 2007 | WO |
WO-2008024751 | Feb 2008 | WO |
2008040448 | Apr 2008 | WO |
2008041819 | Apr 2008 | WO |
2008057969 | May 2008 | WO |
2008081816 | Jul 2008 | WO |
2008086517 | Jul 2008 | WO |
2008093985 | Aug 2008 | WO |
WO-2008116128 | Sep 2008 | WO |
2009011059 | Jan 2009 | WO |
2009020926 | Feb 2009 | WO |
WO 2009016260 | Feb 2009 | WO |
WO 2009022295 | Feb 2009 | WO |
WO 2009038367 | Mar 2009 | WO |
2009043002 | Apr 2009 | WO |
2009046061 | Apr 2009 | WO |
WO-2009048246 | Apr 2009 | WO |
WO 2009062115 | May 2009 | WO |
WO 2009064147 | May 2009 | WO |
2009067842 | Jun 2009 | WO |
2009071583 | Jun 2009 | WO |
2009076803 | Jun 2009 | WO |
WO 2009078795 | Jun 2009 | WO |
2009089798 | Jul 2009 | WO |
WO 2009088251 | Jul 2009 | WO |
2009096846 | Aug 2009 | WO |
WO-2009126586 | Oct 2009 | WO |
2009152866 | Dec 2009 | WO |
WO-2010006285 | Jan 2010 | WO |
2010016607 | Feb 2010 | WO |
WO 2010016726 | Feb 2010 | WO |
2010033957 | Mar 2010 | WO |
WO-2010032791 | Mar 2010 | WO |
2010044903 | Apr 2010 | WO |
WO-2010039738 | Apr 2010 | WO |
2010110840 | Sep 2010 | WO |
Entry |
---|
3GPP: “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestria Radio Access (E-UTRA); Physical 1 ayer procedures (Re1 ease 8)” 3GPP TS 36.213 V8.7.0 (May 2009) Technical Specification, No. V8.7.0, Jun. 8, 2009, pp. 1-77, XP002602609. |
3GPP: “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer (Release 8)”, 3GPP Standard; 3GPP TS 36.302, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, No. V8.1.0, Mar. 1, 2009, pp. 1-17, XP050377589. |
3GPP: “3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Further Advancements for E-UTRAPhysical Layer Aspects(Release 9)”, 3GPP Draft; TR 36.814—110, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophiaantipolis Cedex ; France, no. San Francisco, USA; May 9, 2009, pp. 1-34, XP050339706, [retrieved on May 9, 2009]. |
3rd Generation Partnership Project: “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) protocol specification (Release 8); 3GPP TS 36.321 V8.5.0” 3GPP TS 36.321 V8.5.0 [Online] vol. 36.321, No. V8.5.0, Mar. 1, 2009, pp. 1-46, XP002555765 Internet Retrieved from the Internet: URL:http://www.3gpp.orq/ftp/Specs/html-inf 0/36321.htm> [retrieved on Oct. 21, 2009] Sections 5.1.1 to 5.1.6. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestria1 Radio Access (E-UTRA) and Evolved Uni versa1 Terrestria1 Radio Access Network (E-UTRAN); Overall description ; Stage 2 (Release 8)” 3GPP Standard; 3GPP TS 36.300, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, No. V8.8.0, Mar. 1, 2009, pp. 1-157, XP050377583. |
Ericsson: 3GPP Draft; R3-083577, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. Prague, Czech Republic; Nov. 25, 2008, XP050324756 [retrieved on Nov. 25, 2008] Section 10.1.5.1. |
Ericsson: “Simultaneous reception of transport channels in the LTE”, 3GPP Draft; 36302—CR0009—(REL-8) R2-093578, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. San Francisco, USA; May 9, 2009, pp. 1-3, XP050340488, [retrieved on May 9, 2009]. |
Huawei: “R-PDCCH Design” 3GPP Draft; R1-093042 R-PDCCH Design, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. Shenzhen, China; 20090818, Aug. 18, 2009, XP050351434 [retrieved on Aug. 18, 2009] p. 1, paragraph 1. |
Kulkarni P., et al.,“Radio Resource Management Considerations for LTE Femto Cells”, ACM SIGCOMM Computer Communication Review, vol. 40, No. 1, Jan. 2010, pp. 26-30. |
LG Electronics Inc: “MAC Random Access Response Extension” 3GPP Draft; R2085237 MAC RAR Extension, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. Prague, Czech Republic; Sep. 23, 2008, XP050320136, [retrieved on Sep. 23, 2008] the whole document. |
Potevio: “Considerations on the Resource Indication of R-PDCCH” 3GPP Draft; R1-093443 Considerations on the Resource Indication of R-PDCCH, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. Shenzhen, China; Aug. 18, 2009, XP050351718 [retrieved on Aug. 18, 2009] p. 1, paragraph 1-paragraph 2. |
Samsung: “Clarification on the parallel receptions for PDSCHs”, 3GPP Draft; 36302—CR0010 (REL-8) R2-093579, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. San Francisco, USA; May 19, 2009, pp. 1-2, XP050340489, [retrieved on May 19, 2009]. |
Samsung: “Downlink Subframe Alignment in Type I Relay” 3GPP Draft; R1-093386 Downlink Subframe Alignment in Type I Relay, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. Shenzhen, China; Aug. 19, 2009 , XP050351683 [retrieved on Aug. 19, 2009] p. 1, paragraph 1. |
Samsung: “Inbound mobility to H(e)NBs” 3GPP Draft; R2-093250—INB0UND Mobility to H(E)NBS-R4, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. San Francisco, USA; Apr. 28, 2009, XP050340933 [retrieved on Apr. 28, 2009] the whole document. |
Vice Chairman: “Report of E-UTRA control plane session” 3GPP Draft; R2-082841-Chair-Report-RAN2-62-LTE-CP, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG2, no. Kansas City, USA; May 14, 2008, XP050140403 [retrieved on May 14, 2008]. |
Young Jin Sang et al: “A Self-Organized Femtocell for IEEE 802.16e System”, Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, IEEE, Piscataway, NJ, USA, Nov. 30, 2009, pp. 1-5, XP031646102, ISBN: 978-1-4244-4148-8. |
Qualcomm Incorporated, “RRM/RLM Resource Restriction for Time Domain ICIC”, 3GPP TSG-RAN WG2 Meeting #72-bis, R2-110698, Dublin, Ireland, Jan. 17-21, 2011. |
Qualcomm Incorporated, “Introduction of Time Domain ICIC”, 3GPP TSG-RAN WG2 Meeting #72, R2-106943, Jacksonville, US, Nov. 15-19, 2010. |
Taiwan Search Report—TW099146404—TIPO—Jul. 11, 2013. |
3GPP TS 36.331 V8.5.0, Radio Resource Control (RRC); Protocol specification (Release 8), 204 pages, 2009. |
Alcatel-Lucent Shanghai Bell et al., “Multi-cell cooperative RS in CoMP”, 3GPP Draft; R1-092317, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, no. Los Angeles, USA; Jun. 24, 2009, XP050350848, [retrieved on Jun. 24, 2009]. |
Ericsson: “Structure of System Information”, TSGR2#4(99)414, 5 pages, May 1999. |
Fujitsu, “An Efficient Reference Signal Design in LTE Advanced”, 3GPP Draft; R1-090949, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, no. Athens, Greece, Feb. 6, 2009, XP050318788. |
Gale et al., “Distributed discreate resource optimization in Heterogeneous networks”. 2008, pp. 560-564, IEEE 04641670. |
Garcia F., et al.,“Design of a slew rate controlled output buffer”, ASIC Conference 1998. Proceedings. Eleventh Annual IEEE International Rochester, NY, USA Sep. 13-16, 1998, New York, NY, USA.IEEE, US, Sep. 13, 1998, pp. 147-150, XP010309693, DOI: 10.1109/ASIC.1998.722821 ISBN: 978-0-7803-4980-3. |
Huawei : “Enhanced ICIC for control channels to support Het.Net,”, 3GPP TSG RAN WG1 meeting #61 R1-103126, May 14, 2010, pp. 1-8, XP002660456, Montreal , Canada Retrieved from the Internet : URL:http://ftp.3gpp.org/ftp/tsg-ran/WGI-RL1/TSGR1—61/Docs/ [retrieved on Sep. 30, 2011]. |
Huawei: “CQI Enhancement for Interference Varying Environments”, 3GPP Draft; R1-101061 CQI Enhancement for Interference Varying Environments VER (Final), 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WGI, no. San Francisco, USA; Feb. 16, 2010, XP050418632, [retrieved on Feb. 16, 2010]. |
Huawei: “Discussion on OTDOA based positioning issue”, 3GPP Draft; R1-092355, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, no. Los Angeles, USA, Jun. 24, 2009, XP050350879, [retrieved on Jun. 24, 2009]. |
Huawei: “Enhanced ICIC and Resource-Specific CQI Measurement”, 3GPP Draft; R1-101981, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WGI, no. Beijing, china; Apr. 12, 2010, Apr. 6, 2010, XP050419318, [retrieved on Apr. 6, 2010]. |
Inoue et al., “Space time transmit site diversity for OFDM multi base station system”, 2002, pp. 30-34, IEEE 01045691. |
International Search Report and Written Opinion—PCT/US2011/032373, ISA/EPO—Jul. 19, 2011. |
Panasonic: “PDCCH with cross component carrier assignment”, 3GPP Draft; R1-093597(Update of R1-093464), 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, no. Shenzhen, China; Aug. 24, 2009, XP050388168, [retrieved on Aug. 22, 2009]. |
Qualcomm Europe: “Carrier Aggregation in Heterogeneous Networks”, 3GPP Draft; R1-092239, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, no. San Francisco, USA; May 8, 2009, XP050339658, [retrieved on May 8, 2009]. |
Qualcomm Europe: “DL Carrier Aggregation Performance in Heterogeneous Networks”, [online], 3GPP TSG-RAN WG1#58, R1-093145, URL: http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/SGR1—58/Docs/R1-093145.zip. |
Qualcomm Incorporated: “Extending Rel-8/9 ICIC into Rel-10”, 3GPP Draft; R1-101505 Extending REL-8-9 ICIC Into REL-10, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, no. San Francisco, USA; Feb. 22, 2010, Feb. 16, 2010, XP050418951, [retrieved on Feb. 16, 2010]. |
3GPP TS 36.355 V9.0.0, Technical Specification Group Radio Access Network, E-UTRA, “LTE Positioning Protocal (LLP) (Release 9)” Dec. 2009, 31 pages. |
Alcatel-Lucent, “Interference Coordination Framework with Results”, 3GPP TSG RAN WG1 Meeting #49bis, R1-07-3187, Jun. 29, 2007, pp. 1-9. |
Huawei, “Consideration on CSI-RS design for CoMP and text proposal to 36.814”, 3GPP TSG-RAN WG1#57b R1-092364, Los Angeles, USA, Jun. 29-Jul. 3, 2009. |
LG Electronics: “Coordination for DL control channel in co-channel HeNB deployment”, 3GPP Draft; R1-102429 Control Channel in Hetnet, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, no. Beijing, china; Apr. 12, 2010, Apr. 6, 2010, XP050419640, [retrieved on Apr. 6, 2010]. |
NTT DoCoMo: “Interference Coordination for Non-CA-based Heterogeneous Networks”, 3GPP Draft; R1-102307 ICIC for Non-CA Hetnet, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, no. Beijing, china; Apr. 12, 2010, Apr. 7, 2010, XP050419698, [retrieved on Apr. 7, 2010]. |
NTT DoCoMo, “Performance Evaluations of Heterogeneous Networks”, 3GPP TSG RAN WG1 Meeting #60, R1-101226, Feb. 26, 2010, pp. 1-18. |
Qualcomm Europe: “Coordinated Multi-Point downlink transmission in LTE-Advanced” 3GPP Draft; R1-084400 COMP, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex; France, no. Prague, Czech Republic; Nov. 5, 2008, XP050317663. |
3GPP: “LS on RV Determination for BCCH,” 3GPP TSG RAN WG1 Meeting #54bis, Sep. 29, 2008, R1-084067, <URL: http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—54b/Docs/R1-084067.zip>. |
3GPP TSG-RAN WG2 Meeting #68 R2-096531, “Email discussion on MBMS value range [67b#14]”, Nov. 9-13, 2009, Jeju, Korea, Discussion and Decision, <URL: http://www.3gpp.org/ftp/tsg—ran/WG2—RL2/TSGR2—68/Docs/R2-096531.zip>, page No. 1-13. |
Catt,Addition of MBSFN information on X2 interface,[online],3GPPTSG-RAN3 Meeting #64,May 4, 2009,R3-091247, Internet<URL:http://www.3gpp.org/ftp/tsg—ran/WG3—lu/TSGR3—64/Docs/R3-091247.zip>, page No. 1-14. |
Motorola: “DCI Format 1C with implicit RV and TBS,” 3GPP TSG RAN1 #54, Aug. 18, 2008, R1-083207, 5 pages, <URL: http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—54/Docs/R1-083207.zip>. |
LG Electronics: “Considerations on interference coordination in heterogeneous networks”, 3GPP Draft ; R1-101369, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WGI, no. San Francisco, USA; Feb. 22, 2010-Feb. 26, 2010, Feb. 16, 2010, XP050418854, pp. 1-5. |
NTT DoCoMo: “Downlink Interference Coordination Between eNodeB and Home eNodeB”, 36PP Draft; R1-101225 HENB—ICIC, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WGI, no. San Francisco, USA; Feb. 22, 2010, Feb. 16, 2010, XP050418740, [retrieved on Feb. 16, 2010]., p. 1-8. |
Texas Instruments: “Issues on Carrier Aggregation for Advanced E-UTRA”, 3GPP Draft, R1-090280 TI Carrier AGGR, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, no. Ljubljana, Jan. 7, 2009, XP050318205, pp. 1-5, [retrieved on Jan. 7, 2009]. |
3GPP TS 36.355 V9.0.0, LTE Positioning Protocol (LPP), Dec. 2009, http://www.3gpp.org/ftp/Specs/archive/36—series/36.355/36355-900.zip 3GPP TSG RAN WG2 #62bis, Ericsson, E-UTRA UE Radio Measurement Reporting for Uplink ICIC, R2-083147, Jul. 2008, http://www.3gpp.org/FTP/tsg—ran/WG2—RL2/TSGR2—62bis/Docs/R2-083147.zip. |
LG-NORTEL: “Interference under Type 1 RN”, 3GPP TSG-RAN WG1#57, R1-092184, 14 pages, May 4, 2009. |
Qualcomm Europe, “Carrier Aggregation in Heterogeneous Networks”, 3GPP TSG RAN WG1 #56bis, R1-091459, pp. 1-12, Seoul, Korea, Mar. 23-27, 2009. |
Interdigital Communications: “eICIC Macro-Femto: Time-domain muting and ABS”, 3GPP TSG-RAN WG1#63, R1-105951, Nov. 15 2010, 6 Pages, URL: http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—63/Docs/R1-105951.zip. |
Gaie C., et al., “Distributed Discrete Resource Optimization in Heterogeneous Networks,” IEEE, 2008, pp. 560-564. |
Ericsson, Considerations on Non-CA based Heterogeneous Deployments, 3GPP TSG-RAN WG1 #61, R1-102618, ST-Ericsson, 2010, 3 Pages. |
LG Electronics, Coordination for DL Control Channel in Co-Channel CSG Deployment, 3GPP TSG RAN WG1 Meeting #61, R1-102704, 2010, 8 Pages. |
Lopez-Perez D., et al., “OFDMA femtocells: A roadmap on interference avoidance”, IEEE Communications Magazine, IEEE Service Center, Piscataway, US, vol. 47, No. 9, Sep. 1, 2009, pp. 41-48, XP011283364, ISSN: 0163-6804, DOI: 10.1109/MCOM.2009.5277454. |
Motorola: “HeNB Interference Management”, 3GPP TSG-RAN WG1#60 R1-101121, <URL:http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—60/Docs/R1-101121.zip>, Feb. 17, 2010, 4 Pages. |
Nortel: “Discussions on LTE mobility performance evaluation”, 3GPP TSG-RAN WG1#57 R1-091913, <URL:http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—57/Docs/R1-091913.zip>, May 9, 2009, 3 Pages. |
Qualcomm Incorporated: “Measurements and feedback extensions for improved operations in HetNets”, 3GPP TSG-RAN WG1#60b R1-102353, <URL:http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—60b/Docs/R1-102353.zip>, Apr. 6, 2010, 3 Pages. |
TSG-RAN WG4: “Reply to LS on mobility evaluation” 3GPP TSG-RAN WG1#60 R1-100979, <URL: http://www.3gpp.org/ftp/tsg—ran/WG4—Radio/TSGR4—50bis/Documents/R4-091518.zip>, Mar. 30, 2009, 3 Pages. |
ZTE: “Scenarios and Specification Impact of Type 2 Relay”, 3GPP TSG-RAN WG1#60 R1-100979, <URL: http://www.3gpp.org/ftp/tsg—ran/WG1—RL1/TSGR1—60/Docs/R1-100979.zip>, Feb. 16, 2010, 7 Pages. |
Number | Date | Country | |
---|---|---|---|
20120093095 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61323853 | Apr 2010 | US |