The present invention relates to a mobile communication system. More particularly, the present invention relates to a method and apparatus for supporting multiple frequency bands efficiently in a mobile communication system.
Mobile communication systems were developed to provide subscribers with voice communication services while on the move. With the advancement of communications technologies, the mobile communication systems have evolved to support high speed data communication services as well as the standard voice communication services. Recently, as one of the next generation mobile communication systems, Long Term Evolution Advanced (LTE-A) is being standardized by the 3rd Generation Partnership Project (3GPP). LTE-A is a technology designed to provide high speed packet-based communication of up to 100 Mbps.
Several schemes for LTE-A are being discussed including one scheme for reducing the number of nodes located in a communication path by simplifying a configuration of the network, and another scheme for maximally approximating wireless protocols to wireless channels.
Meanwhile, unlike voice service, a data service is provided on a resource determined according to an amount of data to be transmitted and channel conditions. Accordingly, the wireless communication system, especially for cellular communication, is provided with a scheduler that manages transmission resource allocation in consideration of a needed resource amount, channel conditions, amount of data, etc. This is the case with the LTE-A system as the next generation mobile communication system, and in this case the scheduler is located at a base station and manages the transmission resource allocation.
In LTE-A Release-11, a new frequency band that overlaps a legacy frequency band is added. Although the frequency bands are used in different areas, a roaming terminal should be capable of operating on both of the overlapped frequency bands.
Therefore, a need exists for a technique for supporting a roaming terminal that is capable of operating on both of the overlapped frequency bands.
The above information is presented as background information only to assist with an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the present invention.
Aspects of the present invention are to address the above-mentioned problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to provide a method and for supporting multiple frequency bands efficiently in a mobile communication system.
Another aspect of the present invention is to provide a method and apparatus for informing a terminal of multiple frequency bands and determining a center frequency of an uplink frequency band, an uplink transmission power, and center frequencies of downlink bands of neighbor cells in a mobile communication system supporting multiple frequency bands.
In accordance with an aspect of the present invention, a method for supporting multiple frequency bands at a base station in a mobile communication system is provided. The method includes generating first system information including a frequency band indicator indicating a frequency band supported by the base station and an additional frequency band indicator indicating at least one frequency band supported by the base station, and broadcasting the first system information.
In accordance with another aspect of the present invention, a method for supporting multiple frequency bands at a terminal in a mobile communication system is provided. The method includes receiving a first system information including a frequency band indicator indicating a frequency band supported by a base station and an additional frequency band indicator indicating at least one frequency band supported by the base station, determining whether the frequency bands indicated by the frequency band indicator and the additional frequency band indicator includes one or more frequency bands supported by the terminal, and attempting, when the frequency bands indicated by the frequency band indicator and the additional frequency band indicator includes the one or more frequency bands supported by the terminal, access to the base station.
In accordance with another aspect of the present invention, a base station supporting a plurality of frequency bands in a mobile communication system is provided. The base station includes a transceiver which transmits and receives signals to and from a terminal, and a controller which controls generating a first system information including a frequency band indicator indicating a frequency band supported by the base station and an additional frequency band indicator indicating at least one frequency band supported by the base station and broadcasting the first system information.
In accordance with still another aspect of the present invention, a terminal for supporting a plurality of frequency bands in a mobile communication system is provided. The terminal includes a transceiver which transmits and receives signals to and from a base station, and a controller which controls receiving a first system information including a frequency band indicator indicating a frequency band supported by a base station and an additional frequency band indicator indicating at least one frequency band supported by the base station, determining whether the frequency bands indicated by the frequency band indicator and the additional frequency band indicator includes one or more frequency bands supported by the terminal, and attempting, when the frequency bands indicated by the frequency band indicator and the additional frequency band indicator includes the one or more frequency bands supported by the terminal, access to the base station.
Other aspects, advantages, and salient features of the invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.
The above and other aspects, features, and advantages of certain exemplary embodiments of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
Throughout the drawings, it should be noted that like reference numbers are used to depict the same or similar elements, features, and structures.
The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiments of the invention as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the invention. Accordingly, it should be apparent to those skilled in the art that the following description of exemplary embodiments of the present invention is provided for illustration purpose only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
It is to be understood that the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component surface” includes reference to one or more of such surfaces.
Exemplary embodiments of the present invention relate to a method and apparatus for supporting multiple frequency bands efficiently in a mobile communication system. The present disclosure proposes a method for informing a terminal of multiple frequency bands and determining a center frequency of an uplink frequency band, an uplink transmission power, and center frequencies of downlink bands of neighbor cells in a mobile communication system supporting multiple frequency bands.
Prior to the explanation of the exemplary embodiments of the present invention, a brief description is made of the method for informing a User Equipment (UE) of the frequency band and determining uplink center frequency, uplink transmission power, and center frequencies of neighbor cells in the legacy Long Term Evolution (LTE) technology with reference to
Referring to
If a cell having an appropriate signal strength is found, the UE 100 receives SystemInformationBlockType1 (SIB1) (hereinafter, interchangeably recited with the term ‘first system information’) broadcast by an evolved Node B (eNB) 105 of the corresponding cell at step 115. The SIB1 includes a freqBandIndicator Information Element (IE) (hereinafter, interchangeably recited with the term ‘frequency band indicator’). This IE indicates the frequency band used in the cell. The IE is set to a value selected in the range from 1 to 64, and each value indicates the operating frequency bands specified in the LTE standard.
Table 1 shows the operating frequency bands of LTE specified in the LTE standard TS36.101. The leftmost column of Table 1 matches the value indicated by the IE, and the frequency bands corresponding to each indication value are shown in the right columns. The UE 100 determines a cell it camps on based on the frequency band information of the SIB1.
If the UE 100 supports the operating frequency indicated in the frequencyBandIndicator IE and if the corresponding frequency band is authenticated, the UE 105 determines to camp on the corresponding cell at step 120. At this time, the E-UTRA Cell IDentifier (ID) and Tracking Area Code (TAC) acquired from the SIB1 is delivered to a higher layer of the UE 105.
Otherwise, if it is not possible to camp on the cell, the UE 105 performs the cell searching process again to discovery another cell. As a consequence, if a cell to camp on is found, the UE 105 receives SIB2 (hereinafter, interchangeably recited with the term ‘second system information) from the eNB 105 at step 125.
The SIB2 includes a UL-CarrierFreq IE (hereinafter, interchangeably recited with the term ‘uplink carrier frequency’) and an additionalSpectrumEmission IE (hereinafter, interchangeably recited with the term ‘additional spectrum emission’). The information included in SIB2 is at least one value used for calculating uplink center frequency and uplink transmission power.
The UE 100 calculates the uplink center frequency in the frequency band at step 130. The uplink center frequency is calculated by using Equation (1):
FUL=FUL_low+0.1(NUL−Noffs-UL) Equation (1)
In Equation (1), NUL denotes a UL-CarrierFreq IE value included in SIB2 and matches to an Absolute Radio Frequency Channel Number (ARFCN). The ARFCN is a value in the range from 0 to 65535 and is used to acquire the uplink and downlink center frequencies. FUL_low denotes the lowest uplink frequency of the selected frequency band, and NOffs-UL and FUL_low are defined in the LTE standard TS36.101.
Table 2 shows the NOffs-UL and FUL_low values applicable per operating frequency band. In order to calculate the center frequency in uplink, the operating frequency band should be known.
Next, the UE 100 calculates the uplink transmission power using the additionalSpectrumEmission IE at step 135. This IE is used to derive an Additional Maximum Power Reduction (A-MPR) value used for calculating uplink transmission power along with the operating frequency band. The relationship of A-MPR according to the additionSpectrumEmission IE is specified in the LTE standard TS36.101 as shown in Table 3.
The leftmost column of Table 3 contains the NS values indicating additionSpectrumEmission IE values, e.g., if additionalSpectrumEmission is 1, this indicates NS_01 and, if 3, this indicates NS_03.
The maximum transmission power 1 of a certain serving cell c PCMAX,c is determined by Formula (2), and the highest value of the maximum transmission power 1 of the serving cell c PCMAX_H,c is determined by Equation (3), and the lowest value of the maximum transmission power 1 of the service cell c PCMAX_L,c is determined by Equation (4):
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c Equation (2)
PCMAX_H,c=MIN{PEMAX,c,PPowerClass} Equation (3)
PCMAX_L,c=MIN{PEMAX,c-TC,c,PCMAX_H,c-MPR c−A-MPR c−TC,c} Equation (4)
where, PEMAX,c, ΔTC,c, PPowerClass, MPRc, and A-MPRc are specified in the 3GPP standard TS36.101.
PEMAX,c denotes a maximum allowed uplink transmission power in the service cell c which is transmitted from the eNB 105 to the UE 100. PPowerClass denotes the nominal maximum transmission power determined according to the physical characteristics of the UE 100. The power class of the UE 100 is determined at the manufacturing stage, and the UE 100 reports its power class to the network using a predetermined Radio Resource Control (RRC) message.
ΔTC,c, MPRc, AND A-MPRc are parameters for defining a value that is capable of adjusting the maximum transmission power of the UE 100 in the serving cell c to meet the unintended emission of interference to the neighbor channel. MPRc is a value determined according to the transmission amount (i.e., bandwidth) and modulation scheme. A-MPRc is a value determined according to the frequency band of uplink transmission, geographical characteristic, uplink transmission bandwidth, etc. A-MPRc is used for preparing the case where the frequency band is especially sensitive to the spurious emissions according to geographical characteristics and frequency band characteristics. In a case where the uplink transmission is performed at a boundary of the frequency band, ΔTC,c is used to allow for additional transmission power adjustment. If the uplink transmission is performed at a lowest 4 MHz or a highest 4 MHz of a certain frequency band, the UE 100 sets ΔTC,c to 1.5 DB, and otherwise, sets ΔTC,c to 0.
Referring back to
The UE calculates the downlink center frequency of the neighbor E-UTRA cell to perform the inter-frequency measurement at step 145. The downlink center frequency of the neighbor E-UTRA cell is calculated according to Equation (5).
FUL=FDL_low+0.1(NDL−NOffs-DL) Equation (5)
where NDL denotes dl-CarrierFreq IE value included in the interFreqCarrierFreqInfo and matches to ARFCN. The FDL_low denotes the lowest downlink frequency of the selected frequency band. NOffs and FDL_low are defined in Table 2.
Afterward, the UE 100 performs normal operation at step 150. For example, the UE 100 is capable of performing one of cell reselection, paging message reception monitoring, system information change monitoring, RRC connection configuration, and data communication, as needed.
In LTE-A release 11, a new frequency band having an operating frequency overlapped with the operating frequency of the legacy frequency band. For example, band 26 in Table 1 is the frequency band newly added in Rel-11 and its operating frequency is overlapped with those indicated by legacy bands 5, 18, and 19.
Referring to
If there is at least one frequency band among the frequency bands indicated in the freqBandIndicator IE and the ExtfreqBandIndicator IE provided in a specific cell, the UE determines that the cell is accessible.
More particularly, when there are two or more frequency bands indicated in the ExtfreqBandIndicator, the UE selects one of the frequency bands according to a predetermined rule. If the UE supports multiple frequency bands, there can be UE-preferable priorities of frequency bands in view of the eNB or network. For example, if the eNB supports band X and band Y, the UE supporting both bands X and Y may prefer the band X to the band Y. Accordingly, the UE and the eNB share a predetermined rule to indicate the priority implicitly for selecting one of plural frequency bands. For example, the eNB arranges the frequency bands in UE selection priority in the ExtfreqBandIndicator such that, if there are multiple UE-supportable frequency bands among the frequency bands indicated in the ExtfreqBandIndicator, the UE selects the supportable-frequency band arranged first among the supportable frequency bands.
Referring to
Assuming that two frequency bands of band 26 and band 19 are supported as indicated in the extfreqBandIndicator IE, the UE selects one of the two supportable frequency bands. According to an exemplary embodiment of the present invention, the frequency band included first in the extfreqBandIndicator IE is selected for use by the UE.
Although the UE selects a new frequency band, the uplink center frequency and the downlink center frequency of the neighbor E-UTRA cell are derived from the values indicated in the legacy freqBandIndicator IE and InterFreqCarrierFreqInfo IE. This is because there is no need to increase the signaling overhead unnecessarily by defining as many new IEs as the frequency bands supported by the cell, since each of the corresponding serving cell and the neighbor cell has one center frequency in each of uplink and downlink despite the serving cell supporting multiple frequency bands. The present exemplary embodiment also proposes a method for deriving the uplink center frequency using the Default distance specified in 3GPP standard TS36.101.
For the additionalSpectrumEmission IE broadcast in SIB2, a new IE is defined for the new frequency band. This IE is band-specific, and it is not possible to reuse the related-art value for the new band. In the present exemplary embodiment, the new IE is referred to as extAdditionalSpectrumEmission (hereinafter, interchangeably recited with the term ‘extra additional spectrum emission’). The number of new IEs matches the number of new frequency bands supported by the cell. For example, if the cell supports two new frequency bands, a total of two extAdditionalSpectrumEmission IEs are generated for the respective bands. In a case where multiple extAdditionalSpectrumEmission IEs are configured for the respective frequency bands, these IEs match the frequency bands filled in the ExtfreqBandIndicator in sequence.
Referring to
Otherwise if the eNB supports multiple operating frequency bands, the eNB configures the freqBandIndicator IE of the SIB1, which all UEs can understand, to indicate a legacy frequency band at step 415. Next, the eNB configures an extfreqBandIndicator, which only the non-legacy UEs can understand, to indicate one or more frequency bands with the exception of the frequency band indicated by the freqBandIndicator IE at step 420.
The eNB includes the additionalSpectrumEmission value to be applied to the legacy frequency band indicated in the freqBandIndicator into the SIB2 at step 425. Next, the eNB includes the extAdditionalSpectrumEmission IE values corresponding to the frequency bands indicated in the extfreqBandIndicator IE into the SIB2 in the same sequence as the frequency bands included in the extfreqBandIndicator IE at step 430.
Afterward, the eNB broadcasts the generated SIBs (not shown).
The UE 500 performs cell searching to discover a cell to which it camps on at step 510. If a cell having an appropriate signal strength is found, the UE 500 receives the SystemInformationBlockType1 (SIB1) broadcast by the eNB 505 of the corresponding cell at step 515.
In this case, the eNB 505 supports multiple frequency bands. Accordingly, the SIB1 received by the UE 500 includes both the freqBandIndicator and ExtfreqBandIndicator. These IEs indicate the frequency bands supported by the cells.
The UE 500 can be categorized into one of a legacy UE and a non-legacy UE. The legacy UE can decode and understand only the freqBandIndicator IE, and the non-legacy UE can decode and understand the ExtfreqBandIndicator IE as well as freqBandIndicator IE. Accordingly, the legacy UE determines whether it supports the frequency band indicated in the freqBandIndicator IE, and the non-legacy UE, if it supports at least one of the frequency bands indicated in the freqBandIndicator and ExtfreqBandIndicator IEs, determines that it is accessible to the cell.
If the UE 500 is accessible to a certain cell, this means that the access to the cell is not barred in view of the frequency band and thus the UE 500 takes a subsequent action continuously to determine whether the access to the cell is forbidden from another view point, e.g., inspecting the status of the corresponding cell using the cell ID and PLMN ID. If the UE 500 inspects the status of the cell, this case is described below.
That is, if there is no frequency band supported by the UE 500 among the frequency bands indicated in the IEs, the UE 500 determines that the access to the corresponding cell is barred. Otherwise, if there is two or more frequency bands supported by the UE 500 among the frequency bands indicated in the ExtfreqBandIndicator IE, the UE 500 selects the frequency band included first in the ExtfreqBandIndicator IE.
If the UE 500 supports a certain frequency band indicated in the ExtfreqBandIndicator IE and if the corresponding frequency band is authenticated, the UE 500 determines that it can access the corresponding cell in view of the frequency band at step 520. If the UE 500 supports the frequency band indicated in the freqBandIndicator IE, the UE 500 performs the procedure depicted in
If the UE 500 determines that it cannot camp on the corresponding cell, the UE 500 performs the cell searching process again to discover another cell. If the UE 500 determines that it can access the corresponding cell in view of frequency band, the UE 500 checks the status of the cell by referencing the TAC and Cell ID of the corresponding cell. If the UE 500 checks the status of the cell, this means that the UE 500 determines whether the access to the cell is barred by the operator. Typically, the operation can bar a certain UE 500 from accessing the cells belonged to a specific Tracking Area (TA).
If a TA Update (TAU) reject message is received from a Mobility Management Entity (MME) in the TAU procedure, the UE 500 adds the “TA to the forbidden TAs for roaming” list in a TAU attempt according to a Evolved Packet System (EPS) Mobility Management (EMM) cause value included in the message so as to forbid the UE 500 to perform unnecessary access attempts. Accordingly, the UE 500 checks the status of the corresponding cell using a TAC of the cell of the frequency band it supports as above so as to determine whether the access to the corresponding cell is forbidden.
The UE 500 receives SIB2 from the eNB 505 at step 525. The SIB2 includes ul-CarrierFreq IE, additionalSpectrumEmission IE, and extAdditionalSpectrumEmission IE. These IEs are used for calculating uplink center frequency and uplink transmission power.
The UE 500 calculates the uplink center frequency of the frequency band at step 530. The present exemplary embodiment proposes two methods. The first is to calculate the uplink center frequency using Equation (1). In Equation (1), NUL denotes a UL-CarrierFreq IE value included in SIB2 and matches an ARFCN. FUL_low denotes the lowest uplink frequency of the selected frequency band, and NOffs-UL and FUL_low are defined in Table 2. The present exemplary embodiment is characterized in that, when retrieving NOffs-UL and FUL_low value in Table 2, an operating frequency band indicated in the freqBandIndicator IE is used other than the frequency band indicated in the ExtfreqBandIndicator IE.
If the UE 500 does not support the operating frequency band indicated in the freqBandIndicator IE, the UE 500 may not understand the ARFCN provided in the SIB2. In this case, the first method is not applicable. The second method derives the uplink center frequency by applying the default distance to the frequency band. The default distance is the frequency offset value between the center frequencies of the transmission and reception carriers per band and specified in the 3GPP standard TS36.101. Table 4 shows the details of the default distance specified in the TS36.101. For example, if the UE 500 uses band 26, the uplink center frequency is the value obtained by subtracting 45 MHz from the downlink center frequency. If a new frequency band is introduced afterward, the default distance for the new frequency band will be specified in a technical specification of the standard.
Typically, it is a basic requirement that the downlink center frequency and uplink center frequency of a cell belongs to the same frequency band, and the distance between the downlink and uplink center frequencies may change depending on the cell. In order to support such a case, the eNB 505 broadcasts an ARFCN indicating the uplink center frequency. However, it may not be supported to configure the distance between the downlink and uplink center frequencies flexibly, but the default distance is applied to all cells. Accordingly, when the default distance is applied to a certain cell supporting multiple frequency bands, then eNB 505 signals only one ARFCN indicating the uplink center frequency and, if there is only one ARFCN indicating uplink center frequency, the UE 500 calculates the uplink center frequency using the ARFCN (when the UE 500 has selected the frequency band indicated by freqBandIndicator) or by applying the default distance (when the UE 500 has selected the frequency band indicated by ExtfreqBandIndicator). If the default distance is not applied to a certain cell supporting multiple frequency bands, the eNB 505 signals the ARFCN indicating the uplink center frequency per frequency band separately. Accordingly, the operation of the UE selected the frequency band indicated by the ExtfreqBandIndicator can be defined as follows.
The system information also includes the information on the uplink bandwidth. The number of uplink bandwidth information is always only one, and the UE 500 determines the uplink transmission resource in the corresponding cell by applying the only one uplink bandwidth information regardless whether the selected frequency band is the one indicated by the freqBandIndicator or the ExtfreqBandIndicator.
In another method, if one ARFCN indicating the uplink center frequency is signaled and if the frequency band indicated by the ExtfreqBandIndicator is selected, the UE 500 is capable of determining the uplink center frequency by applying the following rule.
The UE 500 calculates the uplink transmission power using the extadditionalSpectrumEmission IE at step 535. When multiple extAdditionalSpectrumEmission IEs corresponding to the respective frequency bands exist, the UE 500 uses the extadditionalSpectrumEmission IE values corresponding to the frequency bands included in the ExtfreqBandIndicator in sequence. This IE is also used to derive A-MPR value used for calculating uplink transmission power value along with the operating frequency band. The relationship between the Additional-Maximum Power Reduction (A-MPR) and uplink transmission power value has been described above.
Next, the UE 500 receives SIB5 at step 540. The SIB5 includes InterFreqCarrierFreqInfo IE. The number of InterFreqCarrierFreqInfo IEs can configured as many as the number of neighbor E-UTRA cells. Each IE matches to a neighbor E-UTRA cell. This IE is used to derive the downlink center frequency of the neighbor E-UTRA cell to perform inter-frequency measurement.
The UE 500 calculates the downlink center frequency of the neighbor E-UTRA cell to perform inter-frequency measurement at step 545. The downlink center frequency of the neighbor E-UTRA cell is calculated according to Equation (5). In Equation (5), NDL denotes dl-CarrierFreq IE value included in the interFreqCarrierFreqInfo and matches to ARFCN. The FDL_low denotes the lowest downlink frequency of the selected frequency band. NOffs and FDL_low are defined in Table 2. The present exemplary embodiment is characterized in that, when retrieving NOffs-UL and FUL_low value in Table 2, an operating frequency band indicated in the freqBandIndicator IE is applied other than the frequency band indicated in the ExtfreqBandIndicator IE.
Afterward, the UE 500 starts normal operation at step 550. For example, the UE 500 is capable of performing one of the cell reselection, paging message reception monitoring, system information change monitoring, RRC connection configuration, and data communication, as needed.
Among the above-enumerated normal operations, the present exemplary embodiment proposes the cell reselection operation. That is, the present exemplary embodiment proposes the UE 500 operation for determining whether to take the E-UTRA frequencies configured with multiple frequency bands into consideration in SIB5.
The SIB5 is capable of including one or more E-UTRA frequency-related information and broadcast neighbor frequency information. The SIB5 includes the following information per E-UTRA frequency that is applied in cell reselection to the corresponding E-UTRAN frequency.
dl-CarrierFreq=ARFCN-ValueEUTRA
q-RxLevMin, p-Max, t-ReselectionEUTRA, threshX-High, threshX-Low, cellReselectionPriority, etc., list of Frequency Bands (FBs) to which E-UTRAN frequencies, with the exception of the frequency band mapped to dl-CarrierFreq, belongs (hereinafter, additional FB list)
The UE 500 operates as follows in performing the inter-frequency cell reselection to the frequency 1 as a certain E-UTRA frequency.
1) If the cell reselection priority of frequency 1 is higher than that of a current serving frequency, the UE 500 supports the frequency band mapped to dl-CarrierFreq of frequency 1. Otherwise, if the UE 500 does not support the frequency band, the UE 500 supports one of the frequency bands included in the additional FB list, and if the channel quality of the best cell among the cells belonging to the frequency 1 is equal to or higher than a predetermined threshold (threshX-High) and if the best cell is not access-barred, the UE 500 reselects the cell.
2) If the cell reselection priority of frequency 1 is lower than that of a current serving frequency, the UE 500 supports the frequency band mapped to dl-CarrierFreq of the frequency 1. Otherwise, if the UE 500 does not support the frequency band, the UE 500 supports one of the frequency bands included in the additional FB list. Also, if the channel quality of the best cell on the current serving frequency is equal to or less then threshX-Low, if the channel quality of the best cell among the cells belonged to frequency 1 is equal to or higher a than a predetermined threshold, and if the cell is not in access-barred state, the UE 500 selects the best cell.
The UE performs cell searching to discover a cell to camp on at step 600. If a cell having an appropriate signal strength is found, the UE receives SIB1 broadcast by the eNB corresponding to the cell at step 605.
The UE checks the received SIB1 to determine whether the frequency band indicated by the freqBandIndicator or ExtfreqBandIndicator IEs included in the SIB1 is a supportable frequency band and whether the corresponding frequency band is capable of being authenticated for camp-on at step 610.
If it is determined not to camp on the cell, the UE returns the procedure to step 600 to perform the cell searching process again to discover another cell.
Otherwise, if it is determined to camp on the cell, the UE selects one of the frequency bands indicated by the freqBandIndicator IE or ExtfreqBandIndicator IE at step 615. At this time, since the legacy UE can only decode the freqBandIndicator IE, the procedure goes to step 620. Meanwhile, the non-legacy UE is capable of decoding both the freqBandIndicator and ExtfreqBandIndicator IEs. If the frequency band indicated in the ExtfreqBandIndicato IE is selected, the procedure goes to step 635.
At step 620, the UE calculates the uplink center frequency according to Equation (1). In the calculation, the NOffs-UL and FUL-low derived by applying the operating frequency band indicated by ul-CarrierFreq IE and freqBandIndicator included in the SIB2 are used.
The UE calculates the uplink transmission power using additionalSpectrumEmission IE included in the SIB2 at step 625. According to an exemplary embodiment of the present invention, when multiple extAdditionalSpectrumEmission IEs corresponding to multiple frequency bands are included, the uplink transmission power is calculated using the extadditionalSpectrumEmission IEs corresponding in sequence to the applied frequency bands among the frequency bands included in the ExtfreqBandIndicato IE.
The UE calculates the downlink center frequency of the neighbor E-UTRA cell at step 630. In the calculation, the NOffs-UL and FUL_low derived by applying the operating frequency band indicated by the dl-CarrierFreq IE and freqBandIndicator IE of the interFreqCarrierFreqInfo included in the SIB5 are used.
At step 635, the UE calculates the uplink center frequency. The present exemplary embodiment proposes two methods. The first method is to calculate the uplink center frequency according to Equation (1). In the calculation, the NOffs-UL and FUL_low derived by applying the operating frequency band indicated by the ul-CarrierFreq IE and freqBandIndicator IE included in the SIB2 are used. The second method is to calculate the uplink center frequency by applying the default distance to the corresponding frequency band.
The UE calculates the uplink transmission power using the extadditionalSpectrumEmission IE included in the SIB2 at step 640. Next, the UE calculates the downlink center frequency of the neighbor E-UTRA cell using Equation (5) at step 645. In the calculation, the NOffs-UL and FUL_low derived by applying the operating frequency band indicated by the dl-CarrierFreq IE and freqBandIndicator IE of the interFreqCarrierFreqInfo included in the SIB5 are used.
The UE includes higher layer device 710 for processing data and a control message processor 715 for processing control messages. The UE multiplexes the transmission data and control signals by means of the multiplexer 705 and transmits the multiplexed signals through the transceiver 700 under the control of the controller 720. The UE also demultiplexes the signal received through the transceiver 700 and delivers the demultiplexed signal to the higher layer device 710 or the control message processor 715 according to the message information.
In more detail, the controller 720 controls the UE to receive the first system information including a frequency band indicator indicating a frequency band supported by the eNB and an additional frequency band indicator indicating one or more frequency bands supported by the eNB. The controller 720 determines whether there is at least one supportable frequency band among the frequency bands indicated by the frequency band indicator and the additional frequency band indicators. If there is at least one supportable frequency band, the controller 720 controls the UE to attempt access to the eNB.
According to an exemplary embodiment of the present invention, if there are two or more supportably frequency bands among the frequency bands indicated by the additional frequency band indicators, the controller 720 is capable of controlling the UE to select the frequency band indicated by the first included frequency band indicator as the frequency band to access.
The controller 720 is capable of controlling the UE to receive the second system information including an additional spectrum emission value corresponding to the frequency band indicated by the frequency band indicator and at least one extra additional spectrum emission value corresponding to at least one frequency bands.
In this case, the at least one extra additional spectrum emission value corresponds to the frequency bands supported by the eNB in sequence according to the additional frequency band indicator.
The controller 720 calculates the uplink transmission power based on the spectrum emission value corresponding to the frequency band to which the UE attempts access.
Meanwhile, the second system information is capable of further including uplink carrier frequency information and, in this case, the controller 720 calculates the uplink center frequency based on the uplink carrier frequency information.
The transceiver 805 transmits data and control signals on the downlink carrier and receives data and control signals on the uplink carrier. In a case where multiple carriers are configured, the transceiver 805 transmits/receive data and controls signals on the multiple carriers.
The multiplexer/demultiplexer 820 multiplexes the data generated by the higher layer devices 825 and 830 and the control message processor 835 and demultiplexes the data received by the transceiver 805 and delivers the demultiplexed data to the appropriate higher layer processors 825 and 830, the control message processor 835, and the controller 810. The control unit 810 determines whether to additionally include ExtfrequencyBandIndicator IE in the SIB1 and whether to additionally include extadditionalSpectrumEmission IE in the SIB2 depending on whether the eNB support multiple frequency bands.
The control message processor 835 generates SIB1 and SIB2 to the lower layer according to the instruction of the controller 810.
The higher layer devices 825 and 830 are capable of being activated per UE per service to process and deliver a user service such as File Transfer Protocol (FTP) and Voice over Internet Protocol (VoIP) to the multiplexer/demultiplexer and process and deliver the data from the multiplexer/demultiplexer 820 to the service application on the higher layer.
The scheduler 815 allocates transmission resources to the UE at predetermined timing in consideration of the UE's buffer state, channel condition, and UE's Active Time; and controls the transceiver to process the signal transmitted by or to be transmitted to the UE.
In more detail, the controller 810 controls the eNB to generates the first system information including the frequency band indicator indicating a frequency band supported by the eNB and an additional frequency band indicator indicating at least one frequency band supported by the eNB. The controller 810 controls the eNB to broadcast the first system information.
The control unit 810 controls the eNB to generate the second system information including an additional spectrum emission value corresponding to the frequency band indicated by the frequency band indicator and at least one extra additional spectrum emission value corresponding to at least one frequency band indicated by the additional frequency band indicators. The controller 810 also controls the eNB to broadcast the second system information.
The above-described exemplary embodiments of the present invention can be summarized in that the eNB broadcasts a frequency band through a first FB-related information element and at least one frequency band through a second FB-related information element. The UE checks the frequency bands indicated by the first and second FB-related IEs to determine whether there is at least one supportable band and, if so, that the cell is accessible.
The eNB broadcasts an AdditionalSpectrumEmission information through the first additional emission-related IE and at least one AdditionalSpectrumEmission information through the second additional emission-related IE. The AdditionalSpectrumEmission of the first additional emission-related IE corresponds to the frequency band of the first IE, and the AdditionalSpectrumEmission of the second additional emission-related IE corresponds to the frequency band of the second IE.
The UE uses the AdditionalSpectrumEmission corresponding to the selected band to determine the uplink transmission power.
If one or more frequency bands are supported, the UE selects a frequency band according to a predetermined rule. The rule can be to select the FB filled first among the FBs included in the second IE.
According to another exemplary embodiment of the present invention, if the FB indicated in the first FB-related IE is selected, the UE determines the uplink center frequency using ARFCN information and, if the FB indicated by the first FB-related IE is not selected, determines the uplink center frequency by applying a default distance.
If the FB indicated by the first FB-related IE is not selected (or if the FB indicated by the second FB-related IE), the UE determines the uplink center frequency using the UL ARFCN information of the legacy IE and configures the uplink transmission power by applying Additional Spectrum Emission of the second additional emission-related IE.
As described above, the method and apparatus for supporting multiple frequency bands according to exemplary embodiments of the present invention are capable of supporting multiple frequency bands efficiently in an LTE-A Release-11 system to which new frequency bands are added as overlapping with the legacy frequency band.
While the invention has been shown and described in detail with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0087076 | Aug 2012 | KR | national |
This application is a continuation application of prior Application Ser. No. 14/658,674, filed on Mar. 16, 2015, which will issue as U.S. Pat. No. 10,349,407 on Jul. 9, 2019, which is a continuation application of prior application Ser. No. 14/242,456, filed Apr. 1, 2014, which issued as U.S. Pat. No. 8,982,830 on Mar. 17, 2015; which is a continuation of U.S. patent application Ser. No. 13/589,729, filed on Aug. 20, 2012, which issued as U.S. Pat. No. 8,706,164 on Apr. 22, 2014; which claims the benefit under 35 U.S.C. § 119(e) of a U.S. Provisional applications Nos. 61/526,223 filed on Aug. 22, 2011, 61/531,185 filed on Sep. 6, 2011, 61/595,646 filed on Feb. 6, 2012, 61/612,950 filed on Mar. 19, 2012, 61/649,910 filed on May 21, 2012, and 61/653,026 filed on May 30, 2012 in the U.S. Patent and Trademark Office, and under 35 U.S.C. § 119(a) of a Korean patent application No. 10-2012-0087076 filed on Aug. 9, 2012 in the Korean Intellectual Property Office, the entire disclosures of each of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5586122 | Suzuki | Dec 1996 | A |
5898681 | Dutta | Apr 1999 | A |
6370390 | Salin et al. | Apr 2002 | B1 |
6711149 | Yano et al. | Mar 2004 | B1 |
7433321 | Grilli et al. | Oct 2008 | B2 |
8102754 | Baldemair et al. | Jan 2012 | B2 |
8203987 | Ishii et al. | Jun 2012 | B2 |
8285290 | Arora et al. | Oct 2012 | B2 |
8432843 | Cai et al. | Apr 2013 | B2 |
8638705 | Park et al. | Jan 2014 | B2 |
8649288 | He et al. | Feb 2014 | B2 |
8792417 | Yeoum et al. | Jul 2014 | B2 |
8797989 | Lee | Aug 2014 | B2 |
8830828 | Guo et al. | Sep 2014 | B2 |
8868081 | Heath et al. | Oct 2014 | B2 |
8913518 | Heo et al. | Dec 2014 | B2 |
8938239 | Kherani et al. | Jan 2015 | B2 |
9084074 | Jang et al. | Jul 2015 | B2 |
9173167 | Somasundaram et al. | Oct 2015 | B2 |
9220028 | Suzuki et al. | Dec 2015 | B2 |
9237419 | Jung et al. | Jan 2016 | B2 |
9237473 | Kazmi et al. | Jan 2016 | B2 |
9398551 | Fwu et al. | Jul 2016 | B2 |
9408122 | Tsai et al. | Aug 2016 | B2 |
9408168 | Seo et al. | Aug 2016 | B2 |
9485765 | Kim et al. | Nov 2016 | B2 |
9497649 | Seo et al. | Nov 2016 | B2 |
9503246 | Bergstrom et al. | Nov 2016 | B2 |
9608699 | Kim et al. | Mar 2017 | B2 |
9788244 | Dinan | Oct 2017 | B2 |
9788289 | Kim et al. | Oct 2017 | B2 |
10405277 | Lee et al. | Sep 2019 | B2 |
20010034235 | Froula | Oct 2001 | A1 |
20030223452 | Toskala et al. | Dec 2003 | A1 |
20040032836 | Grilli et al. | Feb 2004 | A1 |
20040053623 | Hoff et al. | Mar 2004 | A1 |
20040146018 | Walton et al. | Jul 2004 | A1 |
20040147274 | Khawand et al. | Jul 2004 | A1 |
20040180675 | Choi et al. | Sep 2004 | A1 |
20040203775 | Bourdeaut et al. | Oct 2004 | A1 |
20050041608 | Jeong et al. | Feb 2005 | A1 |
20050111393 | Jeong et al. | May 2005 | A1 |
20060023664 | Jeong et al. | Feb 2006 | A1 |
20060058034 | Vaittinen et al. | Mar 2006 | A1 |
20060079224 | Welnick | Apr 2006 | A1 |
20060281466 | Gholmieh et al. | Dec 2006 | A1 |
20070019643 | Shaheen | Jan 2007 | A1 |
20070032251 | Shaheen | Feb 2007 | A1 |
20070070937 | Demirhan | Mar 2007 | A1 |
20070213033 | Alper et al. | Sep 2007 | A1 |
20070268877 | Buckley et al. | Nov 2007 | A1 |
20070287419 | Wang | Dec 2007 | A1 |
20080010677 | Kashima et al. | Jan 2008 | A1 |
20080095116 | Kim et al. | Apr 2008 | A1 |
20080123655 | Kim et al. | May 2008 | A1 |
20080160918 | Jeong et al. | Jul 2008 | A1 |
20080188219 | Fischer | Aug 2008 | A1 |
20080220782 | Wang et al. | Sep 2008 | A1 |
20080225772 | Xu | Sep 2008 | A1 |
20080232310 | Xu | Sep 2008 | A1 |
20080240439 | Mukherjee et al. | Oct 2008 | A1 |
20080268852 | Petrovic et al. | Oct 2008 | A1 |
20080273610 | Malladi et al. | Nov 2008 | A1 |
20080298325 | Vujcic | Dec 2008 | A1 |
20080310367 | Maylan | Dec 2008 | A1 |
20090016266 | Kim et al. | Jan 2009 | A1 |
20090034452 | Somasundaram et al. | Feb 2009 | A1 |
20090034476 | Wang et al. | Feb 2009 | A1 |
20090054055 | Iwamura et al. | Feb 2009 | A1 |
20090103445 | Sammour et al. | Apr 2009 | A1 |
20090124245 | Somasundaram et al. | May 2009 | A1 |
20090149189 | Sammour et al. | Jun 2009 | A1 |
20090170498 | Venkatasubramanian et al. | Jul 2009 | A1 |
20090186624 | Cave et al. | Jul 2009 | A1 |
20090191874 | Du et al. | Jul 2009 | A1 |
20090201948 | Patwardhan et al. | Aug 2009 | A1 |
20090221289 | Xu et al. | Sep 2009 | A1 |
20090232118 | Wang et al. | Sep 2009 | A1 |
20090238098 | Cai et al. | Sep 2009 | A1 |
20090238105 | Wu et al. | Sep 2009 | A1 |
20090238129 | Park et al. | Sep 2009 | A1 |
20090238142 | Chun et al. | Sep 2009 | A1 |
20090238366 | Park et al. | Sep 2009 | A1 |
20090239525 | Cai et al. | Sep 2009 | A1 |
20090247176 | Song et al. | Oct 2009 | A1 |
20090253470 | Xu | Oct 2009 | A1 |
20090259910 | Lee et al. | Oct 2009 | A1 |
20090285141 | Cai et al. | Nov 2009 | A1 |
20090296643 | Cave et al. | Dec 2009 | A1 |
20090316586 | Yi et al. | Dec 2009 | A1 |
20090316637 | Yi et al. | Dec 2009 | A1 |
20090316638 | Yi et al. | Dec 2009 | A1 |
20090316664 | Wu | Dec 2009 | A1 |
20090323608 | Adachi et al. | Dec 2009 | A1 |
20100002590 | Park et al. | Jan 2010 | A1 |
20100027471 | Palanki et al. | Feb 2010 | A1 |
20100039988 | Narasimha et al. | Feb 2010 | A1 |
20100041428 | Chen et al. | Feb 2010 | A1 |
20100075635 | Lim et al. | Mar 2010 | A1 |
20100093386 | Damnjanovic et al. | Apr 2010 | A1 |
20100110897 | Chun et al. | May 2010 | A1 |
20100111019 | Wu | May 2010 | A1 |
20100111032 | Wu | May 2010 | A1 |
20100111039 | Kim et al. | May 2010 | A1 |
20100113010 | Tenny | May 2010 | A1 |
20100118805 | Ishii et al. | May 2010 | A1 |
20100135159 | Chun et al. | Jun 2010 | A1 |
20100142485 | Lee et al. | Jun 2010 | A1 |
20100144361 | Gholmieh et al. | Jun 2010 | A1 |
20100165937 | Yi et al. | Jul 2010 | A1 |
20100172280 | Guo et al. | Jul 2010 | A1 |
20100177831 | Kim et al. | Jul 2010 | A1 |
20100189006 | Mallick et al. | Jul 2010 | A1 |
20100189038 | Chen et al. | Jul 2010 | A1 |
20100195524 | Iwamura et al. | Aug 2010 | A1 |
20100195643 | Kodali et al. | Aug 2010 | A1 |
20100202288 | Park et al. | Aug 2010 | A1 |
20100210255 | Amirijoo et al. | Aug 2010 | A1 |
20100210268 | Lim et al. | Aug 2010 | A1 |
20100215020 | Lee et al. | Aug 2010 | A1 |
20100226350 | Lim et al. | Sep 2010 | A1 |
20100246491 | Bae et al. | Sep 2010 | A1 |
20100255847 | Lee et al. | Oct 2010 | A1 |
20100265873 | Yi et al. | Oct 2010 | A1 |
20100265968 | Baldemair et al. | Oct 2010 | A1 |
20100273515 | Fabien et al. | Oct 2010 | A1 |
20100278131 | Jeong et al. | Nov 2010 | A1 |
20100296409 | Fok et al. | Nov 2010 | A1 |
20100296467 | Pelletier et al. | Nov 2010 | A1 |
20100317356 | Roessel et al. | Dec 2010 | A1 |
20100322197 | Adjakple et al. | Dec 2010 | A1 |
20100322217 | Jin et al. | Dec 2010 | A1 |
20100323614 | Yu et al. | Dec 2010 | A1 |
20100329452 | Alanara et al. | Dec 2010 | A1 |
20100330921 | Kim et al. | Dec 2010 | A1 |
20110002284 | Talwar et al. | Jan 2011 | A1 |
20110003595 | Shan | Jan 2011 | A1 |
20110003603 | Park et al. | Jan 2011 | A1 |
20110007856 | Jang et al. | Jan 2011 | A1 |
20110021197 | Ngai | Jan 2011 | A1 |
20110038277 | Hu et al. | Feb 2011 | A1 |
20110038313 | Park et al. | Feb 2011 | A1 |
20110051609 | Ishii et al. | Mar 2011 | A1 |
20110058521 | Xu et al. | Mar 2011 | A1 |
20110075636 | Blomgren et al. | Mar 2011 | A1 |
20110085535 | Shaheen | Apr 2011 | A1 |
20110085566 | Bucknell et al. | Apr 2011 | A1 |
20110086635 | Grob-Lipski | Apr 2011 | A1 |
20110092217 | Kim et al. | Apr 2011 | A1 |
20110103328 | Lee et al. | May 2011 | A1 |
20110116433 | Dorenbosch | May 2011 | A1 |
20110134774 | Pelletier et al. | Jun 2011 | A1 |
20110158165 | Dwyer et al. | Jun 2011 | A1 |
20110158166 | Lee et al. | Jun 2011 | A1 |
20110170503 | Chun et al. | Jul 2011 | A1 |
20110183662 | Lee et al. | Jul 2011 | A1 |
20110188416 | Faccin et al. | Aug 2011 | A1 |
20110194432 | Kato et al. | Aug 2011 | A1 |
20110194505 | Faccin et al. | Aug 2011 | A1 |
20110195668 | Lee et al. | Aug 2011 | A1 |
20110195708 | Moberg et al. | Aug 2011 | A1 |
20110199923 | Persson et al. | Aug 2011 | A1 |
20110201307 | Segura | Aug 2011 | A1 |
20110249641 | Kwon et al. | Oct 2011 | A1 |
20110256884 | Kazmi | Oct 2011 | A1 |
20110268087 | Kwon et al. | Nov 2011 | A1 |
20110269447 | Bienas et al. | Nov 2011 | A1 |
20110275365 | Fischer et al. | Nov 2011 | A1 |
20110281578 | Narsimha et al. | Nov 2011 | A1 |
20110294491 | Fong et al. | Dec 2011 | A1 |
20110299415 | He et al. | Dec 2011 | A1 |
20110312316 | Baldemair et al. | Dec 2011 | A1 |
20120002635 | Chung et al. | Jan 2012 | A1 |
20120008600 | Marinier et al. | Jan 2012 | A1 |
20120014357 | Jung et al. | Jan 2012 | A1 |
20120020231 | Chen et al. | Jan 2012 | A1 |
20120176950 | Zhang et al. | Jan 2012 | A1 |
20120040643 | Diachina et al. | Feb 2012 | A1 |
20120040677 | Chen | Feb 2012 | A1 |
20120044847 | Chang | Feb 2012 | A1 |
20120044898 | Ishii | Feb 2012 | A1 |
20120051297 | Lee et al. | Mar 2012 | A1 |
20120057546 | Wang et al. | Mar 2012 | A1 |
20120057560 | Park et al. | Mar 2012 | A1 |
20120063300 | Sahin et al. | Mar 2012 | A1 |
20120064886 | Kim et al. | Mar 2012 | A1 |
20120082052 | Oteri et al. | Apr 2012 | A1 |
20120082088 | Dalsgaard et al. | Apr 2012 | A1 |
20120082107 | Ou et al. | Apr 2012 | A1 |
20120088457 | Johansson et al. | Apr 2012 | A1 |
20120088509 | Yi | Apr 2012 | A1 |
20120092286 | O'Prey et al. | Apr 2012 | A1 |
20120093125 | Hapsari et al. | Apr 2012 | A1 |
20120096154 | Chen et al. | Apr 2012 | A1 |
20120099545 | Han et al. | Apr 2012 | A1 |
20120108199 | Wang et al. | May 2012 | A1 |
20120113831 | Pelletier et al. | May 2012 | A1 |
20120113905 | Anderson et al. | May 2012 | A1 |
20120113915 | Chen et al. | May 2012 | A1 |
20120113948 | Kwon et al. | May 2012 | A1 |
20120120821 | Kazmi et al. | May 2012 | A1 |
20120176926 | Jang et al. | Jul 2012 | A1 |
20120178456 | Peisa et al. | Jul 2012 | A1 |
20120213203 | Jung et al. | Aug 2012 | A1 |
20120218922 | Klingenbrunn et al. | Aug 2012 | A1 |
20120236776 | Zhang et al. | Sep 2012 | A1 |
20120243498 | Kwon et al. | Sep 2012 | A1 |
20120250520 | Chen et al. | Oct 2012 | A1 |
20120257513 | Yamada | Oct 2012 | A1 |
20120263039 | Ou et al. | Oct 2012 | A1 |
20120275390 | Korhonen et al. | Nov 2012 | A1 |
20120276897 | Kwon et al. | Nov 2012 | A1 |
20120276913 | Lim et al. | Nov 2012 | A1 |
20120281566 | Pelletier et al. | Nov 2012 | A1 |
20120281580 | Lee et al. | Nov 2012 | A1 |
20120281601 | Kuo et al. | Nov 2012 | A1 |
20120300714 | Ng et al. | Nov 2012 | A1 |
20120300715 | Pelletier et al. | Nov 2012 | A1 |
20120300720 | Gou et al. | Nov 2012 | A1 |
20120300752 | Kwon et al. | Nov 2012 | A1 |
20120307632 | Guo et al. | Dec 2012 | A1 |
20120314640 | Kim et al. | Dec 2012 | A1 |
20120329458 | Hjelmgren et al. | Dec 2012 | A1 |
20130003788 | Marinier et al. | Jan 2013 | A1 |
20130010611 | Wiemann et al. | Jan 2013 | A1 |
20130010711 | Larsson et al. | Jan 2013 | A1 |
20130012186 | Kim et al. | Jan 2013 | A1 |
20130028185 | Wu | Jan 2013 | A1 |
20130039250 | Hsu | Feb 2013 | A1 |
20130040605 | Zhang et al. | Feb 2013 | A1 |
20130044651 | Wang et al. | Feb 2013 | A1 |
20130044726 | Shrivastava et al. | Feb 2013 | A1 |
20130045765 | Laieinen et al. | Feb 2013 | A1 |
20130058309 | Kuo | Mar 2013 | A1 |
20130070682 | Kim et al. | Mar 2013 | A1 |
20130079017 | Mach et al. | Mar 2013 | A1 |
20130083739 | Yamada | Apr 2013 | A1 |
20130088980 | Kim et al. | Apr 2013 | A1 |
20130089079 | Amirijoo et al. | Apr 2013 | A1 |
20130107778 | Ryu et al. | May 2013 | A1 |
20130109320 | Tomala et al. | May 2013 | A1 |
20130114398 | Wang | May 2013 | A1 |
20130114577 | Cai et al. | May 2013 | A1 |
20130121204 | Lee et al. | May 2013 | A1 |
20130122906 | Klatt | May 2013 | A1 |
20130163497 | Wei | Jun 2013 | A1 |
20130163536 | Anderson et al. | Jun 2013 | A1 |
20130188473 | Dinan | Jul 2013 | A1 |
20130188600 | Ye | Jul 2013 | A1 |
20130189978 | Lee et al. | Jul 2013 | A1 |
20130196604 | Jung et al. | Aug 2013 | A1 |
20130201960 | Kim et al. | Aug 2013 | A1 |
20130235780 | Kim et al. | Sep 2013 | A1 |
20130258882 | Dinan | Oct 2013 | A1 |
20130265866 | Yi et al. | Oct 2013 | A1 |
20130272139 | Guo et al. | Oct 2013 | A1 |
20130294293 | Iwai | Nov 2013 | A1 |
20130301421 | Yi et al. | Nov 2013 | A1 |
20130322302 | Gholmieh et al. | Dec 2013 | A1 |
20130343261 | Gonsa et al. | Dec 2013 | A1 |
20140016593 | Park et al. | Jan 2014 | A1 |
20140023032 | Kim et al. | Jan 2014 | A1 |
20140023043 | Yang et al. | Jan 2014 | A1 |
20140023055 | Jeong et al. | Jan 2014 | A1 |
20140029577 | Dinan | Jan 2014 | A1 |
20140044074 | Chen et al. | Feb 2014 | A1 |
20140051429 | Jung et al. | Feb 2014 | A1 |
20140056246 | Chun et al. | Feb 2014 | A1 |
20140071920 | Amirijoo et al. | Mar 2014 | A1 |
20140080531 | Du et al. | Mar 2014 | A1 |
20140086224 | Kwon et al. | Mar 2014 | A1 |
20140105192 | Park et al. | Apr 2014 | A1 |
20140112254 | Lindoff et al. | Apr 2014 | A1 |
20140112276 | Ahn et al. | Apr 2014 | A1 |
20140119255 | Vannithamby et al. | May 2014 | A1 |
20140128029 | Fong et al. | May 2014 | A1 |
20140169323 | Park et al. | Jun 2014 | A1 |
20140171096 | Hwang et al. | Jun 2014 | A1 |
20140185595 | Wu et al. | Jul 2014 | A1 |
20140219204 | Park et al. | Aug 2014 | A1 |
20140220982 | Jung et al. | Aug 2014 | A1 |
20140220983 | Peng | Aug 2014 | A1 |
20140233516 | Chun et al. | Aug 2014 | A1 |
20140233542 | Bergstrom et al. | Aug 2014 | A1 |
20140241285 | Pang et al. | Aug 2014 | A1 |
20140242974 | Lee et al. | Aug 2014 | A1 |
20140294179 | Sammour et al. | Oct 2014 | A1 |
20140301317 | Xu et al. | Oct 2014 | A1 |
20140321437 | Wong et al. | Oct 2014 | A1 |
20140369322 | Fwu et al. | Dec 2014 | A1 |
20150003418 | Rosa et al. | Jan 2015 | A1 |
20150009923 | Lei et al. | Jan 2015 | A1 |
20150009959 | Uchino et al. | Jan 2015 | A1 |
20150043458 | Seo et al. | Feb 2015 | A1 |
20150044972 | Lee et al. | Feb 2015 | A1 |
20150063305 | Kim et al. | Mar 2015 | A1 |
20150078286 | Kim et al. | Mar 2015 | A1 |
20150111520 | Hsu | Apr 2015 | A1 |
20150181625 | Uchino et al. | Jun 2015 | A1 |
20150230253 | Jang et al. | Aug 2015 | A1 |
20150245261 | Teyeb et al. | Aug 2015 | A1 |
20150271740 | Jang et al. | Sep 2015 | A1 |
20150296542 | Heo et al. | Oct 2015 | A1 |
20160014672 | Jang et al. | Jan 2016 | A1 |
20160014673 | Jang et al. | Jan 2016 | A1 |
20160050652 | Wu et al. | Feb 2016 | A1 |
20160255552 | Uchino et al. | Sep 2016 | A1 |
20170195020 | Ko et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
1229562 | Sep 1999 | CN |
1524392 | Aug 2004 | CN |
1671240 | Sep 2005 | CN |
1738486 | Feb 2006 | CN |
1829380 | Sep 2006 | CN |
101242608 | Aug 2008 | CN |
101370269 | Feb 2009 | CN |
101426256 | May 2009 | CN |
101668250 | Mar 2010 | CN |
101682896 | Mar 2010 | CN |
101772928 | Jul 2010 | CN |
101841889 | Sep 2010 | CN |
101925121 | Dec 2010 | CN |
102027798 | Apr 2011 | CN |
102098655 | Jun 2011 | CN |
102123516 | Jul 2011 | CN |
102170644 | Aug 2011 | CN |
102238754 | Nov 2011 | CN |
102244927 | Nov 2011 | CN |
102300203 | Dec 2011 | CN |
102415145 | Apr 2012 | CN |
103188764 | Jul 2013 | CN |
0946071 | Sep 1999 | EP |
2104256 | Sep 2009 | EP |
2230872 | Sep 2010 | EP |
2 265 077 | Dec 2010 | EP |
2280576 | Feb 2011 | EP |
2410670 | Jan 2012 | EP |
2 469 939 | Jun 2012 | EP |
2555444 | Feb 2013 | EP |
2693826 | Feb 2014 | EP |
2849369 | Mar 2015 | EP |
2849501 | Mar 2015 | EP |
2 443 233 | Apr 2008 | GB |
2461780 | Jan 2010 | GB |
2011-502434 | Jan 2011 | JP |
2011-78019 | Apr 2011 | JP |
2011-514782 | May 2011 | JP |
2011-193444 | Sep 2011 | JP |
2013-520917 | Jun 2013 | JP |
2013-135386 | Jul 2013 | JP |
10-2005-0015729 | Feb 2005 | KR |
10-2005-0032953 | Apr 2005 | KR |
10-2008-0031493 | Apr 2008 | KR |
10-2008-0054865 | Jun 2008 | KR |
10-2008-0073439 | Aug 2008 | KR |
10-2008-0089421 | Oct 2008 | KR |
10-2009-0019868 | Feb 2009 | KR |
10-2009-0086441 | Aug 2009 | KR |
10-2010-0017513 | Feb 2010 | KR |
10-2010-0034885 | Apr 2010 | KR |
10-2011-0049622 | Apr 2010 | KR |
10-2010-0051906 | May 2010 | KR |
10-2010-0106890 | Oct 2010 | KR |
10-2010-0108459 | Oct 2010 | KR |
10-2010-0126509 | Dec 2010 | KR |
10-2010-0133477 | Dec 2010 | KR |
10-2010-0135679 | Dec 2010 | KR |
10-2010-0137531 | Dec 2010 | KR |
10-2010-0139098 | Dec 2010 | KR |
10-2011-0000479 | Jan 2011 | KR |
10-2011-0000482 | Jan 2011 | KR |
10-2011-0010100 | Jan 2011 | KR |
10-2011-0036518 | Apr 2011 | KR |
10-2011-0090813 | Aug 2011 | KR |
10-2011-0093642 | Aug 2011 | KR |
10-2011-0109992 | Oct 2011 | KR |
10-2012-0034159 | Apr 2012 | KR |
2262811 | Oct 2005 | RU |
2 426 251 | Dec 2010 | RU |
2411697 | Feb 2011 | RU |
9801004 | Jan 1998 | WO |
9826625 | Jun 1998 | WO |
2008024788 | Feb 2008 | WO |
2008137354 | Nov 2008 | WO |
2009132290 | Oct 2009 | WO |
2010063316 | Jun 2010 | WO |
2010-121662 | Oct 2010 | WO |
2010124228 | Oct 2010 | WO |
2010125969 | Nov 2010 | WO |
2011017849 | Feb 2011 | WO |
2011038272 | Mar 2011 | WO |
2011007985 | Apr 2011 | WO |
2011038625 | Apr 2011 | WO |
2011059187 | May 2011 | WO |
2011071223 | Jun 2011 | WO |
2011085802 | Jul 2011 | WO |
2011093666 | Aug 2011 | WO |
2011099725 | Aug 2011 | WO |
2011100492 | Aug 2011 | WO |
2011100673 | Aug 2011 | WO |
2011-105856 | Sep 2011 | WO |
2011139069 | Nov 2011 | WO |
2011154761 | Dec 2011 | WO |
2011155784 | Dec 2011 | WO |
2011157292 | Dec 2011 | WO |
2012008691 | Jan 2012 | WO |
2012-021138 | Feb 2012 | WO |
2012-108811 | Aug 2012 | WO |
2012108876 | Aug 2012 | WO |
2012137034 | Oct 2012 | WO |
2012141483 | Oct 2012 | WO |
20131005855 | Jan 2013 | WO |
2013051836 | Apr 2013 | WO |
2013051912 | Apr 2013 | WO |
2013065995 | May 2013 | WO |
2014031989 | Feb 2014 | WO |
Entry |
---|
Huawei, HiSilicon, “Multiflow and DTX/DRX”, R2-120554, XP050565442, Jan. 31, 2012. |
Extended European Search Report dated on Jan. 26, 2016, issued in European Application No. 13787085.3-1870. |
Korean Office Action dated Mar. 6, 2019, issued in Korean Application No. 10-2013-0050776. |
Korean Office Action dated Mar. 13, 2019, issued in Korean Application No. 10-2013-0004568. |
Korean Office Action dated Mar. 14, 2019, issued in Korean Application No. 10-2012-0140229. |
Korean Office Action dated Mar. 18, 2019, issued in Korean Application No. 10-2012-0087760. |
Korean Office Action dated Mar. 11, 2019, issued in Korean Application No. 10-2012-0085793. |
Qualcomm Incorporated, Separate UE capability for FDD and TDD, 3GPP TSG RAN WG2 #74, R2-113059, Barcelona, Spain, May 9-13, 2011. |
Qualcomm Incorporated, UE capability for FDD and TDD, 3GPP TSG RAN WG2 #73bis, R2-111868, Shanghai, China, Apr. 11-15, 2011. |
Qualcomm Incorporated, Introduction of UE capability for handover between FDD and TDD, 3GPP TSG RAN WG2 #74, R2-113056, Barcelona, Spain, May 9-13, 2011. |
Ericsson et al., “Registration of MME for SMS”, 3GPP SA WG2 Meeting #93, 2012. 10. 12. S2-124181, Sofia, Bulgaria Oct. 12, 2012. |
Intel Corporation, Configuration of multiple TA in Rel-11 CA, 3GPP TSG RAN WG2 #74, 3GPP, R2-113215, Barcelona, Spain, May 3, 2011. |
InterDigital Communications, Support for multiple Timing Advance in LTE CA, 3GPP TSG RAN WG2 #74, 3GPP, R2-113255, Barcelona, Spain, May 3, 2011. |
Huawei et al. Discussion on TA group management, 3GPP TSG RAN WG2 #74, 3GPP, R2-113285, Barcelona, Spain, May 3, 2011. |
CATT, Corrections and Clarifications on UTRA related FGIs, 3GPP TSG-RAN WG2#77bis, R2-121551, Mar. 26-30, 2012, Jeju, Korea. |
CATT, Corrections and Clarifications on UTRA related FGIs, 3GPP TSG-RAN WG2#77bis, R2-121549, Mar. 26-30, 2012, Jeju, Korea. |
CATT, Analysis on FGIs for ¾-mode UE, 3GPP TSG-RAN WG2#77bis, R2-121173, Mar. 26-30, 2012, Jeju, Korea. |
Australian Office Action dated Jan. 10, 2018, issued in the Australian Patent Application No. 2017200065. |
Japanese Office Action dated Dec. 25, 2017, issued in the Japanese Patent Application No. 2016-223589. |
Russian Office Action dated Nov. 8, 2017, issued in the Russian Patent Application No. 2016139252. |
Media Tek, Reporting Pcmax, 3GPP TSG-RAN WG2 Meeting #74 R2-113081, 3, May 9, 2011. |
Inter Digital Communications PCMAX Inclusion for Inter-band PHR R2-116105, Nov. 18, 2011. |
3GPP, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification (Release 10), 3GPP TS 36.331, Jun. 2011, V10.2.0., Sophia Antipolis, France. |
Nokia Siemens Networks, General Considerations on New Carrier Types, 3GPP TSG RAN WG1 #68, Feb. 6-10, 2012, R1-120711, Dresden, Germany. |
Huawei et al., The MDT Applicability of EPLMN, 3GPP TSG-WG2 Meeting #75, Aug. 22-26, 2011, R2-114011, Athens, Greece. |
3GPP, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Measurement Collection for Minimization of Drive Tests (MDT); Overall description; Stage 2 (Release 10), 3GPP TS 37.320, Sep. 2011, V10.4.0, Sophia Antipolis, France. |
3GPP, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Minimization of Drive-Tests in Next Generation Networks; (Release 9), 3GPP TR 36.805, Sep. 2009, V9.0.0, Sophia Antipolis, France. |
23.1 RRC Connection Establishment, Aug. 12, 2011, www.lte-bullets.com. |
LG Electronics Inc, FGI bit 25, 3GPP Draft, R2-113277 FGI Bit for Inter-Frequency Measurements and Reporting, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG2, No. Barcelona, Spain; May 9, 2011, May 3, 2011, XP050495420. |
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 10), 3GPP Standard; 3GPP TS 36.101, No. V10.3.0, Jun. 21, 2011, pp. 1-237, XP050553331. |
European Search Report dated Mar. 14, 2018, issued in European Application No. 18157697.6-1231. |
European Office Action dated Apr. 13, 2018, issued in European Application No. 12 826 373.8-1218. |
Korean Office Action dated Feb. 2, 2018, issued in Korean Application No. 10-2012-0016971. |
LG Electronics Inc. et al., R2-113282, Capability indication of handover support between LTE FDD and LTE TDD, 3GPP TSG RAN WG2 #74. Barcelona, Spain, May 3, 2011. |
Nokia Corporation et al., R2-106934, UE capability signaling for CA and MIMO in REL10, 3GPP TSG RAN WG2 #72. Jacksonville, U.S.A., Nov. 28, 2010. |
HTC Corporation et al., R2-100769, Correction to field descriptions of UE-EUTRA-Capability, 3GPP TSG RAN WG2 #68bis. Valencia, Spain, Jan. 21, 2010. |
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service accessibility (Release 10)”, 3GPP Draft; 3GPP TS 22.011 V10.3.0 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, XP050914344, Apr. 1, 2011. |
Korean Office Action dated Jun. 17, 2019, issued in Korean Application No. 10-2019-0068946. |
Korean Office Action dated May 29, 2019, issued in Korean Application No. 10-2014-7035538. |
Indian Office Action dated Jul. 3, 2019, issued in Korean Application No. 62/KOLNP/2014. |
Canadian Search Report dated Jun. 6, 2019, issued in Canadian Application No. 2,859,499. |
Vodafone, “Extended ACB for UTRAN”, 3GPP TSG-RAN WG2#72 R2-106275, 3GPP, Nov. 9, 2010. |
Vodafone, “Rejection of Connections towards a congested CN Node for UMTS and LTE”, 3GPP TSG-RAN WG3#69bis R3-102964, 3GPP, Oct. 12, 2010. |
ITRI, “Handling of Roaming MTC Devices for CN overload control”, 3GPP TSG-RAN WG2#72bis R2-110399, 3GPP, Jan. 11, 2011. |
Nec et al., “vSRVCC Enhancements in TS 24.301 excluding vSRVCC indicator (terminology variant 2)”, 3GPP TSG-CT WG1#72 C1-112670, 3GPP, Jul. 4, 2011. |
Interdigital, “RACH with Carrier Aggregation”, 3GPP Draft, R2-102132 (RACH in CA), 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650 , Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG2, No. Beijing , china, Apr. 12, 2010, Apr. 6, 2010 (Apr. 6, 2010), XP050422566. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 11)”, 3GPP Standard; 3GPP TS 36.321, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG2, No. V11.0.0, Sep. 21, 2012 (Sep. 21, 2012), pp. 1-55, XP050649832. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access(E-UTRA);Medium Access Control (MAC) Protocol Specification (Release10)”, TS36.321, V10.1.0, Mar. 2011. |
Ericsson et al., “Multiple frequency band indicators per cell”, 3GPP TSG-RAN WG2 #75, R2-114299, http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_75/docs/R2-114299.zip, Aug. 26, 2011 (Aug. 26, 2011). |
Ericsson et al., “Multiple frequency band indicators per cell”, 3GPP TSG-RAN2 Meeting #75, R2-114301, http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_75/docs/R2-114301 .zip, Aug. 26, 2011 (Aug. 26, 2011). |
Korean Office Action dated Jun. 15, 2018, issued in Korean Application No. 10-2012-0037390. |
Korean Office Action dated Jun. 12, 2018, issued in Korean Application No. 10-2014-7024860. |
Rapporteur (Ericsson) et al., R2-115078, UE soft buffer handling in MAC, 3GPP TSG RAN WG2 #75bis, Oct. 4, 2011. |
Huawei, HiSilicon, “EAB parameters in shared network”, 3GPP TSG-RAN WG2 Meeting #76, R2-115830, Nov. 8, 2011. |
MediaTek, “Further details on EAB”, 3GPP TSG-RAN2 #76, R2-116094, Nov. 8, 2011. |
ZTE, Panasonic, SierraWireless “Clarification on how EAB is applied in Shared Network”, 3GPP TSG-SA WG1 Meeting #54, S1-111310, May 13, 2011. |
LG Electronics Inc., “FGI bit 25”, 3GPP TSG-RAN WG2 #74, R2-113277, May 14, 2011. |
3GPP, TS36.321 v10.1.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification, Apr. 5, 2011. |
Ericsson, R2-080934, Details of MAC DRX Control, 3GPP TSG RAN WG2 #61, Feb. 4, 2008. |
Qualcomm Incorporated: “Assistance Information for MBMS UEs in RRC_IDLE mode”, 3GPP Draft; R2-115104, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, (Oct. 3, 2011), vol. RAN WG2, No. Zhuhai; Oct. 10, 2011, pp. 1-3, XP050540796, Oct. 3, 2011. |
Huawei et al: “How does the UE determine whether neighbour cells of MBMS frequency can provide the services that it is interested to receive”, 3GPP Draft; R2-114430. ZIP:R2-114430 How Does the UE Determine Whether Neighbor Cells of MBMS Frequency Can Provide the Services That It Is Interested to Receive, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des, (Aug. 16, 2011). vol. RAN WG2, No. Athens, Greece; Aug. 22, 2011, pp. 1/4-4/4, XP050552786, Aug. 16, 2011. |
Huawei: “[75#35]—LTE: MBMS Service Continuity”, 3GPP Draft; R2-115017 Summary of Email Discussion 75#35 LTE—MBMS Service Continuity, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, (Oct. 4, 2011), vol. RAN WG2, No. Zhuhai; Oct. 10, 2011, pp. 1-20, XP050540930, Oct. 4, 2011. |
Randy H. Katz, “Adaptation and Mobility in Wireless Information Systems”, IEEE Personal Communications, (1994), XP011415559, 1994. |
3GPP, R4-114382 TR 37.806 v1.1.0 change bars, Aug. 17, 2011. |
Korean Notice of Allowance dated Feb. 26, 2020, issued in Korean Application No. 10-2012-0087076. |
Korean Office Action dated Feb. 26, 2020, issued in Korean Application No. 10-2012-0113330. |
Korean Notice of Allowance dated Mar. 30, 2020, issued in Korean Application No. 10-2013-0046659. |
Chinese Office Action dated Mar. 27, 2020, issued in Chinese Application No. 201711026422.6. |
Chinese Office Action dated Apr. 3, 2020, issued in Chinese Application No. 201710709108.1. |
Korean Office Action dated Apr. 13, 2020, issued in Korean Application No. 10-2012-0087760. |
Brazilian Office Action dated Apr. 7, 2020, issued in Brazilian Application No. 112014008713-0. |
Brazilian Office Action dated Mar. 30, 2020, issued in Brazilian Application No. 112014004199-7. |
3GPP, TS36.321 v10.4.0, E-UTRA; Medium Access Control (MAC) protocol specification (Release 10), Dec. 15, 2011. |
Panasonic, “Random Access procedure for multiple TA”, 3GPP TSG RAN WG2#75, 3GPP server published date Aug. 16, 2011, R2-113829. |
Ericsson et al., “Introduction of Carrier Aggregation”, 3GPP TSG RAN WG2#72, 3GPP server published date Nov. 8, 2010, R2-106133. |
Samsung, “PS-only high level function description”, 3GPP TSG SA WG2 Meeting #89, Oct. 12, 2012, S2-110485. |
Intel Corporation, “EAB for RAN overload protection”, 3GPP TSG RAN WG2 Meeting #74, May 13, 2011, R2-113217. |
Alcatel-Lucent, “Report of Email discussion on 68b#21 LTE: 36.331 CR for “full configuration””, pp. 1-4, Feb. 24, 2010, R2-101376, XP050605024. |
Nokia Siemens Networks et al, “POCP SN extension in Rel-11”, pp. 1-4, Aug. 7, 2012, R2-123432, XP050665554. |
Korean Office Action dated Nov. 28, 2019, issued in Korean Application No. 10-2013-0006771. |
Korean Office Action dated Dec. 2, 2019, issued in Korean Application No. 10-2013-0046659. |
Korean Office Action dated Feb. 4, 2020, issued in Korean Application No. 10-2014-7031376. |
Korean Office Action dated Feb. 4, 2020, issued in Korean Application No. 10-2014-7031585. |
Korean Office Action dated Feb. 5, 2020, issued in Korean Application No. 10-2019-0169542. |
Korean Notice of Allowance dated Dec. 19, 2019, issued in Korean Application No. 10-2012-0140229. |
Chinese Office Action dated Dec. 30, 2019, issued in Chinese Application No. 201710210508.8. |
Extended European Search Report dated Feb. 2, 2020, issued in European Application No. 19206062.2-1218. |
3GPP TSG-RAN2 WG2 Meeting #75, Athens, Greece, Aug. 22-26, 2011, R2-114568, Aug. 23, 2011. |
Nokia Siemens Networks, Nokia Corporation, “HARQ comparison for soft buffer handling”, 3GPP TSG-RAN WG2 Meeting #75bis, Zhuhai, China, Oct. 10-14, 2011, R2-114940, Oct. 10, 2011. |
Chinese Office Action dated Jul. 21, 2020, issued in Chinese Application No. 201810059259.1. |
Japanese Notice of Allowance dated Aug. 25, 2020, issued in Japanese Patent Application No. 2018-222395. |
Korean Decision of Patent dated Aug. 31, 2020, issued in Korean Application No. 10-2012-0113330. |
Korean Decision of Patent dated Jun. 23, 2020, issued in Korean Application No. 10-2014-7031585. |
Korean Decision of Patent dated Jun. 29, 2020, issued in Korean Application No. 10-2019-0037950. |
Ericsson et al., R2-114033, CSI and SRS reporting at unexpected DRX state change, 3GPP TSG RAN WG2 #75, Aug. 15, 2011. |
Nokia Siemens Networks et al., R2-114021, Clarification on CQI/SRS reporting during DRX, 3GPP TSG RAN WG2 #75, Aug. 15, 2011. |
3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Minimization of drive-tests in Next Generation Networks (Release 9)”, 3GPP TR 36.805 V9.0.0, Dec. 21, 2009. |
Ericsson et al., “Accessibility measurements for MDT”, 3GPP TSG-RAN WG2 #76, R2-116148, Nov. 8, 2011. |
3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 9)”, 3GPP TS 36.331 V10.4.0, Dec. 20, 2011. |
3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio measurement collection for Minimization of Drive Tests (MDT); Overall description; Stage 2 (Release 10)” 3GPP TS 37.320 V10.4.0, Dec. 2011. |
Huawei, HiSilicon “Consideration on coverage optimization”, 3GPP TSG-RAN WG2 Meeting #76 San Francisco, USA, 3GPP R2-115885, Nov. 14-18, 2011. |
Ericsson et al: “Multiple frequency band indicators per cell”, 3GPP Draft; R2-114299 Multiple FBI, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia Anti Polis Cedex ; France, vol. Ran WG2, No. Athens, Greece; Aug. 22, 2011, Aug. 16, 2011 (Aug. 16, 2011), pp. 1/5-5/5, XP050540038, Aug. 16, 2011. |
Ericsson et al: “Multiple frequency band indicators per cell”, 3GPP Draft; R2-114301 36.331 CR Multiple FBI, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Anti Polis Cedex ; France, 1-16 vol. RAN WG2, No. Athens, Greece; Aug. 22, 2011, Aug. 16, 2011 (Aug. 16, 2011), pp. 1-7, XP050540040, Aug. 16, 2011. |
Huawei et al: “Signalling for the TA Group Management”, 3GPP Draft; R2-115827 Singalling for the TA Group Management, 3rd Generation Partnership Project (3GPP). Mobile Competence Centre; 650, Route Des Lucioles; France vol. RAN WG2. No. San Francisco. USA; F-06921 Sophia-Antipolis Cedex; XP050564319, Nov. 8, 2011. |
Catt et al: “Frame and SFN timing in CA”, et al: “Frame and SFN timing in CA”, 3GPP Draft; R2-103521, 3rd Generation Partnershiproject (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG2, No. Stockholm, Sweden; XP050451101, Jun. 22, 2010. |
Pantech: IDC trigger procedure, 3GPP Draft; R2-120664 IDC Trigger Procedure, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG2, No. Dresden, Germany; Nov. 14, 2011-Nov. 18, 2011, Jan. 31, 2012 (Jan. 31, 2012). |
Research in Motion UK Limited: “Interference measurement for BT”, 3GPP Draft; R2-120183, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG2, No. Dresden, Germany; Feb. 6, 2012-Feb. 10, 2012, Jan. 27, 2012 (Jan. 27, 2012), XP050564912. |
Ericsson et al., R2-105210, Introduction of relays in MAC, 3GPP TSG RAN WG2 #71, Oct. 5, 2010. |
Texas Instruments, R1-100745, Increasing Sounding Capacity for LTE-A, 3GPP TSG RAN WG1 #59bis, Jan. 21, 2010. |
ETSI TS 137 320 V10.1.0, Universal Mobile Telecommunications System (UMTS); LTE; Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio measurement collection for Minimization of Drive Tests (MDT); Overall description; Stage 2, Apr. 2011. |
Huawei, Time alignment in inter-frequency measurement[online], 3GPP TSG-RAN WG2#75bis R2-115166 <URL:http://www.3gpp.org/ftp/tsg_ran /WG2_RL2/TSGR2_75bis/Docs/R2-115166.zip, Oct. 10, 2011. |
Korean Office Action dated Sep. 4, 2019, issued in Korean Application No. 10-2012-0011330. |
Korean Notice of Allowance dated Sep. 5, 2019, issued in Korean Application No. 10-2013-0002595. |
Korean Notice of Allowance dated Sep. 18, 2019, issued in Korean Application No. 10-2013-0004568. |
Indian Office Action dated Sep. 18, 2019, issued in Indian Application No. 3851/KOLNP/2013. |
Extended European Search Report dated Oct. 7, 2019, issued in European Application No. 19184016.4-1218. |
Extended European Search Report dated Oct. 24, 2019, issued in European Application No. 19179723.2-1218. |
Korean Office Action dated Oct. 23, 2019, issued in Korean Application No. 10-2012-0087760. |
Korean Notice of Allowance dated Oct. 24, 2019, issued in Korean Application No. 10-2013-0051929. |
Japanese Office Action dated Nov. 5, 2019, issued in Japanese Application No. 2018-222395. |
Nokia Siemens Networks, InterDigital Communications, “Further considerations on inter-site DTX/DRX with HSDPA Multiflow”, 3GPP TSG-RAN WG2 Meeting #77bis, R2-121777, Mar. 20, 2012. |
Korean Decision of Patent dated May 28, 2020, issued in Korean Application No. 10-2013-0006771. |
European Office Action dated Mar. 13, 2020, issued in European Application No. 13787085.3-1218. |
Japanese Office Action dated Apr. 27, 2018, issued in Japanese Application No. 2017-074583. |
Japanese Office Action dated Jun. 11, 2018, issued in Japanese Application No. 2017-111875. |
Australian Office Action dated Jun. 5, 2018, issued in Australian Application No. 2017203059. |
Canadian Office Action dated Jun. 7, 2018, issued in Canadian Application No. 2,845,779. |
European Search Report dated Jun. 7, 2018, issued in European Application No. 18160008.1. |
Korean Intellectual Property Decision to Grant dated Dec. 12, 2018, issued in the Korean Application No. 10-2012-0037390. |
Indian Office Action dated Nov. 27, 2018, issued in the Indian Application No. 2519/KOLNP/2014. |
Pantech, IDC Trigger Procedure, 3GPP TSG-RAN WG2 Meeting #77, R2-120664, Nov. 14-18, 2011, Dresden, Germany. |
Motorola, Solution for Extra Low Power Consumption and Time Controlled, 3GPP TSG SA WG2 Meeting #78, Feb. 22-26, 2010, TD S2-101215, San Francisco, USA. |
Interdigital Communications, Handling of SCell Activation/Deactivation RF Retuning Interruptions, 3GPP TSG RAN WG2 #78, May 21-25, 2012, R2-122289, Prague, Czech Republic. |
Renasas Mobile Europe Ltd., Considerations on Returning Interruptions, 3GPP TSG-RAN WG4 Meeting #63, May 21-25, 2012, R4-123056, Prague, Czech Republic. |
Ericsson et al., Extended Access Barring for MTC Devices, 3GPP TSG-RAN WG2 #74, May 9-13, 2011, R2-113030, Barcelona, Spain. |
LG Electronics Inc., Further Discussion on EAB, 3GPP TSG-RAN WG2 #74, May 9-13, 2011, R2-113339, Barcelona, Spain. |
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service Accessibility (Release 11), 3GPP TS 22.011, Jun. 2011, V11.0.0, Sophia Antipolis, France. |
Japanese Decision to Decline the Amendment dated Apr. 4, 2017, issued in the Japanese Application No. 2014-524941. |
Japanese Ruling of Refusal dated Dec. 26, 2016, issued in the Japanese Application No. 2014-524941. |
Chinese Office Action dated Jun. 22, 2017, issued in the Chinese Application No. 201380018209.4. |
Chinese Office Action dated Jun. 26, 2017, issued in the Chinese Application No. 201380016921.0. |
Chinese Office Action dated Aug. 22, 2017, issued in the Chinese Application No. 201380038905.1. |
Chinese Office Action dated Sep. 5, 2017, issued in the Chinese Application No. 201380024026.3. |
Japanese Office Action dated Dec. 17, 2018, issued in the Japanese Application No. 2018-073713. |
Korean Intellectual Property Office Action dated Dec. 20, 2018, issued in the Korean Application No. 10-2013-0012964. |
Korean Intellectual Property Office Action dated Dec. 15, 2018, issued in the Korean Application No. 10-2014-7028047. |
Samsung: “Discussion on CQI/SRS transmission during DRX”, 3GPP TSG-RAN2 #75 Meeting, R2-114180, XP050539989, published on Aug. 22, 2011. |
Samsung, “PS-only high level function description”, 3GPP TSG SA WG2 Meeting #89, S2-110485, published on Jan. 31, 2012. |
European Office Action dated Jul. 24, 2018, issued in European Application No. 12 839 782.5-1214. |
“Adaptation and Mobility in Wireless Information Systems”, Randy H. Katz, IEEE Personal Communications, 1994. |
Korean Office Action dated May 1, 2019, issued in Korean Application No. 10-2013-0051929. |
Korean Decision to Grant dated Apr. 10, 2019, issued in Korean Application No. 10-2012-0112390. |
Korean Decision to Grant dated May 2, 2019, issued in Korean Application No. 10-2019-7009763. |
3GPP TSG RAN WG2 #77bis, “On the reporting the failed RRC connection establishment”, R2-121272, Mar. 26-30, eo12, Jeju Island, Korea. |
NTT Docomo, Further discussions on L TE-A UE categories/ capabilities, 3GPP TSG-RAN WG4 Ad-hoc meeting 1'2010-04, R4-103470_Xi'an, China, Oct. 11-15, 2010_. |
3GPP TS 36.331 V10.5.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 10), Mar. 2012. |
Korean Intellectual Property Office Action dated Jan. 21, 2019, issued in Korean Application No. 10-2014-7027400. |
LG Electronics Inc., R2-114456, EAB model in UE, 3GPP TSG RAN WG2 #75. Athens, Greece, Aug. 22-26, 2011. |
Research in Motion Ltd: “Go to Long Sleep Command for L TE DRX”, 3GPP Draft; R2-081868, 3rd 13Eneration Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, XP050139558, dated Mar. 25, 2008. |
Lte: E-UTRA; MAC Protocol Specification (3GPP TS 36.321 Version 10.2.0 Release 1or, ETSI TS 136 321 V10.2.0., pp. 34-35,41-44, XP055319954. Dated Jun. 28, 2011. |
Motorola Mobility: “Reference and Synchronisation Signals in Additional Carrier Type”, 3GPP Draft; R.1-120515-Additional Carrier Types_RS Sync, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WGI, No. Dresden, Germany; XP050563331. Dated Feb. 2, 2002. |
New Postcom: “Considerations on measurement for additional carrier types”, 3GPP Draft; R1-113701_Considerations on Measurement for Additional Carrier Types, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WGI, No. San Francisco, USA; XP050562373. Dated Nov. 10, 2011. |
Vancouver. et al., “Support for Enhanced UE Battery Saving”, SA WG2 Meeting #89 S2-120715, Dated Jan. 31, 2012. |
Ericsson, ST-Ericsson, Huawei, Hisilicon, Alcatel-Lucent, Verizon Wireless, Nokia Siemens Networks, SMS over SGs usage to support NAS procedures for PS only SMS, 3GPP TSG-SA WG2#89 S2-121108, 3GPP, Dated Feb. 10, 2011. |
Huawei, HiSilicon, Enabling SMS for PS-only, 3GPP TSG-SA WG2#87 S2-114186, 3GPP, Dated Oct. 4, 2011. |
Extended European Search Reports dated Nov. 19, 2018, issued in the European Application No. 18186199.8-1218. |
Extended European Search Reports dated Nov. 26, 2018, issued in the European Application No. 18192775.7-1218. |
Nokia Corporation et al., RACH and Carrier Aggregation, 3GPP TSG-RAN WG2 Meeting #68, Nov. 9-13, 2009, R2-096844, Jeju, South Korea. |
Asustek, Issues of Random Access Procedure on SCell, 3GPP TSG-RAN WG2 Meeting #74, May 9-13, 2011, R2-112922, Barcelona, Spain. |
ITRI, Considerations on Random Access on SCell, 3GPP TSG RAN WG2 #74, May 9-13, 2011, R2-113192, Barcelona, Spain. |
New Postcom, Consideration on RA Response Window Size for SCell, 3GPP TSG RAN WG2 Meeting #79, Aug. 13-17, 2012, R2-123485, Qingdao, China. |
Huawei et al., Enabling SMS for PS-Only, SA WG2 Meeting #87, Oct. 10-14, 2011, S2-114586, Jeju, Korea. |
3GPP, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Group Services and System Aspects; Circuit Switched (CS) fallback in Evolved Packet System (EPS); Stage 2 (Release 10), 3GPP TS 23.272, Sep. 2011, V10.5.0, Sophia Antipolis, France. |
Alcatel-Lucent et al., RA Procedure on SCell, TSG-RAN WG2#77, Feb. 6-10, 2012, R2-120603, Dresden, Germany. |
3GPP, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Minimization on drive-tests in Next Generation Networks (Release 9), 3GPP TR 36.805, Dec. 2009, V9.0.0, Sophia Antipolis, France. |
3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); Study on Minimization of Drive-Tests in Next Generation Networks, 3GPP Specific Detail, http://www.3gpp.org/DynaReport/36805.htm. |
Ericsson et al., Accessibility Measurements for MDT, 3GPP TSG-RAN WG2 #76, Oct. 14-18, 2011, Tdoc R2-116148, San Francisco, CA, USA. |
Alcatel-Lucent, VLR SGs Paging Retry, SA WG2 Meeting #87, Oct. 10-14, 2011, S2-114636, Jeju, South Korea. |
3GPP, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service Accessibility (Release 11), 3GPP TS 22.011, Dec. 2011, V11.2.0, Sophia Antipolis, France. |
Huawei et al., General Consideration of EAB in LTE, 3GPP TSG-RAN WG2 Meeting #75, Aug. 22-26, 2011, R2-113988, Athens, Greece. |
Alcatel-Lucent et al.; RRC signalling design for Almost Blank Subframe patterns; 3GPP TSG-RAN WG2 Meeting #72; R2-106451; Nov. 15-19, 2010; Jacksonville, FL. |
Huawei et al; Consideration on DRX in eICIC scenario; 3GPP TSG-RAN WG2 Meeting #73; R2-111021; Feb. 21-25, 2011; Taipei. |
Research in Motion UK Limited; UE power saving for eICIC; 3GPP TSG RAN WG2 Meeting #73; R2-111233; Feb. 21-25, 2011; Taipei, Taiwan. |
3GPP; 3rd Generation Partnership Project; Technical Specification Group Radio Access Network Extending 850 MHz Study Item Technical Report (Release 9); 3GPP TR 37.806; V1 .10.0; Aug. 2011. |
Huawei et al: “Remaining issue for accessibility”, 3GPP Draft; R2-122457 Remaining Issue for Accessbility, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG2, No. Prague, Czech Republic; May 21, 2012-May 25, 2012, May 15, 2012 (May 15, 2012), XP050607283. |
3GPP TS 36.321 V8.2.0, Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (EUTRA) Medium Access Control (MAC) protocol specification (Release 8), section 5.1.1-5.1.4, May 2008, Jun. 17, 2008. |
Juniper, “Overview of PDP contexts and Bearers”, Nov. 16, 2011, retrived at http://www.juniper.net/techpubs/en_US/junosmobility11.2/topics/concept/gateways-mobility-bearer-overview.html, Nov. 16, 2011. |
Telcoloewe, “PDP context vs. EPS Bearer”, Jan. 28, 2010. https://telcoloewe.wordpress.com/201 0/01/28/pdp-context-vs-epsbearer /https://telcoloewe.wordpress.com/201 % 1 /28/pdp-co ntext -vs-eps-bearer/, Jan. 28, 2010. |
3GPP TS 36.331 “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 10)” V10.4.0, Dec. 22, 2011. |
Ericsson, “Introduction of CA Enhancements in MAC”, R2-121988, 3GPP TSG-RAN WG2 Meeting #77bis, Jeju, Korea, Mar. 26-30, 2012, Apr. 18, 2012. |
ETSI TS 36.321 V14.5.0 (Jan. 2018), LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (3GPP TS 36.321 version 14.5.0 Release 14), Jan. 7, 2018. |
Extended European Search Report dated Apr. 6, 2021, issued in European Application No. 21150615.9-1218. |
Samsung, “Discussion on UP protocol stack options in inter-ENB Carrier Aggregation”, 3GPP TSG-RAN WG2 Meeting #81bis, R2-131070, Apr. 5, 2013. |
Motorola, “Layer-2 structure for LTE-A carrier aggregation”, 3GPP TSG-RAN-WG2 Meeting #66 R2-093204, Apr. 28, 2009. |
Chairman: “Notes”; May 11, 2011, pp. 1-84, XP050496185. |
CATT: “Detail on SCell RACH Configuration”, 3GPP TSG RAN WG2 Meeting #78, Prague, Czech Republic, May 21-25, 201215 May 2012, XP050607173, R2-122175. |
Chinese Office Action dated Nov. 6, 2020, issued in Chinese Application No. 201710464369.1. |
Korean Notice of Allowance dated Oct. 21, 2020, issued in Korean Application No. 10-2014-7031376. |
Extended European Search Report dated Jan. 12, 2021, issued in European Application No. 20201347.0-1218. |
Intel Corporation: “Enhancements in DRX operation”, 3GPP Draft; R2-124974_TEI11_DRX-FINAL, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG2, No. Bratislava, Slovakia; Oct. 8, 2012-Oct. 12, 2012, XP050666517, Sep. 28, 2012. |
Ericsson et al: “CSI and SRS reporting at unexpected DRX state change”, 3GPP Draft; R2-115438 CSI and SRS Reporting at Unexpected DRX State Change 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG2, No. Zhuhai; XP050540889, Oct. 3, 2011. |
Samsung: “Discussion on mandating CSI/SRS transmission during uncertain period”, 3GPP Draft; R2-124687 Mandating CSI_SRS for 4 Subframes, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG2, No. Bratislava, Slovakia; Oct. 8, 2012-Oct. 12, 2012, XP050666412, Sep. 28, 2012. |
European Summons to Attend Oral Proceedings dated May 4, 2021, issued in European Application No. 12839782.5-1212. |
Samsung, “Discussion on FGI bit handling for FDD/TDD dual mode UE”, 3GPP TSG-RAN2 #75 meeting, Aug. 22-26, 2011(electronically published Aug. 16, 2011), R1-114177. |
Clearwire, “E-UTRA capability handling for dual mode UEs (FDD/TDD)”, 3GPP TSG-RAN Meeting #54, Berlin Germany, Dec. 6-9, 2011, RP-111618. |
Clearwire, “Capability handling for dual mode UEs (FDDITDD)”, 3GPP TSG-RAN Working Group Meeting #75bis, Ahuhai, China, Oct. 10-14, 2011, R2-115468 with a publicly available date of Oct. 7, 2011. |
Samsung, “Report: [75#32] FGI bit handling for FDD/TDD dual mode UE”, 3GPP TSG-RAN2 #75bis meeting, Oct. 10-14, 2011, Zhuhai, China, Tdoc, R2-115034. |
3GPP TS 36.331 V9.0.0 (Sep. 2009); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 9) pp. 76-77, 170-173 (Year: 2009). |
3GPP TS 36.321 V9.3.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 9), Jun. 2010. |
ITRI, “Further analysis on RAN overload control mechanisms”,3GPP Draft; R2-112197_Further Analysis on RAN Overload Control Mechanisms, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG2, No. Shanghai, China; Apr. 11, 2011, XP050494576. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 10)”, 3GPP Standard; 3GPP TS 36.212, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, No. V10.2.0, Jun. 21, 2011 (Jun. 21, 2011), pp. 1-78, XP050553365. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 10)”, 3GPP Standard; 3GPP TS 36.213, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, No. V10.3.0, Sep. 25, 2011 (Sep. 25, 2011), pp. 1-122, XP050553950. |
European Notice of allowance dated Aug. 30, 2021, issued in European Application No. 19193176.5-1231. |
European Communication dated Oct. 27, 2021, issued in European Application No. 12839782.5. |
3GPP; 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 11); 3GPP TS 36.300; V11.1.0; Mar. 14, 2012. |
Ericsson et al.; Limitation of PDCP SN and FMS-fields; 3GPP TSG-RAN WG2 #78; Tdoc R2-122651; May 15, 2012; Prague, Czech Republic. |
Chinese Office Action with English translation dated Dec. 2, 2021; Chinese Appln. No. 201910248625.2. |
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 10); 3GPP TS 36.321; V10.3.0; Sep. 2011; Valbonne, Francel. |
Huawei et al.; RACH failure handling on SCell; 3GPP TSG-RAN WG2 Meeting #77; R2-120059; Feb. 6-10, 2012; Dresden, Germany; XP050565266; published Jan. 31, 2012. |
CATT; SCell RA failure; 3GPP TSG RAN WG2 Meeting #77; R2-120255; Feb. 6-10, 2012; Dresden, Germany; XP050565344; published Jan. 31, 2012. |
European Notice of Allowance dated Feb. 15, 2022; European Appln. No. 12 839 782.5-1212. |
European Search Report dated Mar. 11, 2022; European Appln. No. 21195342.7-1218. |
Chinese Office Action with English translation dated Jan. 13, 2023; Chinese Appln. No. 201910248625.2. |
Extended European Search Report dated Mar. 15, 2023; European Appln. No. 22215051.8-1218. |
European Communication dated Feb. 17, 2023; European Appln. No. 21 195 342.7-1218. |
European Communication dated Jan. 19, 2023; European Appln. No. 20 201 347.0-1218. |
U.S. Notice of Allowance dated Mar. 22, 2023; U.S. Appl. No. 16/715,587. |
U.S. Office Action dated Apr. 6, 2023; U.S. Appl. No. 17/200,364. |
U.S. Office Action dated Apr. 24, 2023; U.S. Appl. No. 17/505,256. |
Li et al.; Access Probability Aware Cell Reselection for Load Balancing; Proceedings of ICCTA2009; IEEE; 2009. |
U.S. Office Action dated Dec. 28, 2022; U.S. Appl. No. 16/715,587. |
U.S. Office Action dated Feb. 9, 2023; U.S. Appl. No. 17/096,553. |
U.S. Notice of Allowance dated Feb. 2, 2023; U.S. Appl. No. 17/548,324. |
Chinese Office Action with English translation dated Sep. 28, 2022; Chinese Appln. No. 201910459535.8. |
U.S. Office Action dated Jul. 14, 2023; U.S. Appl. No. 17/096,553. |
U.S. Office Action dated Sep. 26, 2023; U.S. Appl. No. 17/200,364. |
Number | Date | Country | |
---|---|---|---|
20190335461 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
61526223 | Aug 2011 | US | |
61531185 | Sep 2011 | US | |
61595646 | Feb 2012 | US | |
61612950 | Mar 2012 | US | |
61649910 | May 2012 | US | |
61653026 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14658674 | Mar 2015 | US |
Child | 16505106 | US | |
Parent | 14242456 | Apr 2014 | US |
Child | 14658674 | US | |
Parent | 13589729 | Aug 2012 | US |
Child | 14242456 | US |