Method and apparatus for suppressing wind noise

Information

  • Patent Grant
  • 9373340
  • Patent Number
    9,373,340
  • Date Filed
    Tuesday, January 25, 2011
    13 years ago
  • Date Issued
    Tuesday, June 21, 2016
    8 years ago
Abstract
The invention includes a method, apparatus, and computer program to selectively suppress wind noise while preserving narrow-band signals in acoustic data. Sound from one or several microphones is digitized into binary data. A time-frequency transform is applied to the data to produce a series of spectra. The spectra are analyzed to detect the presence of wind noise and narrow band signals. Wind noise is selectively suppressed while preserving the narrow band signals. The narrow band signal is interpolated through the times and frequencies when it is masked by the wind noise. A time series is then synthesized from the signal spectral estimate that can be listened to. This invention overcomes prior art limitations that require more than one microphone and an independent measurement of wind speed. Its application results in good-quality speech from data severely degraded by wind noise.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to the field of acoustics, and in particular to a method and apparatus for suppressing wind noise.


2. Description of Related Art


When using a microphone in the presence of wind or strong airflow, or when the breath of the speaker hits a microphone directly, a distinct impulsive low-frequency puffing sound can be induced by wind pressure fluctuations at the microphone. This puffing sound can severely degrade the quality of an acoustic signal. Most solutions to this problem involve the use of a physical barrier to the wind, such as fairing, open cell foam, or a shell around the microphone. Such a physical barrier is not always practical or feasible. The physical barrier methods also fail at high wind speed. For this reason, prior art contains methods to electronically suppress wind noise.


For example, Shust and Rogers in “Electronic Removal of Outdoor Microphone Wind Noise”—Acoustical Society of America 136th meeting held Oct. 13, 1998 in Norfold, Va. Paper 2pSPb3, presented a method that measures the local wind velocity using a hot-wire anemometer to predict the wind noise level at a nearby microphone. The need for a hot-wire anemometer limits the application of that invention. Two patents, U.S. Pat. No. 5,568,559 issued Oct. 22, 1996, and U.S. Pat. No. 5,146,539 issued Dec. 23, 1997, both require that two microphones be used to make the recordings and cannot be used in the common case of a single microphone.


These prior art inventions require the use of special hardware, severely limiting their applicability and increasing their cost. Thus, it would be advantageous to analyze acoustic data and selectively suppress wind noise, when it is present, while preserving signal without the need for special hardware.


SUMMARY OF THE INVENTION

The invention includes a method, apparatus, and computer program to suppress wind noise in acoustic data by analysis-synthesis. The input signal may represent human speech, but it should be recognized that the invention could be used to enhance any type of narrow band acoustic data, such as music or machinery. The data may come from a single microphone, but it could as well be the output of combining several microphones into a single processed channel, a process known as “beamforming”. The invention also provides a method to take advantage of the additional information available when several microphones are employed.


The preferred embodiment of the invention attenuates wind noise in acoustic data as follows. Sound input from a microphone is digitized into binary data. Then, a time-frequency transform (such as short-time Fourier transform) is applied to the data to produce a series of frequency spectra. After that, the frequency spectra are analyzed to detect the presence of wind noise and narrow-band signal, such as voice, music, or machinery. When wind noise is detected, it is selectively suppressed. Then, in places where the signal is masked by the wind noise, the signal is reconstructed by extrapolation to the times and frequencies. Finally, a time series that can be listened to is synthesized. In another embodiment of the invention, the system suppresses all low frequency wide-band noise after having performed a time-frequency transform, and then synthesizes the signal.


The invention has the following advantages: no special hardware is required apart from the computer that is performing the analysis. Data from a single microphone is necessary but it can also be applied when several microphones are available. The resulting time series is pleasant to listen to because the loud wind puffing noise has been replaced by near-constant low-level noise and signal.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete description of the present invention and further aspects and advantages thereof, reference is now made to the following drawings in which:



FIG. 1 is a block diagram of a programmable computer system suitable for implementing the wind noise attenuation method of the invention.



FIG. 2 is a flow diagram of the preferred embodiment of the invention.



FIG. 3 illustrates the basic principles of signal analysis for a single channel of acoustic data.



FIG. 4 illustrates the basic principles of signal analysis for multiple microphones.



FIG. 5A is a flow diagram showing the operation of signal analyzer.



FIG. 5B is a flow diagram showing how the signal features are used in signal analysis according to one embodiment of the present invention.



FIG. 6A illustrates the basic principles of wind noise detection.



FIG. 6B is a flow chart showing the steps involved in wind noise detection.



FIG. 7 illustrates the basic principles of wind noise attenuation.





DETAILED DESCRIPTION OF THE INVENTION

A method, apparatus and computer program for suppressing wind noise is described. In the following description, numerous specific details are set forth in order to provide a more detailed description of the invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well known details have not been provided so as to not obscure the invention.


Overview of Operating Environment



FIG. 1 shows a block diagram of a programmable processing system which may be used for implementing the wind noise attenuation system of the invention. An acoustic signal is received at a number of transducer microphones 10, of which there may be as few as a single one. The transducer microphones generate a corresponding electrical signal representation of the acoustic signal. The signals from the transducer microphones 10 are then preferably amplified by associated amplifiers 12 before being digitized by an analog-to-digital converter 14. The output of the analog-to-digital converter 14 is applied to a processing system 16, which applies the wind attenuation method of the invention. The processing system may include a CPU 18, ROM 20, RAM 22 (which may be writable, such as a flash ROM), and an optional storage device 26, such as a magnetic disk, coupled by a CPU bus 24 as shown.


The output of the enhancement process can be applied to other processing systems, such as a voice recognition system, or saved to a file, or played back for the benefit of a human listener. Playback is typically accomplished by converting the processed digital output stream into an analog signal by means of a digital-to-analog converter 28, and amplifying the analog signal with an output amplifier 30 which drives an audio speaker 32 (e.g., a loudspeaker, headphone, or earphone).


Functional Overview of System


One embodiment of the wind noise suppression system of the present invention is comprised of the following components. These components can be implemented in the signal processing system as described in FIG. 1 as processing software, hardware processor or a combination of both. FIG. 2 describes how these components work together to perform the task wind noise suppression.


A first functional component of the invention is a time-frequency transform of the time series signal.


A second functional component of the invention is background noise estimation, which provides a means of estimating continuous or slowly varying background noise. The dynamic background noise estimation estimates the continuous background noise alone. In the preferred embodiment, a power detector acts in each of multiple frequency bands. Noise-only portions of the data are used to generate the mean of the noise in decibels (dB).


The dynamic background noise estimation works closely with a third functional component, transient detection. Preferably, when the power exceeds the mean by more than a specified number of decibels in a frequency band (typically 6 to 12 dB), the corresponding time period is flagged as containing a transient and is not used to estimate the continuous background noise spectrum.


The fourth functional component is a wind noise detector. It looks for patterns typical of wind buffets in the spectral domain and how these change with time. This component helps decide whether to apply the following steps. If no wind buffeting is detected, then the following components can be optionally omitted.


A fifth functional component is signal analysis, which discriminates between signal and noise and tags signal for its preservation and restoration later on.


The sixth functional component is the wind noise attenuation. This component selectively attenuates the portions of the spectrum that were found to be dominated by wind noise, and reconstructs the signal, if any, that was masked by the wind noise.


The seventh functional component is a time series synthesis. An output signal is synthesized that can be listened to by humans or machines.


A more detailed description of these components is given in conjunction with FIGS. 2 through 7.


Wind Suppression Overview



FIG. 2 is a flow diagram showing how the components are used in the invention. The method shown in FIG. 2 is used for enhancing an incoming acoustic signal corrupted by wind noise, which consists of a plurality of data samples generated as output from the analog-to-digital converter 14 shown in FIG. 1. The method begins at a Start state (step 202). The incoming data stream (e.g., a previously generated acoustic data file or a digitized live acoustic signal) is read into a computer memory as a set of samples (step 204). In the preferred embodiment, the invention normally would be applied to enhance a “moving window” of data representing portions of a continuous acoustic data stream, such that the entire data stream is processed. Generally, an acoustic data stream to be enhanced is represented as a series of data “buffers” of fixed length, regardless of the duration of the original acoustic data stream. In the preferred embodiment, the length of the buffer is 512 data points when it is sampled at 8 or 11 kHz. The length of the data point scales in proportion of the sampling rate.


The samples of a current window are subjected to a time-frequency transformation, which may include appropriate conditioning operations, such as pre-filtering, shading, etc. (206). Any of several time-frequency transformations can be used, such as the short-time Fourier transform, bank of filter analysis, discrete wavelet transform, etc. The result of the time-frequency transformation is that the initial time series x(t) is transformed into transformed data. Transformed data comprises a time-frequency representation X(f, i), where t is the sampling index to the time series x, and f and i are discrete variables respectively indexing the frequency and time dimensions of X. The two-dimensional array X(f,i) as a function of time and frequency will be referred to as the “spectrogram” from now on. The power levels in individual bands f are then subjected to background noise estimation (step 208) coupled with transient detection (step 210). Transient detection looks for the presence of transient signals buried in stationary noise and determines estimated starting and ending times for such transients. Transients can be instances of the sought signal, but can also be “puffs” induced by wind, i.e. instance of wind noise, or any other impulsive noise. The background noise estimation updates the estimate of the background noise parameters between transients. Because background noise is defined as the continuous part of the noise, and transients as anything that is not continuous, the two needed to be separated in order for each to be measured. That is why the background estimation must work in tandem with the transient detection.


An embodiment for performing background noise estimation comprises a power detector that averages the acoustic power in a sliding window for each frequency band f. When the power within a predetermined number of frequency bands exceeds a threshold determined as a certain number c of decibels above the background noise, the power detector declares the presence of a transient, i.e., when:

X(f,i)>B(f)+c,  (1)

where B(f) is the mean background noise power in band f and c is the threshold value. B(f) is the background noise estimate that is being determined.


Once a transient signal is detected, background noise tracking is suspended. This needs to happen so that transient signals do not contaminate the background noise estimation process. When the power decreases back below the threshold, then the tracking of background noise is resumed. The threshold value c is obtained, in one embodiment, by measuring a few initial buffers of signal assuming that there are no transients in them. In one embodiment, c is set to a range between 6 and 12 dB. In an alternative embodiment, noise estimation need not be dynamic, but could be measured once (for example, during boot-up of a computer running software implementing the invention), or not necessarily frequency dependent.


Next, in step 212, the spectrogram X is scanned for the presence of wind noise. This is done by looking for spectral patterns typical of wind noise and how these change with time. This components help decide whether to apply the following steps. If no wind noise is detected, then the steps 214, 216, and 218 can be omitted and the process skips to step 220.


If wind noise is detected, the transformed data that has triggered the transient detector is then applied to a signal analysis function (step 214). This step detects and marks the signal of interest, allowing the system to subsequently preserve the signal of interest while attenuating wind noise. For example, if speech is the signal of interest, a voice detector is applied in step 214. This step is described in more details in the section titled “Signal Analysis.”


Next, a low-noise spectrogram C is generated by selectively attenuating X at frequencies dominated by wind noise (step 216). This component selectively attenuates the portions of the spectrum that were found to be dominated by wind noise while preserving those portions of the spectrum that were found to be dominated by signal. The next step, signal reconstruction (step 218), reconstructs the signal, if any, that was masked by the wind noise by interpolating or extrapolating the signal components that were detected in periods between the wind buffets. A more detailed description of the wind noise attenuation and signal reconstruction steps are given in the section titled “Wind Noise Attenuation and Signal Reconstruction.”


In step 220, a low-noise output time series y is synthesized. The time series y is suitable for listening by either humans or an Automated Speech Recognition system. In the preferred embodiment, the time series is synthesized through an inverse Fourier transform.


In step 222, it is determined if any of the input data remains to be processed. If so, the entire process is repeated on a next sample of acoustic data (step 204). Otherwise, processing ends (step 224). The final output is a time series where the wind noise has been attenuated while preserving the narrow band signal.


The order of some of the components may be reversed or even omitted and still be covered by the present invention. For example, in some embodiment the wind noise detector could be performed before background noise estimation, or even omitted entirely.


Signal Analysis


The preferred embodiment of signal analysis makes use of at least three different features for distinguishing narrow band signals from wind noise in a single channel (microphone) system. An additional fourth feature can be used when more than one microphone is available. The result of using these features is then combined to make a detection decision. The features comprise:


1) the peaks in the spectrum of narrow band signals are harmonically related, unlike those of wind noise


2) their frequencies are narrower those of wind noise,


3) they last for longer periods of time than wind noise,


4) the rate of change of their positions and amplitudes are less drastic than that of wind noise, and


5) (multi-microphone only) they are more strongly correlated among microphones than wind noise.


The signal analysis (performed in step 214) of the present invention takes advantage of the quasi-periodic nature of the signal of interest to distinguish from non-periodic wind noises. This is accomplished by recognizing that a variety of quasi-periodic acoustical waveforms including speech, music, and motor noise, can be represented as a sum of slowly-time-varying amplitude, frequency and phase modulated sinusoids waves:










s


(
n
)


=




k
=
1

K




A
k



cos


(


2

π






nkf
0


+

ψ
k


)








(
2
)








in which the sine-wave frequencies are multiples of the fundamental frequency f0 and Ak(n) is the time-varying amplitude for each component.


The spectrum of a quasi-periodic signal such as voice has finite peaks at corresponding harmonic frequencies. Furthermore, all peaks are equally distributed in the frequency band and the distance between any two adjacent peaks is determined by the fundamental frequency.


In contrast to quasi-periodic signal, noise-like signals, such as wind noise, have no clear harmonic structure. Their frequencies and phases are random and vary within a short time. As a result, the spectrum of wind noise has peaks that are irregularly spaced.


Besides looking at the harmonic nature of the peaks, three other features are used. First, in most case, the peaks of wind noise spectrum in low frequency band are wider than the peaks in the spectrum of the narrow band signal, due to the overlapping effect of close frequency components of the noise. Second, the distance between adjacent peaks of the wind noise spectra is also inconsistent (non-constant). Finally, another feature that is used to detect narrow band signals is their relative temporal stability. The spectra of narrow band signals generally change slower than that of wind noise. The rate of change of the peaks positions and amplitudes are therefore also used as features to discriminate between wind noise and signal.


Examples of Signal Analysis



FIG. 3 illustrates some of the basic spectral features that are used in the present invention to discriminate between wind noise and the signal of interest when only a single channel is present. The approach taken here is based on heuristic. In particular, it is based on the observation that when looking at the spectrogram of voiced speech or sustained music, a number of narrow peaks 302 can usually be detected. On the other hand, when looking at the spectrogram of wind noise, the peaks 304 are broader than those of speech 302. The present invention measures the width of each peak and the distance between adjacent peaks of the spectrogram and classifies them into possible wind noise peaks or possible harmonic peaks according to their patterns. Thus the distinction between wind noise and signal of interest can be made.



FIG. 4 is an example signal diagram that illustrates some of the basic spectral features that are used in the present invention to discriminate between wind noise and the signal of interest when more than one microphone are available. The solid line denotes the signal from one microphone and the dotted line denoted the signal from another nearby microphone.


When there are more than one microphone present, the method uses an additional feature to distinguish wind noise in addition to the heuristic rules described in FIG. 3. The feature is based on observation that, depending on the separation between the microphones, certain maximum phase and amplitude difference are expected for acoustic signals (i.e. the signal is highly correlated between the microphones). In contrast, since wind noise is generated from chaotic pressure fluctuations at the microphone membranes, the pressure variations it generates are uncorrelated between the microphones. Therefore, if the phase and amplitude differences between spectral peaks 402 and the corresponding spectrum 404 from the other microphone exceed certain threshold values, the corresponding peaks are almost certainly due to wind noise. The differences can thus be labeled for attenuation. Conversely, if the phase and amplitude differences between spectral peaks 406 and the corresponding spectrum 404 from the other microphone is below certain threshold values, then the corresponding peaks are almost certainly due to acoustic signal. The differences can be thus labeled for preservation and restoration.


Signal Analysis Implementation



FIG. 5A is a flow chart that shows how the narrow band signal detector analyzes the signal. In step 504, various characteristics of the spectrum are analyzed. Then in step 506, an evidence weight is assigned based on the analysis on each signal feature. Finally in step 508, all the evidence weights are processed to determine whether signal has wind noise.


In one embodiment, any one of the following features can be used alone or in any combination thereof to accomplish step 504:


1) finding all peaks in spectra having SNR>T


2) measuring peak width as a way to determine whether the peaks are stemming from wind noise


3) measuring the harmonic relationship between peaks


4) comparing peaks in spectra of the current buffer to the spectra from the previous buffer


5) comparing peaks in spectra from different microphones (if more than one microphone is used).



FIG. 5B is a flow chart that shows how the narrow band signal detector uses various features to distinguish narrow band signals from wind noise in one embodiment. The detector begins at a Start state (step 512) and detects all peaks in the spectra in step 514. All peaks in the spectra having Signal-to-Noise Ratio (SNR) over a certain threshold T are tagged. Then in step 516, the width of the peaks is measured. In one embodiment, this is accomplished by taking the average difference between the highest point and its neighboring points on each side. Strictly speaking, this method measures the height of the peaks. But since height and width are related, measuring the height of the peaks will yield a more efficient analysis of the width of the peaks. In another embodiment, the algorithm for measuring width is as follows:


Given a point of the spectrum s(i) at the i th frequency bin, it is considered a peak if and only if:

s(i)>s(i−1)  (3)
and
s(i)>s(i+1).  (4)

Furthermore, a peak is classified as being voice (i.e. signal of interest) if:

s(i)>s(i−2)+7 dB  (5)
and
s(i)>s(i+2)+7 dB.  (6)

Otherwise the peak is classified as noise (e.g. wind noise). The numbers shown in the equation (e.g. i+2, 7 dB) are just in this one example embodiment and can be modified in other embodiments. Note that the peak is classified as a peak stemming from signal of interest when it is sharply higher than the neighboring points (equations 5 and 6). This is consistent with the example shown in FIG. 3, where peaks 302 from signal of interest are sharp and narrow. In contrast, peaks 304 from wind noise are wide and not as sharp. The algorithm above can distinguish the difference.


Following along again in FIG. 5, in step 518 the harmonic relationship between peaks is measured. The measurement between peaks is preferably implemented through applying the direct cosine transform (DCT) to the amplitude spectrogram X(f, i) along the frequency axis, normalized by the first value of the DCT transform. If voice (i.e. signal of interest) dominates during at least some region of the frequency domain, then the normalized DCT of the spectrum will exhibit a maximum at the value of the pitch period corresponding to acoustic data (e.g. voice). The advantage of this voice detection method is that it is robust to noise interference over large portions of the spectrum. This is because, for the normalized DCT to be high, there must be good SNR over portions of the spectrum.


In step 520, the stability of the peaks in narrow band signals is then measured. This step compares the frequency of the peaks in the previous spectra to that of the present one. Peaks that are stable from buffer to buffer receive added evidence that they belong to an acoustic source and not to wind noise.


Finally, in step 522, if signals from more than one microphone are available, the phase and amplitudes of the spectra at their respective peaks are compared. Peaks whose amplitude or phase differences exceed certain threshold are considered to belong to wind noise. On the other hand, peaks whose amplitude or phase differences come under certain thresholds are considered to belong to an acoustic signal. The evidence from these different steps are combined in step 524, preferably by a fuzzy classifier, or an artificial neural network, giving the likelihood that a given peak belong to either signal or wind noise. Signal analysis ends at step 526.


Wind Noise Detection



FIGS. 6A and 6B illustrate the principles of wind noise detection (step 212 of FIG. 2). As illustrated in FIG. 6A, the spectrum of wind noise 602 (dotted line) has, in average, a constant negative slope across frequency (when measured in dB) until it reaches the value of the continuous background noise 604. FIG. 6B shows the process of wind noise detection. In the preferred embodiment, in step 652, the presence of wind noise is detected by first fitting a straight line 606 to the low-frequency portion 602 of the spectrum (e.g. below 500 Hz). The values of the slope and intersection point are then compared to some threshold values in step 654. If they are found to both pass that threshold, the buffer is declared to contain wind noise in step 656. If not, then the buffer is not declared to contain any wind noise (step 658).


Wind Noise Attenuation and Signal Reconstruction



FIG. 7 illustrates an embodiment of the present invention to selectively attenuate wind noise while preserving and reconstructing the signal of interest. Peaks that are deemed to be caused by wind noise (702) by signal analysis step 214 are attenuated. On the other hand peaks that are deemed to be from the signal of interest (704) are preserved. The value to which the wind noise is attenuated is the greatest of the follow two values: (1) that of the continuous background noise (706) that was measured by the background noise estimator (step 208 of FIG. 2), or (2) the extrapolated value of the signal (708) whose characteristics were determined by the signal analysis (step 214 of FIG. 2). The output of the wind noise attenuator is a spectrogram (710) that is consistent with the measured continuous background noise and signal, but that is devoid of wind noise.


Computer Implementation


The invention may be implemented in hardware or software, or a combination of both (e.g., programmable logic arrays). Unless otherwise specified, the algorithms included as part of the invention are not inherently related to any particular computer or other apparatus. In particular, various general-purpose machines may be used with programs written in accordance with the teachings herein, or it may be more convenient to construct more specialized apparatus to perform the required method steps. However, preferably, the invention is implemented in one or more computer programs executing on programmable systems each comprising at least one processor, at least one data storage system (including volatile and non-volatile memory and/or storage elements), and at least one microphone input. The program code is executed on the processors to perform the functions described herein.


Each such program may be implemented in any desired computer language (including machine, assembly, high level procedural, or object oriented programming languages) to communicate with a computer system. In any case, the language may be a compiled or interpreted language.


Each such computer program is preferably stored on a storage media or device (e.g., solid state, magnetic or optical media) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. For example, the compute program can be stored in storage 26 of FIG. 1 and executed in CPU 18. The present invention may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. The invention is defined by the following claims and their full scope and equivalents.

Claims
  • 1. A method for attenuating noise in a signal detected by a sound detector, comprising: converting the signal detected by the sound detector into a set of digital samples representing a single channel of acoustic data associated with a single microphone;storing the set of digital samples in a data storage device;performing a time-frequency transform on the set of digital samples to obtain transformed data;performing signal analysis on the transformed data, by a hardware processor, to identify wind noise in the transformed data, where the step of performing the signal analysis comprises: measuring one or more characteristics of the transformed data by the hardware processor by identifying signal segments of the signal that lack a time-varying quasi-periodic amplitude and phase and designating those signal segments as wind noise associated with wind striking a portion of the sound detector; anddiscriminating between the wind noise and a signal of interest in the transformed data by comparing the harmonic structure of the signal segments of the signal to the harmonic structure of other signal segments of the signal that have a time varying periodic amplitude and a phase modulated sinusoid characteristic by the hardware processor; andattenuating at least a portion of the wind noise identified in the transformed data at frequencies dominated by wind noise;where the discriminating between the wind noise and the signal of interest occurs on the output of the single microphone that sources the single channel of the acoustic data.
  • 2. The method of claim 1, where the step of performing signal analysis further comprises: analyzing features of a spectrum of the transformed data;assigning evidence weights based on the step of analyzing; andprocessing the evidence weights to determine whether wind noise is present in the spectrum of the transformed data.
  • 3. The method of claim 1, where the step of performing signal analysis further comprises identifying peaks in a spectrum of the transformed data that have a Signal to Noise Ratio (SNR) exceeding a peak threshold as peaks not stemming from wind noise.
  • 4. The method of claim 1, where the step of performing signal analysis further comprises identifying peaks in a spectrum of the transformed data that are sharper and narrower than a selected criteria as peaks stemming from a signal of interest.
  • 5. The method of claim 4, where the step of identifying comprises measuring peak widths by taking an average difference between a highest point and its neighboring points on each side.
  • 6. The method of claim 1, where the step of performing signal analysis further comprises: determining a stability of peaks by comparing peaks in a current spectra of the transformed data to peaks from a previous spectra of the transformed data; andidentifying stable peaks as peaks not stemming from wind noise.
  • 7. The method of claim 1, where the step of performing signal analysis further comprises: identifying peaks whose phase and amplitude differences exceed a difference threshold as peaks stemming from wind noise.
  • 8. The method of claim 1, where the step of performing signal analysis further comprises: fitting a line to a portion of a spectrum of the transformed data;comparing a slope of the line to a pre-defined threshold; anddetermining whether wind noise is present in the spectrum of the transformed data based on the slope.
  • 9. The method of claim 1, where the step of performing signal analysis further comprises: fitting a line to a portion of a spectrum of the transformed data;comparing an intersection point of the line to a pre-defined threshold; anddetermining whether wind noise is present in the spectrum of the transformed data based on the intersection point.
  • 10. An apparatus comprising a single channel of acoustic data from a single microphone, comprising: a data storage device for storing digital data;a time-frequency transform component configured to transform signals sourced from a single channel of acoustic data into frequency-based digital data representing the single channel of acoustic data associated with the single microphone;a signal analyzer configured to identify wind noise in the frequency-based digital data, where the signal analyzer comprises a hardware processor configured to store and measure one or more characteristics of the frequency-based digital data indicative of wind pressure fluctuations associated with wind striking a portion of the single microphone by identifying signal segments of the signal that lack a time-varying quasi-periodic amplitude and phase and discriminate between the wind noise and a signal of interest in the frequency-based digital data by comparing the harmonic structure of the signal segments of the signal to the harmonic structure of other signal segments of the signal that have a time varying periodic amplitude and a phase modulated sinusoid characteristic; anda wind noise attenuation component configured to attenuate at least a portion of the wind noise in the frequency-based digital data using results obtained from the signal analyzer;where the signal analyzer discriminates between the wind noise and the signal of interest by processing the output of the single microphone that sources the single channel of the acoustic data.
  • 11. The apparatus of claim 10, where the signal analyzer is configured to: analyze features of a spectrum of the frequency-based digital data;assigning evidence weights based on the step of analyzing; andprocessing the evidence weights to determine whether wind noise is present in the spectrum of the frequency-based digital data.
  • 12. The apparatus of claim 10, where the signal analyzer is configured to identify peaks in a spectrum of the frequency-based digital data that have a Signal to Noise Ratio (SNR) exceeding a peak threshold as peaks not stemming from wind noise.
  • 13. The apparatus of claim 10, where the signal analyzer is configured to identify peaks in a spectrum of the frequency-based digital data that are sharper and narrower than a selected criteria as peaks stemming from a signal of interest.
  • 14. The apparatus of claim 13, where the signal analyzer is configured to measure peak widths by taking an average difference between a highest point and its neighboring points on each side.
  • 15. The apparatus of claim 10, where the signal analyzer is configured to: determine a stability of peaks by comparing peaks in a current spectra of the frequency-based digital data to peaks from a previous spectra of the frequency-based digital data; andidentify stable peaks as peaks not stemming from wind noise.
  • 16. The apparatus of claim 10, where the signal analyzer is configured to: identify peaks whose phase and amplitude differences exceed a difference threshold as peaks stemming from wind noise.
  • 17. The apparatus of claim 10, where the signal analyzer is configured to: fit a line to a portion of a spectrum of the frequency-based digital data;compare a slope of the line to a pre-defined threshold; anddetermine whether wind noise is present in the spectrum of the frequency-based digital data based on the slope.
  • 18. The apparatus of claim 10, where the signal analyzer is configured to: fit a line to a portion of a spectrum of the frequency-based digital data;compare an intersection point of the line to a pre-defined threshold; anddetermine whether wind noise is present in the spectrum of the frequency-based digital data based on the intersection point.
  • 19. A computer program product, comprising: a non-transitory computer usable storage medium having computer readable program code embodied therein configured for suppressing noise, comprising: computer readable code configured to cause a computer to perform a time-frequency transform on the signal to obtain transformed data representing a single channel of acoustic data associated with a single microphone;computer readable code configured to cause the computer to perform signal analysis on the transformed data to identify wind noise in the transformed data, where the computer readable code configured to cause the computer to perform the signal analysis comprises: computer readable code configured to cause the computer to measure one or more characteristics of the transformed data indicative of wind pressure fluctuations associated with wind striking a portion of the single microphone by identifying signal segments of the signal that lack a time-varying quasi-periodic amplitude and phase; andcomputer readable code configured to cause the computer to discriminate between the wind noise and a signal of interest in the transformed data by comparing the harmonic structure of the signal segments of the signal to the harmonic structure of other signal segments of the signal that have a time varying periodic amplitude and a phase modulated sinusoid characteristic; andcomputer readable code configured to cause the computer to attenuate at least a portion of the wind noise identified in the transformed data at frequencies dominated by wind noise;where the discriminating between the wind noise and the signal of interest occurs on the output of the single microphone that sources the single channel of the acoustic data.
  • 20. The computer program product of claim 19, where the computer readable code configured to cause the computer to perform signal analysis further comprises: computer readable code configured to cause the computer to fit a line to a portion of a spectrum of the transformed data;computer readable code configured to cause the computer to compare a slope of the line and an intersection point of the line to a plurality of pre-defined thresholds; andcomputer readable code configured to cause the computer to determine whether wind noise is present in the spectrum of the transformed data based on the slope and the intersection point.
PRIORITY CLAIM

This application is a continuation of U.S. patent application Ser. No. 10/410,736, “Method and Apparatus for Suppressing Wind Noise,” filed Apr. 10, 2003, now U.S. Pat. No. 7,885,420 which claims the benefit of U.S. Provisional Patent Application No. 60/449,511 filed Feb. 21, 2003, and which is incorporated herein by reference.

US Referenced Citations (141)
Number Name Date Kind
4486900 Cox et al. Dec 1984 A
4531228 Noso et al. Jul 1985 A
4630304 Borth et al. Dec 1986 A
4630305 Borth et al. Dec 1986 A
4811404 Vilmur et al. Mar 1989 A
4843562 Kenyon et al. Jun 1989 A
4845466 Hariton et al. Jul 1989 A
4959865 Stettiner et al. Sep 1990 A
5012519 Adlersberg et al. Apr 1991 A
5027410 Williamson et al. Jun 1991 A
5056150 Yu et al. Oct 1991 A
5140541 Sakata et al. Aug 1992 A
5146539 Doddington et al. Sep 1992 A
5251263 Andrea et al. Oct 1993 A
5313555 Kamiya May 1994 A
5400409 Linhard Mar 1995 A
5412589 Williams et al. May 1995 A
5426703 Hamabe et al. Jun 1995 A
5426704 Tamamura et al. Jun 1995 A
5442712 Kawamura et al. Aug 1995 A
5479517 Linhard Dec 1995 A
5485522 Solve et al. Jan 1996 A
5495415 Ribbens et al. Feb 1996 A
5499189 Seitz Mar 1996 A
5502688 Recchione et al. Mar 1996 A
5526466 Takizawa Jun 1996 A
5550924 Helf et al. Aug 1996 A
5568559 Makino Oct 1996 A
5574824 Slyh et al. Nov 1996 A
5584295 Muller et al. Dec 1996 A
5586028 Sekine et al. Dec 1996 A
5617508 Reaves Apr 1997 A
5651071 Lindemann et al. Jul 1997 A
5677987 Seki et al. Oct 1997 A
5680508 Liu Oct 1997 A
5692104 Chow et al. Nov 1997 A
5701344 Wakui Dec 1997 A
5708754 Wynn Jan 1998 A
5727072 Raman Mar 1998 A
5752226 Chan et al. May 1998 A
5757937 Itoh et al. May 1998 A
5809152 Nakamura et al. Sep 1998 A
5839101 Vahatalo et al. Nov 1998 A
5859420 Borza Jan 1999 A
5878389 Hermansky et al. Mar 1999 A
5920834 Sih et al. Jul 1999 A
5933495 Oh Aug 1999 A
5933801 Fink et al. Aug 1999 A
5949888 Gupta et al. Sep 1999 A
5950154 Medaugh et al. Sep 1999 A
5963901 Vahatalo et al. Oct 1999 A
5982901 Kane et al. Nov 1999 A
6011853 Koski et al. Jan 2000 A
6108610 Winn Aug 2000 A
6122384 Mauro Sep 2000 A
6122610 Isabelle Sep 2000 A
6130949 Aoki et al. Oct 2000 A
6163608 Romesburg et al. Dec 2000 A
6167375 Miseki et al. Dec 2000 A
6173074 Russo Jan 2001 B1
6175602 Gustafsson et al. Jan 2001 B1
6192134 White et al. Feb 2001 B1
6199035 Lakaniemi et al. Mar 2001 B1
6208268 Scarzello et al. Mar 2001 B1
6230123 Mekuria et al. May 2001 B1
6252969 Ando Jun 2001 B1
6289309 deVries Sep 2001 B1
6405168 Bayya et al. Jun 2002 B1
6415253 Johnson Jul 2002 B1
6434246 Kates et al. Aug 2002 B1
6449594 Hwang et al. Sep 2002 B1
6453285 Anderson et al. Sep 2002 B1
6507814 Gao Jan 2003 B1
6510408 Hermansen Jan 2003 B1
6587816 Chazan et al. Jul 2003 B1
6615170 Liu et al. Sep 2003 B1
6643619 Linhard et al. Nov 2003 B1
6647365 Faller Nov 2003 B1
6687669 Schrögmeier et al. Feb 2004 B1
6711536 Rees Mar 2004 B2
6741873 Doran et al. May 2004 B1
6766292 Chandran et al. Jul 2004 B1
6768979 Menéndez-Pidal et al. Jul 2004 B1
6782363 Lee et al. Aug 2004 B2
6822507 Buchele Nov 2004 B2
6859420 Coney et al. Feb 2005 B1
6882736 Dickel et al. Apr 2005 B2
6910011 Zakarauskas Jun 2005 B1
6937980 Krasny et al. Aug 2005 B2
6959276 Droppo et al. Oct 2005 B2
7043030 Furuta May 2006 B1
7047047 Acero et al. May 2006 B2
7062049 Inoue et al. Jun 2006 B1
7072831 Etter Jul 2006 B1
7092877 Ribic Aug 2006 B2
7117145 Venkatesh et al. Oct 2006 B1
7117149 Zakarauskas Oct 2006 B1
7139701 Harton et al. Nov 2006 B2
7158932 Furuta Jan 2007 B1
7165027 Kellner et al. Jan 2007 B2
7313518 Scalart et al. Dec 2007 B2
7373296 Van De Par et al. May 2008 B2
7386217 Zhang Jun 2008 B2
7885420 Hetherington et al. Feb 2011 B2
20010028713 Walker Oct 2001 A1
20020037088 Dickel et al. Mar 2002 A1
20020071573 Finn Jun 2002 A1
20020094100 Kates Jul 2002 A1
20020094101 De Roo et al. Jul 2002 A1
20020152066 Piket Oct 2002 A1
20020176589 Buck et al. Nov 2002 A1
20020193130 Yang et al. Dec 2002 A1
20030040908 Yang et al. Feb 2003 A1
20030112265 Zhang Jun 2003 A1
20030115055 Gong Jun 2003 A1
20030147538 Elko Aug 2003 A1
20030151454 Buchele Aug 2003 A1
20030216907 Thomas Nov 2003 A1
20040019417 Yasui et al. Jan 2004 A1
20040078200 Alves Apr 2004 A1
20040093181 Lee May 2004 A1
20040138882 Miyazawa Jul 2004 A1
20040161120 Petersen et al. Aug 2004 A1
20040165736 Hetherington et al. Aug 2004 A1
20040167777 Hetherington et al. Aug 2004 A1
20050114128 Hetherington et al. May 2005 A1
20050238283 Faure et al. Oct 2005 A1
20050240401 Ebenezer Oct 2005 A1
20050251388 Lang et al. Nov 2005 A1
20060009970 Harton et al. Jan 2006 A1
20060034447 Alves et al. Feb 2006 A1
20060074646 Alves et al. Apr 2006 A1
20060100868 Hetherington et al. May 2006 A1
20060115095 Giesbrecht et al. Jun 2006 A1
20060116873 Hetherington et al. Jun 2006 A1
20060136199 Nongpiur et al. Jun 2006 A1
20060251268 Hetherington et al. Nov 2006 A1
20060287859 Hetherington et al. Dec 2006 A1
20070019835 de Roo et al. Jan 2007 A1
20070033031 Zakarauskas Feb 2007 A1
20070156401 Nagano et al. Jul 2007 A1
Foreign Referenced Citations (24)
Number Date Country
2158847 Sep 1994 CA
2157496 Oct 1994 CA
2158064 Oct 1994 CA
1325222 Dec 2001 CN
1530929 Sep 2004 CN
0 076 687 Apr 1983 EP
0 629 996 Dec 1994 EP
0 629 996 Dec 1994 EP
0 750 291 Dec 1996 EP
1 450 353 Aug 2004 EP
1 450 354 Aug 2004 EP
1 669 983 Jun 2006 EP
64 039195 Feb 1989 JP
06269084 Sep 1994 JP
6282297 Oct 1994 JP
6319193 Nov 1994 JP
6349208 Dec 1994 JP
2000-261530 Sep 2000 JP
2001-215992 Aug 2001 JP
2001-350498 Dec 2001 JP
138806 Jun 1998 KR
WO 0041169 Jul 2000 WO
WO 0156255 Aug 2001 WO
WO 0173761 Oct 2001 WO
Non-Patent Literature Citations (43)
Entry
Boll, Steven. “Suppression of acoustic noise in speech using spectral subtraction.” Acoustics, Speech and Signal Processing, IEEE Transactions on 27, No. 2 (1979): 113-120.
Diethorn, Eric J. “Subband noise reduction methods for speech enhancement.” In Acoustic signal processing for telecommunication, pp. 155-178. Springer US, 2000.
S. F. Boll, Suppression of Acoustic Noise in Speech Using Spectral Subtraction IEEE Trans. Acoust. Signal Proc., vol. ASSP-27, No. 2, Apr. 1979.
Avendano, C. et al.; “Study on the Dereverberation of Speech Based on Temporal Envelope Filtering”; Proc. ICSLP '96; pp. 889-892; Oct. 1996.
Berk et al.; “Data Analysis with Microsoft Excel”; Duxbury Press; 1998; pp. 236-239 and 256-259.
Boll; “Suppression of Acoustic Noise in Speech Using Spectral Subtraction”; IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-27, No. 2; 1979; pp. 113-120.
Ephraim; “Statistical-Model-Based Speech Enhancement Systems”; Proceedings of the IEEE; vol. 80, No. 10; Oct. 1992; pp. 1526-1555.
Fiori, S. et al.; “Blind Deconvolution by Modified Bussgang Algorithm”; Dept. of Electronics and Automatics—University of Ancona (Italy); ISCAS 1999.
Godsill et al.; Digital Audio Restoration; Jun. 2, 1997; pp. 1-71.
Learned, R.E. et al.; “A Wavelet Packet Approach to Transient Signal Classification, Applied and Computational Harmonic Analysis”; Jul. 1995; pp. 265-278; vol. 2, No. 3; USA; XP 000972660; ISSN: 1063-5203; Abstract.
Ljung, Lennart, “System Identification Theory for the User, Second Edition” 1999, pp. 1-14, Prentice Hall PTR, Upper Saddle River, NJ.
Nakatani, T. et al.; Implementation and Effects of Single Channel Dereverberation Based on the Harmonic Structure of Speech; Proc. of IWAENC-2003; pp. 91-94; Sep. 2003.
Patent Abstracts of Japan, vol. 18, No. 681, Dec. 21, 1994; JP 06 269084, Sep. 22, 1994.
Pellom et al.; An Improved (Auto:I, LSP:T) Constrained Iterative Speech Enhancement for Colored Noise Environments; IEEE Transactions on Speech and Audio Processing; vol. 6, No. 6; Nov. 1998; pp. 573-579.
Purder, H. et al.; “Improved Noise Reduction for Hands-Free Car Phones Utilizing Information on Vehicle and Engine Speeds”; Sep. 4-8, 2000; pp. 1851-1854; vol. 3, XP009030255; 2000; Tampere, Finland; Tampere Univ. Technology; Finland Abstract.
Quatieri, T.F. et al.; “Noise Reduction Using a Soft-Dection/Decision Sine-Wave Vector Quantizer”; International Conference on Acoustics, Speech & Signal Processing; Apr. 3, 1990; pp. 821-824; vol. Conf. 15; IEEE ICASSP; New York, US; XP000146895, Abstract, Paragraph 3.1.
Quelavoine, R. et al.; “Transients Recognition in Underwater Acoustic with Multilayer Neural Networks, Engineering Benefits from Neural Networks”; Proceedings of the International Conference EANN, Gibraltar, Jun. 10-12, 1998; pp. 330-333; XP 000974500; Turku, Finland; Syst. Eng. Assoc., Finland; ISBN: 951-97868-0-5; Abstract, p. 30, paragraph 1.
Seely, S.; “An Introduction to Engineering Systems”; Pergamon Press Inc.; 1972; pp. 7-10.
Shust, Michael R. and Rogers, James C., Abstract of “Active Removal of Wind Noise From Outdoor Microphones Using Local Velocity Measurements”, J. Acoust. Soc. Am., vol. 104, No. 3, Pt 2, 1998, 1 page.
Shust, Michael R. and Rogers, James C., “Electronic Removal of Outdoor Microphone Wind Noise”, obtained from the Internet on Jul. 28, 2004 at: <http://www.acounstics.org/press/136th/mshust.htm>, 6 pages.
Simon, G.; “Detection of Harmonic Burst Signals”; International Journal Circuit Theroy and Applications; Jul. 1985, vol. 13, No. 3; pp. 195-201; UK; XP 000974305; ISSN: 0098-9886; Abstract.
Udrea, R. M. et al., “Speech Enhancement Using Spectral Over-Subtraction and Residual Noise Reduction,” IEEE, 2003, pp. 165-168.
Vaseghi; “Advanced Digital Signal Processing and Noise Reduction”; Second Edition; John Wiley & Sons; 2000; pp. 1-395.
Vaseghi; Chapter 12 “Impulsive Noise”; “Advanced Digital Signal Processing and Noise Reduction”; 2nd ed.; John Wiley and Sons; 2000; pp. 355-377.
Viera, J.; “Automatic Estimation of Reverberation Time”; Audio Engineering Society, Convention Paper 6107; 116th Convention; May 8-11, 2004; Berlin, Germany; pp. 1-7.
Wahab A., et al.; “Intelligent Dashboard with Speech Enhancement”; Information, Communications and Signal Processing; 1997; ICICS.; Proceedings of 1997 International Conference on Singapore Sep. 9-12, 1997; New York, NY, USA; IEEE; pp. 993-997.
Zakarauskas, P.; “Detection and Localization of Nondeterministic Transients in Time Series and Application to Ice-Cracking Sound”; Digital Signal Processing; 1993; vol. 3, No. 1; pp. 36-45; Academic Press, Orlando, FL, USA; XP 000361270; ISSN: 1051-2004; entire document.
First Office Action for Canadian Patent Application No. 2458428, dated Apr. 25, 2008.
First Office Action for Canadian Patent Application No. 2458427, dated May 21, 2008.
First Office Action for Chinese Patent Application No. 200410004563.4, dated May 18, 2007.
First Office Action for Chinese Patent Application No. 200410004564.9, dated Feb. 2, 2007.
European Search Report for Application No. 04003675.8-2218, dated May 12, 2004.
Second Office Action for Chinese Patent Application No. 200410004564.9, dated Jul. 13, 2007.
European Search Report for EP 04003675.8, dated Apr. 30, 2004.
European Search Report for EP 04003811.9, dated May 12, 2004.
First Office Action for European Patent Application No. 04003811.9, dated Apr. 13, 2005.
First Office Action for European Patent Application No. 04003675.8, dated Jun. 7, 2005.
European Search Report for EP 05026904.2, dated Apr. 10, 2006.
First Office Action for European Patent Application No. 05028904.2, dated Jan. 10, 2007.
First Office Action for Japanese Patent Application No. 2004-45524, dated Jun. 27, 2008.
First Office Action for Japanese Patent Application No. 2004-43727, dated Jun. 30, 2008.
Second Office Action for Japanese Patent Application No. 2004-43727, dated Jan. 9, 2009.
First Office Action for Chinese Patent Application No. 2005100034687, dated Feb. 27, 2009 (5 pages).
Related Publications (1)
Number Date Country
20110123044 A1 May 2011 US
Provisional Applications (1)
Number Date Country
60449511 Feb 2003 US
Continuations (1)
Number Date Country
Parent 10410736 Apr 2003 US
Child 13013358 US