The present invention relates generally to the identification of features on three-dimensional objects and, more particularly, to the partitioning of a three-dimensional surface to identify features on that surface.
The manufacturing of medical devices designed to conform to anatomical shapes, such as hearing aids, has traditionally been a manually intensive process due to the complexity of the shape of the devices.
Different methods have been used to create ear molds, or shells, from ear impressions. One skilled in the art will recognize that the terms ear mold and ear shell are used interchangeably and refer to the housing that is designed to be inserted into an ear and which contains the electronics of a hearing aid. Traditional methods of manufacturing such hearing aid shells typically require significant manual processing to fit the hearing aid to a patient's ear by, for example, manually identifying the various features of each ear impression. Then, an ear mold could be created by sanding or otherwise removing material from the shell in order to permit it to conform better to the patient's ear. More recently, however, attempts have been made to create more automated manufacturing methods for hearing aid shells. In some such attempts, ear impressions are digitized and then entered into a computer for processing and editing. The result is a digitized model of the ear impressions that can then be digitally manipulated. One way of obtaining such a digitized model uses a three-dimensional laser scanner, which is well known in the art, to scan the surface of the impression both horizontally and vertically. The result of such scanning is a digitized model of the ear impression having a plurality of points, referred to herein as a point cloud representation, forming a graphical image of the impression in three-dimensional space.
Once such a digitized model of an ear shell has been thus created, then various computer-based software tools have been used to manually edit the graphical shape of each ear impression individually to, for example, create a model of a desired type of hearing aid for that ear. As one skilled in the art will recognize, such types of hearing aids may include in-the-ear (ITE) hearing aids, in-the-canal (ITC) hearing aids, completely-in-the-canal (CIC) hearing aids and other types of hearing aids. Each type of hearing aid requires different editing of the graphical model in order to create an image of a desired hearing aid shell size and shape according to various requirements. These requirements may originate from a physician, from the size of the electronic hearing aid components to be inserted into the shell or, alternatively, may originate from a patient's desire for specific aesthetic and ergonomic properties.
Once the desired three-dimensional hearing aid shell design is obtained, various computer-controlled manufacturing methods, such as well known lithographic or laser-based manufacturing methods, are then used to manufacture a physical hearing aid shell conforming to the edited design out of a desired shell material such as, for example, a biocompatible polymer material.
The present inventors have recognized that, while the aforementioned methods for designing hearing aid shells are advantageous in many regards, they are also disadvantageous in some aspects. In particular, prior attempts at computer-assisted hearing aid manufacturing typically relied on the manual identification of the various features of each ear impression. Once these features were identified for each ear impression, then various editing procedures would be performed on the impression to create an ear mold. However, the manual identification of the various features of each ear impression to be edited was time consuming and costly.
Accordingly, the present inventors have invented an improved method of designing hearing aid molds whereby regions of an ear impression model are identified as a function of a geodesic distance measure. According to a first embodiment, a canal point of an ear impression model is identified as that point having a maximum normalized geodesic distance as compared to all other points on the surface of the ear impression model. A threshold, illustratively 0.85, is then applied to the maximum normalized geodesic distance to identify the canal region of the ear impression model. According to a second embodiment, a helix point of the ear impression model is identified as that point having a maximum normalized geodesic distance as compared to all points except those points in the canal region of said ear impression model. According to this embodiment, a threshold, once again illustratively 0.85, is then applied to the maximum normalized geodesic distance to identify the helix and anti-helix region of the ear impression model. Finally, in accordance with another embodiment, a geodesic distance between a canal point and a helix point of an ear impression model is identified and a percentage threshold, illustratively 65%, is applied to that geodesic distance. A contour line of said ear impression model corresponding to this percentage threshold is identified as a crus of said ear impression model. Thus, in accordance with the forgoing embodiments, features of an ear impression model can be automatically identified.
These and other advantages of the invention will be apparent to those of ordinary skill in the art by reference to the following detailed description and the accompanying drawings.
The present inventors have recognized that it is desirable to be able to automatically identify the various features of an ear impression in order to improve the design process of hearing aid shells. In particular, given a model of an ear impression, such as point cloud representation 201 in
Therefore, the present inventors have invented a method and apparatus thereby the features on an ear impression model are recognized by using continuous functions such as those utilized in building Reeb graphs for object matching and retrieval. Such functions are useful for partitioning an object, such as an ear impression model, into different regions over the 3D surface of the model. As one skilled in the art will recognize, a Reeb graph is a topological graph defined as quotient space of a manifold which defines the skeleton of the manifold itself. As is well known, a manifold is an abstract mathematical space in which every point has a neighborhood which resembles Euclidean space, but in which the global structure may be more complicated. An ear impression model is one such example of a manifold. A Reeb graph is constructed by defining a continuous function μ over the surface of an object. The surface of the object is then divided into regions according to the values of μ and a node is associated with each point where regions are connected. A graph structure is then obtained by linking the nodes of the connected regions. Reeb graphs are well known and will not be described further herein other than is necessary for an understanding of the present invention.
Among the various types of continuous functions μ used in Reeb graph generation, one of the simplest and widest used examples is a height function. Specifically, such a height function μh will return a value of a z-coordinate (height) of a point v(x,y,z) on the surface S of an object according to the expression:
μh(v(x,y,z))=z Equation 1
The present inventors have recognized, therefore, that an improved continuous function μ can be identified that will overcome the forgoing rotation-variance problem. Specifically, by using a geodesic distance measure for each point on the surface of a model, a relatively accurate description of the model can be constructed that does not vary with rotation. As is generally well-known and as used herein, the term geodesic distance is defined as the distance confined to the surface between two points on the surface of an object, such as an ear impression model. The integral geodesic measure is the cumulative distance between a point on the surface of an object, such as an ear impression model, and all other points on that surface. A function μ incorporating such a geodesic distance component can be defined for each point von the surface S of an ear impression model as:
where the function g(v,p) is defined as the geodesic distance between point v and point p on surface S. Since μ(v) of Equation 2 is an integral of the geodesic distance from v to all points on S, a small value means that, on average, a distance from v to an arbitrary point on the surface S is relatively small and, therefore, v is nearer the center of the ear impression. However, one skilled in the art will recognize that Equation 2, while invariant with respect to rotation, is not invariant if the object is scaled (either scaled larger or smaller). Thus, a rotation-invarient and scale-invariant function can be defined by normalizing Equation 2 according to the function:
where the variables are as described herein above.
As described herein above, identifying the relative geodesic distance of various regions on the surface of an ear impression model is useful as, for example, a search key for a particular ear impression model or class of ear impression models in a database of ear impressions models. However, the present inventors have recognized that such a relative geodesic distance measure can also be used to identify specific regions on an ear shell, such as the anatomical regions of an ear impression discussed above in association with
where, once again, the variables are as described herein above. Then, starting from this point, the canal region Rc can be identified by, illustratively, applying a canal threshold θc to μg(v). As one skilled in the art will recognize, such a threshold may be selected according to particular characteristics of an ear impression model that may define different classes of ear impressions. Illustratively, θc can be generally set in many cases to θc=0.85 to identify the canal portion of an ear impression model with acceptable accuracy. As used herein, the term threshold is defined as any criterion used to identify a limit of a region on a surface, such as a canal on an ear impression model. As one skilled in the art will recognize, if the point having the maximum geodesic distance is defined as a normalized geodesic distance of 1.00, then applying a threshold of 0.85 to said maximum geodesic distance, starting from Pc and growing the surface partition using, for example, fast marching, will result in all points on the surface having a normalized geodesic distance greater than 0.85 being identified as on the canal portion of the ear impression model. One skilled in the art will recognize that fast marching is a well known technique for growing a surface in such a manner. As such, fast marching will not be discussed further herein other than is necessary for an understanding of the principles of the present invention.
Once the canal portion of an ear impression model has been identified, then the helix region of the ear impression model can also be identified using the expression of Equation 4 by excluding the points in the canal portion of the ear impression. Thus, the helix point of the ear impression model is identified according to the expression:
where the variables are as described herein above. Such an identification is possible since the helix portion of the ear impression model will generally have the greatest normalized geodesic distance measure after the canal and, therefore, by excluding the canal region, the helix point will be the next maximum value of μg(p). Then, once again, starting from this point Ph, and growing the surface partition by fast marching, the helix/anti-helix region Rh can be identified by applying a helix threshold θh to μg(v). As is similar with the example of determining the canal region, discussed above, such a threshold may be selected according to the particular characteristics of an ear impression model that may define different classes of ear impressions. However, illustratively, θh can once again be generally set at θh=0.85 to identify the helix/anti-helix portion of an ear impression model with acceptable accuracy in many instances.
The canal point Pc and the helix point Ph represent two local geodesic distance maximums of μg(v) across ear impression 400 of
The present inventors have recognized that, in addition to using fast marching procedures as described above, such a procedure to grow and label regions on the surface can be improved by using local surface measures, such as surface curvature, in addition to the cumulative geodesic distance measure, which is a global measure. For example, for the purpose of the labeling of the crus region, as the algorithm fast marches from the canal and helix/anti-helix regions towards the crus, the curvature can be used as an indicator to slow down the fast marching, since the crus region has distinctive curvature characteristics.
The foregoing embodiments are generally described in terms of identifying and manipulating objects, such as points on the surface of an ear impression and geodesic distances between those points, to identify features corresponding to the points on that surface, and partition the surface into different anatomical regions. One skilled in the art will recognize that such manipulations may be, in various embodiments, virtual manipulations accomplished in the memory or other circuitry/hardware of an illustrative registration system. One skilled in the art will recognize that such manipulations may be, in various embodiments, virtual manipulations accomplished in the memory or other circuitry/hardware of an illustrative computer aided design (CAD) system. Such a CAD system may be adapted to perform these manipulations, as well as to perform various methods in accordance with the above-described embodiments, using a programmable computer running software adapted to perform such virtual manipulations and methods. An illustrative programmable computer useful for these purposes is shown in
One skilled in the art will also recognize that the software stored in the computer system of
The foregoing Detailed Description is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention. Those skilled in the art could implement various other feature combinations without departing from the scope and spirit of the invention.
This patent application claims the benefit of U.S. Provisional Application No. 60/712,774, filed Aug. 31, 2005, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20030020710 | Biermann et al. | Jan 2003 | A1 |
20040076313 | Bronstein et al. | Apr 2004 | A1 |
20040165740 | Fang et al. | Aug 2004 | A1 |
20050110791 | Krishnamoorthy et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070050073 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60712774 | Aug 2005 | US |