Not applicable
Not applicable
In supporting packages at elevated positions with structural support systems vertical locations such as ceilings or roofing frameworks, difficulties exist because of the irregular locations of possible tensile support connections.
It would be desirable to have a method and apparatus which allows the user to compensate for the irregular spacing of vertical tensile members when supporting the structural support systems with packages to be supported through the use of support brackets which are longitudinally adjustable relative to the longitudinal length of the structural support system.
While certain novel features of this invention shown and described below are pointed out in the annexed claims, the invention is not intended to be limited to the details specified, since a person of ordinary skill in the relevant art will understand that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation may be made without departing in any way from the spirit of the present invention. No feature of the invention is critical or essential unless it is expressly stated as being “critical” or “essential.”
The apparatus of the present invention solves the problems confronted in the art in a simple and straightforward manner.
One embodiment provides a method and apparatus for suspending air conditioning duct works from a support structure comprising unistrut type support beams which apparatus includes a plurality of support brackets arranged and configured for being slidably interlockable with the interior of the unistrut beam members.
In one embodiment the support brackets can be slid inside the interior of the support beam until adjacent a support beam which support beam can be connected to the support bracket. In like manner additional support brackets can be inserted into the interior of the support beam members to be adjustably located next to their respective support rod. In such manner multiple support rods can be used to support a frame member even where the support rods are not symmetrically located along the length of the support beam as the support bracket can be slid/moved inside the support beam until lining up with its respective support rod. Additionally, the entire support framework can be moved relative to the plurality of support rods by sliding the framework relative to the support brackets. In such manner the location of the supporting frame member can be changed without moving the support rods.
One embodiment generally relates to devices for supporting frame members, and more particularly to an apparatus for supporting a frame comprising multiple unistrut support beams with slidable type support brackets.
One embodiment provides an apparatus for suspending a frame member from a support structure (e.g., a building frame) which includes a plurality of slidably interlockable support brackets.
In one embodiment, the brackets can comprise a V-shaped element having an upright
The drawings constitute a part of this specification and include exemplary embodiments to the invention, which may be embodied in various forms.
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
Detailed descriptions of one or more preferred embodiments are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in any appropriate system, structure or manner.
In this disclosure a single support bracket 100 will be described in detail. However, it is to be understood that the various support brackets (e.g., 100′, 100″, 100″′ etc.) can be constructed substantially similar to support bracket 100 and do not need to be described separately.
Generally, support bracket 100 can comprise locking section 300 which is connected to support flange 200. Support bracket 100 can have first end 110 and second end 120, along with an apex 310 and lower end 384. In various embodiments transition portion 250 can be provided between support flange 200 and locking section 300 of support bracket 100.
In various embodiments this transition section can include a recessed area 255 between support section 200 and locking section 300 can be provided. In one embodiment recessed 255 area can be an upwardly facing socket which accepts socket 942. In one embodiment recessed area 255 as a socket can comprise two planer flanges forming a “V” shape. In other embodiments recessed area 255 can be other shapes wherein recessed area cradling socket 942 of framing member 900. In various embodiments this recessed area 255 can be omitted and support flange 200 can be planer at its transition 250 with locking section 300.
In one embodiment upper surface 202 of support section can be at a vertical height which is at least equal to the top of socket 942. In various embodiments upper surface 202 can be at a larger vertical height than the top of socket 942.
In one embodiment upper surface 202 of support section can be at a vertical height which is at least equal to the bottom of socket 942. In various embodiments upper surface 202 can be at a larger vertical height than the bottom of socket 942.
Locking section 300 can comprise first flange 340 which is connected to second flange 380. First and second flanges 340, 380 can form a V-shaped locking section. First flange 340 can be planer, as can be second flange 380.
First flange 340 can include first side 354 and second side 358, along with lower end 344 and upper end 348. Second flange 380 can include first side 394 and second side 398, along with lower end 384 and upper end 388.
Support flange 200 can be attached to locking section 300 via curved section 250. Support flange 200 can include first side 214 and second side 218, along with lower surface 204 and upper surface 208.
Support bracket 100 can be attached to tensile member 800 via opening 210 using threaded area 810, first nut 820 and second nut 830. Washers 822 and 832 can be used if desired.
As shown in
Framing member 900 can comprise top web 930 along with first flange 940 and second flange 950, and have first end 910 and second end 920. Top web 930 generally makes a 90 degree angle with first and second flanges 940,950. Between top web 930 and first and second flanges 940, 950 can be interior 970. Interior 970 can have a width 974 and height 972. At the bottom end of first flange 940 can be a socket 944 which generally faces interior 970, and in various embodiments faces top web 930. At the bottom end of second flange 950 can be socket 954 which generally faces interior 970, and in various embodiments top web 930. Between socket 942 and socket 954 can be an open gap 978.
As schematically indicated in
As schematically shown in
Recessed area 255 can form a socket which reinforces the structural rigidity of framing member 900. As schematically indicted in
As shown in
In various embodiments the height of locking section (distance between lower end 384 and apex 310) can be greater than 50 percent of the height 972 of interior 970 of support beam 900. In various embodiments the height can be greater than 50, 55, 60, 65, 70, 75, 80, 85, 90, and 95 percent of the height 972 of interior 970 of support beam 900. In various embodiments the height can be between about any two of the above referenced percentages.
In
Tensile members tensile members 800, 800′, 800″, etc. can themselves be supported themselves in a structure such as a ceiling, rafters, beams, etc. Tensile members 800 can be any structural element strong enough to support load or package 1200 at an elevated position in relation to a ground surface. Such members can be arms, rods, chains, cords, wires, etc.
As schematically indicated in
(a) providing a support structure 2000 comprising first and second framing members 900,900′, each having first and second ends and interiors, which framing members 900, 900′ are structurally interconnected with each other;
(b) provide a plurality of support brackets 100,100′;
(c) inserting at least one of the plurality of support brackets (bracket 100) into the interior 970 of support frame 900, and sliding (schematically indicated by arrows 1610) the bracket 100 into a selected longitudinal position relative to support frame 900, and between the first and second ends of support frame 900;
(d) inserting at least one of the plurality of support brackets (bracket 100″) into the interior 970″ of support frame 900′, and sliding (schematically indicated by arrows 1630) the bracket 100′ into a selected longitudinal position relative to support frame 900′, and between the first and second ends of support frame 900;
(e) supporting the support bracket 100 in an elevated position with a tensile member 800;
(f) supporting the support bracket 100″ in an elevated position with a tensile member 800″; and
(g) wherein support structure 2000 includes a package 1200 to be elevated.
In various embodiments the support brackets can be constructed substantially similar to each other.
In various embodiments the support brackets can include connecting structure 300 which includes first 340 and second 380 flanges.
In various embodiments the support beams 900 can include first 942 and second 952 sockets.
The following is a list of reference numerals:
All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise.
It will be understood that each of the elements described above, or two or more together may also find a useful application in other types of methods differing from the type described above. Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention set forth in the appended claims. The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.
Priority is claimed of/to U.S. patent application Ser. No. 13/613,039, filed on 13 Sep. 2012. In this United States, this is a continuation of U.S. patent application Ser. No. 13/613,039, filed on 13 Sep. 2012. U.S. patent application Ser. No. 13/613,039, filed on 13 Sep. 2012 is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2231153 | Camiener | Feb 1941 | A |
2311410 | Meyer | Feb 1943 | A |
2317428 | Anderson | Apr 1943 | A |
2419317 | Hall | Apr 1947 | A |
2657442 | Bedford, Jr. | Nov 1953 | A |
2659950 | West | Nov 1953 | A |
2676680 | Kindorf | Apr 1954 | A |
2982508 | Larsen et al. | May 1961 | A |
3334465 | Hoffmann, Jr. | Aug 1967 | A |
3360151 | Yznaga | Dec 1967 | A |
3368780 | Buttriss | Feb 1968 | A |
3441240 | Kindorf | Apr 1969 | A |
3474994 | Swanquist | Oct 1969 | A |
3532311 | Havener | Oct 1970 | A |
3602473 | Van Riet et al. | Aug 1971 | A |
3606223 | Havener | Sep 1971 | A |
3613177 | Davis | Oct 1971 | A |
3720395 | Schuplin | Mar 1973 | A |
3844087 | Schultz et al. | Oct 1974 | A |
3888441 | Rebentisch | Jun 1975 | A |
3959852 | Sasena | Jun 1976 | A |
3993272 | Lindeman | Nov 1976 | A |
4041668 | Jahn et al. | Aug 1977 | A |
4133509 | Kalbow et al. | Jan 1979 | A |
4393859 | Marossy et al. | Jul 1983 | A |
4415957 | Schwartz | Nov 1983 | A |
4429440 | Laughlin et al. | Feb 1984 | A |
4544119 | Kellett et al. | Oct 1985 | A |
4640064 | Goodworth, II | Feb 1987 | A |
4680905 | Rockar | Jul 1987 | A |
4787587 | Deming | Nov 1988 | A |
4971280 | Rinderer | Nov 1990 | A |
5022614 | Rinderer | Jun 1991 | A |
5271585 | Zetena, Jr. | Dec 1993 | A |
5274978 | Perkonigg et al. | Jan 1994 | A |
5279632 | Decker | Jan 1994 | A |
5316244 | Zetena, Jr. | May 1994 | A |
5366190 | Schaefer et al. | Nov 1994 | A |
5545843 | Arvidsson et al. | Aug 1996 | A |
5619263 | Laughlin et al. | Apr 1997 | A |
5704571 | Vargo | Jan 1998 | A |
5709057 | Johnson, Jr. et al. | Jan 1998 | A |
5740994 | Laughlin | Apr 1998 | A |
5746029 | Ullman | May 1998 | A |
5758465 | Logue | Jun 1998 | A |
5788201 | Hardison | Aug 1998 | A |
5813641 | Baldwin | Sep 1998 | A |
5921509 | Flood et al. | Jul 1999 | A |
6049963 | Boe | Apr 2000 | A |
6082013 | Peterhans | Jul 2000 | A |
6086029 | Oliver | Jul 2000 | A |
6330991 | Boe | Dec 2001 | B1 |
6354542 | Meyer et al. | Mar 2002 | B1 |
6370828 | Genschorek | Apr 2002 | B1 |
6464180 | Workman | Oct 2002 | B2 |
6467228 | Wendt et al. | Oct 2002 | B1 |
6502363 | Roth | Jan 2003 | B1 |
6508440 | Schmidt | Jan 2003 | B2 |
6631601 | Roth | Oct 2003 | B1 |
6976660 | Lapointe et al. | Dec 2005 | B2 |
7043884 | Moreno | May 2006 | B2 |
7090174 | Korczak | Aug 2006 | B2 |
7320453 | Berlyn et al. | Jan 2008 | B2 |
7360745 | Nikayin et al. | Apr 2008 | B2 |
7367538 | Berlyn | May 2008 | B2 |
D576478 | Mead et al. | Sep 2008 | S |
7810438 | Ryberg | Oct 2010 | B2 |
7954287 | Bravo et al. | Jun 2011 | B2 |
8091839 | Whipple et al. | Jan 2012 | B2 |
8596008 | Waters et al. | Dec 2013 | B2 |
8672281 | Ernst | Mar 2014 | B2 |
8745946 | D'Alessandro et al. | Jun 2014 | B2 |
20020100843 | Schmidt | Aug 2002 | A1 |
20040163338 | Liebendorfer | Aug 2004 | A1 |
20050211847 | Pattie et al. | Sep 2005 | A1 |
20060027715 | Dinh et al. | Feb 2006 | A1 |
20070094994 | Singleton | May 2007 | A1 |
20090282755 | Abbott et al. | Nov 2009 | A1 |
20110073718 | Whipple et al. | Mar 2011 | A1 |
20120031039 | Cusson et al. | Feb 2012 | A1 |
20140158850 | Ernst | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2109596 | Nov 1972 | DE |
2652481 | May 1978 | DE |
3206370 | Sep 1983 | DE |
3409992 | Oct 1985 | DE |
2436318 | Apr 1980 | FR |
2590304 | May 1987 | FR |
868490 | May 1961 | GB |
1452095 | Oct 1976 | GB |
Number | Date | Country | |
---|---|---|---|
Parent | 13613039 | Sep 2012 | US |
Child | 15138255 | US |