The present invention relates to methods and apparatus for determining an optimal time, channel, and/or cost for display of a television promotion, and methods and apparatus for planning, effecting, and/or charging for such display.
Currently, typical cable, fiber optic and satellite television services deliver hundreds of television channels to viewers. While viewers may benefit from this increased number of programs to chose from, it is frequently difficult for viewers to be aware of all of the programming choices available to them, and therefore very difficult for them to identify the programs they would prefer to watch. If a viewer were to channel “surf” through all available channels to identify the best program to watch, there would be little time left to view the program. Thus, the increased value of television resulting from increased choice may be offset to a large degree by the difficulty viewers have in identifying the programs that best meet their media consumption profile.
The increased number of available channels also has negative repercussions for television content providers, (e.g., cable television networks) and television service providers (e.g., cable operators) because they are faced with extraordinary competition for each viewer's available viewing time. Given the number of channels available, the viewer may fail to discover the best channel and best program for her media consumption profile (i.e., viewer profile) due to the overwhelming amount of choice available to her.
One method that television content providers have utilized to attract viewers to a channel and/or a program has been to use cross-network promotion. Cross-network promotion exists when a television content provider advertises a program that will air on its own channel or network in a spot or “avail” on another channel or network. Such promotion can be expensive, however, and thus there is a need for optimizing the selection of the channels, programs, and/or time for placement of such cross-network promotions. Furthermore, there is a need to optimize such selection based on viewer profile information. In the context of the present application, the terms “optimize” and “optimizing,” and all derivatives of these terms, are intended to refer to an improvement or increased effectiveness of cross-network promotion or provision of television content generally, and do not imply that the improvement or increased effectiveness is necessarily maximized.
It is therefore an advantage of some, but not necessarily all, embodiments of the present invention to provide computer-implemented methods and apparatus for optimizing the selection of times, channels, and programs for cross-network promotion of television programs. It is a further advantage of some, but not necessarily all, embodiments of the present invention to provide computer-implemented methods and apparatus for optimizing cross-network promotion of television programs based on viewer profile information. It is still a further advantage of some, but not necessarily all, embodiments of the present invention to optimize cross-network advertising based on viewer profile information. The afore-noted optimization may take into account information relating to the program to be promoted, the channel to be promoted, the channel on which the promotion will air, the program or programs that will “carry” the promotion, promotion cost, spot availability, and viewer profile information, such as, but not limited to viewer demographics, geographic data, and viewing data, among others.
Additional advantages of various embodiments of the invention are set forth, in part, in the description that follows and, in part, will be apparent to one of ordinary skill in the art from the description and/or from the practice of the invention.
Responsive to the foregoing challenges, Applicants have developed an innovative computer implemented method of determining an optimal time and channel for delivery of television advertising content based on viewer profile information, comprising the steps of: collecting viewer profile information for a viewer; storing the viewer profile information in a computer memory; storing a definition of one or more modal segments of viewers in terms of one or more viewer profile information thresholds in the computer memory; assigning the viewer to one or more modal segments based on a computer implemented comparison of the one or more viewer profile information thresholds with the collected viewer profile information; determining with said computer an optimal time and channel for delivery of television advertising content based on viewer assignment to the one or more modal segments and the collected viewer profile information; and providing a computer implemented display indicative of the determined optimal time and channel for delivery of the television advertising content.
Applicants have further developed an innovative computer implemented method of determining an optimal time and channel for delivery of television advertising content based on viewer profile information wherein the attention value is based on one or more indices selected from the group consisting of: a TV View Duration index, a Channel View Duration index, a Genre View Duration index, a Guide Interactions per Time index, and a DVR Interactions per Time index.
Applicants have still further developed an innovative computer implemented method of determining an optimal time and channel for delivery of television advertising content based on viewer profile information wherein the step of assigning the viewer to one or more modal segments is further based on determination of an exploration utility value for the viewer.
Applicants have still further developed an innovative computer implemented method of determining an optimal time and channel for delivery of television advertising content based on viewer profile information wherein the exploration utility value is based on one or more indices selected from the group consisting of: a Genre Familiarity index, a Program Familiarity index, a Channels Viewed index, a Genres Viewed index, and a Guide Interaction Duration index.
Applicants have still further developed an innovative computer implemented method of determining an optimal time and channel for delivery of television advertising content based on viewer profile information wherein the step of determining an optimal time and channel for delivery of television advertising content is further based on geographic data, wherein said geographic data comprises data selected from the group consisting of: climate, population density, ethnic population quantity, ethnic population distribution, race population quantity, race population distribution, income distribution, age distribution, gender quantity, gender distribution, and marital status distribution data.
Applicants have still further developed an innovative computer implemented method of determining an optimal time and channel for delivery of television advertising content based on viewer profile information further comprising the steps of: receiving spot information for a plurality of television spots; and receiving promoted program information for a plurality of television program promotions, wherein the step of determining the optimal time and channel for delivery of the television advertising content is further based on the spot information and the promoted program information, and comprises determining the optimal one of each of said plurality of television spots for delivery of each one of said plurality of television program promotions.
Applicants have still further developed an innovative computer implemented method of determining an optimal time and channel for delivery of television advertising content based on viewer profile information further comprising the steps of: determining the number of viewers assigned to the one or more modal segments in a geographic area; determining geographic data relating to the viewers in the one or more modal segments in the geographic area; and estimating with the computer a number of viewers to be associated with the one or more modal segments outside of the geographic area based on the number of viewers assigned to the one or more modal segments in the geographic area and the geographic data, wherein the step of determining an optimal time and channel for delivery of television advertising content is further based on the estimating of the number of viewers to be associated with the one or more modal segments outside of the geographic area.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.
In order to assist the understanding of this invention, reference will now be made to the appended drawings, in which like reference characters refer to like elements.
Reference will now be made in detail to a first embodiment of the present invention, an example of which is illustrated in the accompanying drawings. With reference to
The user interface 110 (also referred to as “UI”) may be connected via wired or wireless connection to a Data Warehouse (also referred to as “DW”) database 120, and one or more computers (including processing and memory devices) 125 that collectively provide through hardware and/or software a Segmentation Engine 130 (also referred to as “SE”) and an Inventory Manager 140 (also referred to as “IM”). The Segmentation Engine 130 may have a dedicated database 132 assigned to it and the Inventory Manager 140 may have a dedicated database 142 assigned to it. Alternatively, these databases may be part of the DW 120 and more particularly, may be provided as database tables within the DW 120.
The collective components of the TV promotion system 100 may be implemented as computer programs and associated database(s) and database tables which are run on, and provide storage for, general purpose computers having memory and/or processing capabilities. Furthermore, these components may be used to collect, transform, and apply data in such a way as to produce a tangible result, including, but not limited to: the creation of a viewable display of information indicating the proposed or actual airing of a promotion or advertisement at a specified time on a specified television channel; a viewable display of information indicating the optimal ranking of proposed airing of promotions or advertisements at a specified time on a specified television channel; visually perceptible reporting of the airing of a promotion or advertisement; visually perceptible reporting of financial information related to the airing of a promotion or advertisement; visually perceptible reporting of the data stored for use by the TV promotion system; delivery of a promotion or advertisement to a viewer's set top box; and display of the promotion or advertisement on a viewer's television.
The TV promotion system 100 may also be connected via a wired or wireless connection to a communications network 200. The communications network 200 is intended to represent all networks that are necessary to provide the communication between the devices shown in
The communications network 200 may be connected to one or more third party databases 300 which store one or more of: viewer profile information, television advertising content attributes, television program attributes, geographic data, and viewer historical data. To the extent stored on the one or more third party databases 300, the viewer profile information, television advertising content attributes, television program attributes, geographic data, and viewer historical data may be periodically retrieved by the TV promotion system 100 and stored in the DW 120.
The communications network 200 may also be connected to one or more TV service providers 400, which include without limitation, digital or analog broadcasters, digital video recorder (DVR) service providers, satellite TV service providers, cable TV operators (CO), and fiber optic TV service providers. The one or more TV service providers 400, in turn, may be connected to one or more TV content providers 500, such as, but not limited to, any one of the number of cable TV networks (CN) and satellite TV networks. The TV service providers 400 may obtain TV content, including TV advertising content, from the TV content providers 500 for delivery to a viewer household 600. The TV content providers 500 may also be connected to the telecommunications network 200. An alternative source of TV advertising content 700, such as an advertising agency, may also be connected to the telecommunications network 200.
The viewer household 600 may include a telecommunications device, such as a home computer 610 which may be used in alternative embodiments to collect viewer information and/or viewer household information, and provide such information to the DW 120. The viewer household 600 may contain multiple TVs 620 and 630. The TVs 620 and 630 may include one or more of a video display, a set top box (STB), a remote control unit, and a DVR. The TVs 620 and 630 may be connected to a TV service provider 400 through, for example, a co-axial cable, fiber optic, or satellite connection.
As a volume storage medium, DW 120 may be a central or distributed repository of data useful to functions of other TV promotion system 100 functional components, including the SE 130 and the IM 140. DW 120 may host data describing viewer's attention allocation decisions, i.e., viewer profile information, among other data. The viewer profile data may be obtained from any source, but is most likely obtained from the one or more TV service providers 400 or the third party database 300. A “viewer,” “person” and “people” as referred to herein may indicate actual identified or anonymous individuals or groups of individuals, individual set top box(es) (i.e., “STB”) (or the equivalent of set top boxes) in a household or other television consuming unit, and/or the collective group of set top box(es) in a household or television consuming unit.
Examples of viewer profile information (also referred to as attention allocation information), include, but are not necessarily limited to indications of: content type of a television program, amount of time spent watching a television channel, amount (i.e., volume) of time spent watching a television program or programming type, title of the television program, amount of time spent watching television programming of a particular content type, percentage share of overall viewing time spent watching one or more television channels, percentage share of overall viewing time spent watching one or more television programs, percentage share of overall viewing time spent watching television programming of a particular content type or different content types, a mode of content consumption, duration of viewing on a channel, number of channels viewed, degree of similarity between television programming viewed during a recent period and that viewed during a historical period, wherein said historical period includes time before said recent period, frequency with which the viewer changes television channels, actual display by a television of a particular television program, viewer interaction with a digital video recorder including details of such interaction, viewer interaction with an electronic programming guide including details of such interaction, viewer interaction with a video-on-demand (VOD) service including details of such interaction, and keywords provided by the viewer or by an expert system.
With regard to the foregoing viewer profile information, content type of a television program may be indicated by a content genre, such as for example, news, sports, action, drama, science fiction, late night, horror, movie, situation comedy, etc. Program genre may have far more detail and be hierarchically related to the fundamental genre referenced herein. For example, Sports may include Sports/Football, which in turn may include Sports/Football/NFL, etc. Furthermore, the use of “genre” in this application may include descriptors outside of the limited use of “genre” in the television arts. For example, genre may include alternative descriptors such as black and white v. color, time periods (e.g., 1970's), geographic divisions (e.g., British TV), etc.; production details (e.g. Director, Writer, Producers, Release or Original Air Date, Actors, Contestants, Music Composer, Runtime, Country, Rating, Language, Filming Location, etc.); and user generated or Expert System supplied Key words or Tags applied to Program, Plot or Genre.
Details of viewer interaction with a DVR may include interactions such as recording, pausing, replaying, fast forwarding, and fast reversing, for example. Further, details of viewer interaction with an electronic programming guide may include interaction details such as duration of interaction, time and date of interaction, program detail information selected for review, and frequency of viewer interaction. And, details of viewer interaction with a VOD may include interactions such as duration of viewer interaction with the VOD service, time and date details of viewer interaction with the VOD service, and frequency of viewer interaction with the VOD service.
The viewer profile information may further include viewer attribute data, which includes, but is not necessarily limited to indications of viewer or viewer household: income, employment, race, ethnicity, age, gender, marital status, parental status, children in household, number of people in household, number of televisions, and television subscription data.
DW 120 may also host geographic data and viewer historical data. Examples of geographic data, may include, but are not necessarily limited to: climate, population density, ethnic population quantity, ethnic population distribution, race population quantity, race population distribution, income distribution, age distribution, gender quantity, gender distribution, and marital status distribution data for the geographic region in which the viewer or viewer household are located. Examples of viewer historical data, include, but are not necessarily limited to the same types of information as included in viewer profile information, but for a period of time that predates the period to which current viewer profile information pertains. Accordingly, viewer historical data and current viewer profile information may be subsets of viewer profile information as a whole.
The DW 120 preferably may exclude data that constitutes personally identifiable information. Examples of personally identifiable information may include: full name, national identification number, telephone number, street address, e-mail address, IP address, vehicle registration number, driver's license number, face image, fingerprints, or handwriting information, credit card numbers, and digital identity.
Equipped with computer processing capacity, the DW 120 may also schedule and execute scripts to retrieve data from the TV promotion system's 100 partners (e.g., which may include data providers compensated for the provision of data by also utilizing the system as a client or customer, or by direct payment). The TV promotion system 100 may utilize a set of extraction, transformation and loading (ETL) processes that insert the data into the table structures in the repository. The DW 120 may constitute one or more databases, and/or one or more data tables within a database. ETL processes may be used to locate useful data and convert it as necessary into a form that is useful to the TV promotion system 100 and capable of being stored in the DW 120. The ETL processes may convert such data so that it is in a completely uniform or more uniform for use across the TV promotion system 100. The DW 120 may interact with the UI 110 to support administrative functions governing script schedules and to publish alert messages associated with exceptions in script execution.
The SE 130 may utilize computer processing capacity to interface with the DW 120 to analyze viewer profile information and to assign viewers to audience segments according to their content preferences (i.e., Content Preference segments), and/or their mode of content consumption (i.e., Modal Segments). Other segmentation groups based on the viewer profile information and/or geographic data may be utilized in alternative embodiments.
Content Preference Segmentation may organize (i.e., segment) viewers into groups according to the types of content they consume and the volume (e.g., number of minutes per unit of time) and share (e.g., percentage of overall viewing time) of their attention dedicated to types of content. The “type of content” may be synonymous with program “genre” as described above, or may be a descriptor of such content which is only tangentially related or completely unrelated to genre.
Modal Segmentation may be used to organize viewers into groups according to the manner in which they consume content, and more particularly, the value of viewing time to a viewer, and the allocation of that viewing time. A viewer may be assigned to a different Modal Segment at different points in time depending on whether he or she is determined to be seeking comfort in (typically by viewing) the most familiar content, actively engaged in identifying and potentially viewing new types of content, or a combination of the foregoing. Assignment to Modal Segments may be impacted by the time and frequency of a viewer's viewing and searching habits in connection with different types of content, including but not limited to VOD and non-VOD programming consumption, and/or electronic programming guide use in the near and long term.
The SE 130 may execute statistical algorithms in order to determine segment membership for those viewers for which the DW 120 has data, whether based on direct observation or third party reporting, and to project segment membership distribution on populations for which the DW 120 has no data based on direct observation.
To assign a person to a Content Preference Segment, the SE 130 may retrieve the definition of the Content Preference Segment, a threshold volume and share of different types of content consumed that are established through classification and clustering techniques of the type used by those of ordinary skill in the art of statistics, retrieve records of viewers' television viewing in a specified time period, analyze the nature of the content the viewers have consumed, and compare the volumes and shares of different types of content consumed to the segment definition's threshold volume and share values. When a viewer's volume and share of different types of content consumed meets the threshold volume and share prescribed by the Content Preference Segment definition, the person is assigned to the segment.
To assign an individual to a Modal Segment, the SE 130 may retrieve the definition of the Modal Segment, threshold values for, example, duration of content consumption, duration of content consumption on a single channel, number of channels viewed, and the degree of similarity of recent content consumption in comparison to historical content consumption (i.e., how close a viewer's recent viewing consumption matches that over a longer historical period). Modal Segment definition thresholds may be established through classification and clustering techniques. The SE 130 may also retrieve records of a viewer's television viewing in a specified time period, analyze how the viewers have consumed content, and compare the values representing how content is consumed to the segment definition's thresholds. When a viewer's values representing the manner in which content was consumed meet the threshold values prescribed by the segment definition, the viewer may be assigned to one or more Modal Segments.
The IM 140 may utilize computer processing capacity to interface with the DW 120 and the SE 130, to optimize the allocation of TV service provider 400 and/or TV content provider 500 promotional spot inventory with respect to increasing and preferably optimizing programming tune-in and video-on-demand activation for a set of promoted programs, and update matrices hosting the optimized promotional insertion for each spot in inventory and the data supporting that assignment of promotion to a spot where a “spot” is a pre-ordained time period for insertion of an advertisement, preferably a cross-network program promotion advertisement. For example, there may be four 30 second duration spots in a Pod (i.e., commercial break) and there may be three (3) Pods per 30 minutes of programming.
The IM 140 may select the spots which will improve or optimize programming tune-in and video-on-demand activation for the entire portfolio of available promoted programs that are in circulation at any point in time. If a spot has the same value to more than one advertisement or promotion then the selection of an advertisement or promotion to insert into the spot may based on the following criteria arranged in order of importance: time until promoted program airs or, in the case of VOD, time until the program expires (where the promotion for the program to air or expire soonest has priority); business impact (e.g., the promotion for the program owned by the partner with greatest contractual obligations to improve ratings or to provide additional services in response to performance shortcoming has priority); financial gain/cost to one or more of the involved parties including the operator of the TV promotion system 100, a cable operator, a cable network provider, etc.; and/or random allocation.
The UI 110 may utilize computer processing capacity to provide a presentation layer to authenticated users of the TV promotion system 100 for the purposes of inserting select data into the DW 120, executing exception processes to resolve issues in the DW (e.g. connectivity failures in data file retrieval, data format inconsistencies with specification, and insufficient disk space allocated to files), SE 130 and IM 140 application workflows and querying SE and IM application data output. An illustration of a computer screen 1000 showing a call sign mapper utility which is used to map data associated with a particular data source to potentially multiple television channels is shown in
The UI 110 may support administration of user accounts, including the specification of user roles, and provide access to documents and interface functionality based on credentials supplied by users. For example, in a preferred embodiment, only users with administrative access credentials may access the UI 110 functionality to create new user accounts.
The following workflow functions, illustrated by
With reference to
Examples of the spot information 162 which may be used to describe the spots include, without limitation: spot owner, indication of national or local spot, network affiliation, channel affiliation, carrier program affiliation, date, time of day, Pod number, Pod position, geographic, expected reach, actual reach, and rules governing use information.
Actual reach information may indicate the reported number of viewers for a spot, and expected reach information may indicate the number of viewers predicted to view a spot. Pod number and position may indicate the time in a program that a set of spots will air. For example, a Pod may constitute four 30 second long messages/promotions, and there may be three Pods spaced a number of minutes apart in a 30 minute long program. In step 804, the UI 110 may be used to set computer-implemented controls to automatically update the spot information 162 in the DW 120 and/or to initiate such updating at the selection of a user.
With reference to
Examples of the promoted program information 164 that relate to promotions include, without limitation: promotion name, owner, promoted program name, program type, Appointment/VOD, duration, and promoted program air data information. Appointment/VOD may indicate the time of day at which a program airs or the time of day that a VOD program is viewed. Examples of the promoted program information 164 that relate to programs include, without limitation: program name, distribution rights holder, program air date, VOD availability start date, VOD availability end date, genre, and production details information. Promoted program information may also include business impact information and financial information, where financial information may include information indicative of cost for delivery of a television program promotion to an audience segment and/or information indicative of revenue generated for delivery of a television program promotion to the audience segment.
In step 814, the UI 110 may be used to set computer-implemented controls to automatically update the promoted program information 164 in the DW 120 and/or to initiate such updating at the selection of a user.
With reference to
With reference to
In a preferred embodiment, the Content Preference Segments may be defined by threshold volumes and/or shares of consumption of one or more of: a particular genre or genres per unit of time, a particular channel or channels per unit of time, and a particular television program or programs per unit of time. The unit of time used may be any that is appropriate, including, for example, a day, week, or month. For example, a viewer may be assigned to a Sports Content Preference Segment if the viewer consumes five or more hours of television programming in the Sports genre per week, or if thirty or more percent the viewer's television programming consumption per month is in the Sports genre. In another example, a viewer may be assigned to a Sports Content Preference Segment if the viewer consumes five or more hours of television programming from the ESPN channel in a week.
In step 832 of
In step 834, if the SE 130 detects changes to any Content Preference Segment definition or changes in the viewer profile information, the SE may assemble a queue of Content Preference Segments to recalculate membership of the segments.
In step 836, for each Content Preference Segment in the recalculation queue, the SE 130 may retrieve the threshold volume and/or share values for different types and/or amounts of television programming content consumed by the viewers that are established through classification and clustering techniques.
In one embodiment of the present invention, specially trained resources (users) may assign values in the TV promotion system 100 to programs based on knowledge of the programs' attributes for classification of the programs. The resources may then curate a subset of programs with like value assignments and instruct the computer-implemented TV promotion system 100 to identify the set-top boxes that are observed to tune in to that subset of programs (the clustering). In another embodiment of the present invention, algorithms, such as a k-means algorithm, may be used to cluster programs based on a set of pre-defined characteristics such as hour of airing, network, cast, genre, and others. In still another embodiment of the present invention, the TV promotion system 100 may cluster programs using a logistic regression classifier in which each available STB is assigned probability of tune in to a promoted program based on whether it was tuned in to a similar program in the past. For example, the STBs with an associated probability p>0.5 may form a “likely to tune in” cluster. Still further, it is appreciated that the segmentation resulting from this step may utilize a different binary classifier method, for example support vector machines (SVM).
In step 838, for each Content Preference Segment in the recalculation queue, the SE 130 may retrieve the viewer profile information for a specified time period. The viewer profile information required may include, in particular, the information which identifies the nature and content of the television programs watched by the viewers such as content type of a TV program, amount and/or percentage share of time spent watching television programming of a particular content type, amount and/or percentage share of viewing time spent watching one or more television channels, and amount and/or percentage share of viewing time spent watching one or more television programs. In step 840, the SE 130 may compare the volumes and shares of different types of content consumed by the viewers (i.e., the viewer profile information) with the Content Preference Segment's definitional threshold volume and share. In step 842, the SE 130 may assign each viewer to one or more Content Preference Segments based on such comparison and record the assignment in the DW 120 thereby associating the viewer with the segments. The SE may also compare the strength of a viewer's association with more than one Content Preference Segment to determine which one Content Preference Segment is most appropriate for the viewer, if limitation to one or a limited number of Content Preference Segments is desired.
With reference to
In a preferred embodiment, the values that may be considered for Modal Segment definition may be grouped into Attention Values and Exploration Utility Values. With reference to
The following Table 1 provides examples of Attention Values, and particular Attention Value Indices, that may be calculated in determining Modal Segments.
Each of the indices identified in Table 1 may be determined for individual viewers and then combined for all viewers in a segment or geographical area.
With reference to
The following Table 2 provides examples of Exploration Utility Values, and particular Exploration Utility Indices, that may be calculated in determining Modal Segments. Each of the indices identified in Table 2 may be determined for individual viewers and then combined for all viewers in a segment or geographical area.
With renewed reference to
With renewed reference to
In step 854, if the SE 130 detects changes to any Modal Segment definition or changes in the viewer profile information relating to the mode of television programming consumption, the SE may assemble a queue of Modal Segments to recalculate membership of the segments.
In step 856, for each Modal Segment in the recalculation queue, the SE 130 may retrieve the threshold volume and/or share values for different modes of television programming consumed by the viewers that are established through classification and clustering techniques.
In step 858, for each Modal Segment in the recalculation queue, the SE 130 may retrieve the viewer profile information relating to the mode of television programming consumption for a specified time period. The viewer profile information required may include, in particular, the information which indicates a mode of television consumption, such as shown in the charts above and illustrated in
With reference to
In step 876, if the SE 130 detects changes to any Content Preference or Modal Segment population, changes to geographic data, or changes to the models used to project segment compositions onto geographic areas for which less than sufficient viewer profile information is available, the SE 130 may enter geographic data from geographic areas for which sufficient viewer profile information is available into the current models to predict segment composition in the underrepresented geographic areas based on common geographic attributes. In step 878, the SE 130 may gather the output of the predicted segment composition calculations and enter the estimated segment size and compositions for the geographic areas for which insufficient viewer profile information is available to determine segment compositions. In a preferred embodiment, a viewer may be a member of only one of each of the segmentation schemes (i.e., a member of a Content Preference Segment and a member of a Modal Segment, which are distinct segmentation schemes). It is appreciated, however, that a person can be a member of different Content Preference Segments, for example, if such segments are in different domains. It is also appreciated that a viewer may be a member of different Modal Segments for different times of the day, week or month, for example.
With reference to
In step 882, the IM 140 may use forecasting models to estimate the propensity of a segment of viewers exposed to spots to tune-in or activate as VOD one or more TV programs to be promoted. A value may be determined representing the propensity of each viewer segment to tune-in and/or activate as VOD each of the TV programs to be promoted. The forecasting model, and the value determined from it, may be based in part on one or more of the viewer profile information, spot information, and promoted program information. Historical viewer profile information also may be utilized for such forecasting.
In step 884, the IM 140 may enter each of the values determined in the preceding step into a matrix where each value in the matrix represents the expected incremental audience to tune-in to or activate as VOD every TV program to be promoted conditioned on allocating other spots to other programs to be promoted. The resulting matrix may include all possible permutations or combinations of spots and promotions. The forecasting models may result in the determination of and storage of data such as is shown chart 1100 shown in
In step 886, the IM 140 may determine all permutations of spot-promotion combinations for the matrix until all potentially desirable spot-promotion combinations are determined. The IM 140 may then store the incremental number of viewers which are predicted to tune-in to or activate as VOD each TV program to be promoted for each permutation. The incremental number of viewers may be the number of extra viewers predicted to be attracted to view a program utilizing the spot optimization process versus not using it.
In step 888, the predicted incremental number of viewers from the previous step may be used by the IM 140 to rank the spot and promotion combinations. A preferred combination may be one that is predicted to increase and preferably optimize the incremental number of viewers that will tune-in to or activate as VOD each of the programs to be promoted. The ranking may be used by the IM 140 to calculate the value of spots and update the value of spots under management by the TV promotion system 100 for each program to be promoted. The data used to determine the ranking may be input to the TV promotion system 100 using a graphic interface 1200 such as shown in
In step 890, the IM 140 may cause the UI 110 to create a computer-implemented display through video and/or print a report detailing all spots available for each program to be promoted, spots and their value for each program to be promoted grouped by carrier network, carrier program, and promoting TV service provider and/or TV content provider. The displayed report may indicated the optimal time and channel for delivery of television advertising content, namely the promotion for a program to be promoted. Alternatively, the IM may interface directly with a TV service provider and/or TV content provider to automatically implement spot-promotion assignments for inclusion in future television programming which represent the optimal time and channel for delivery of the television advertising content (i.e., promotion). The reports referenced may be visually perceptible to a user of the UI.
In step 892, the TV promotion system 100 may transmit the reports to the TV content provider and/or TV service provider. The TV content provider and/or TV service provider may be provided with approval authority to implement providing the promotions in the determined optimal spot. Preferably, the TV promotion system 100 may be used to determine optimal cross-network promotion channels and times for promoting one or more TV programs.
With reference to
In steps 902 and 904, the data that triggers lift reporting may be moved to processing locations designed to manage the data and manipulate the data into forms that are useful for reporting.
In steps 906 and 908, similar to steps 842 and 862, the SE may calculate Content Preference and Modal Segment populations. Using these projected segment populations, in step 910 the SE may calculate the proportion of promoted program viewers in each Content Preference Segment and each Modal Segment across geographic regions and/or nationally.
In steps 912 and 914, the UI may access the information determined by the SE in the preceding steps and publish it in one or more reports, both internally and externally.
It will be apparent to those skilled in the art that variations and modifications of the present invention can be made without departing from the scope or spirit of the invention.
The present invention and application relates to, and claims the benefit of the earlier filing date and priority of U.S. Provisional Patent Application 61/160,115 filed Mar. 13, 2009, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5446919 | Wilkins | Aug 1995 | A |
5600364 | Hendricks et al. | Feb 1997 | A |
5636346 | Saxe | Jun 1997 | A |
6002393 | Hite et al. | Dec 1999 | A |
6020883 | Herz et al. | Feb 2000 | A |
6036601 | Heckel | Mar 2000 | A |
6128663 | Thomas | Oct 2000 | A |
6286005 | Cannon | Sep 2001 | B1 |
6463585 | Hendricks et al. | Oct 2002 | B1 |
6477704 | Cremia | Nov 2002 | B1 |
6539375 | Kawasaki | Mar 2003 | B2 |
6615039 | Eldering | Sep 2003 | B1 |
6718551 | Swix et al. | Apr 2004 | B1 |
6738978 | Hendricks et al. | May 2004 | B1 |
6820277 | Eldering et al. | Nov 2004 | B1 |
6868389 | Wilkins et al. | Mar 2005 | B1 |
7043531 | Seibel et al. | May 2006 | B1 |
7065550 | Raghunandan | Jun 2006 | B2 |
7100183 | Kunkel et al. | Aug 2006 | B2 |
7136871 | Ozer et al. | Nov 2006 | B2 |
7139723 | Conkwright et al. | Nov 2006 | B2 |
7146329 | Conkwright et al. | Dec 2006 | B2 |
7185353 | Schlack | Feb 2007 | B2 |
7194421 | Conkwright et al. | Mar 2007 | B2 |
7194424 | Greer et al. | Mar 2007 | B2 |
7197472 | Conkwright et al. | Mar 2007 | B2 |
7228555 | Schlack | Jun 2007 | B2 |
7236941 | Conkwright et al. | Jun 2007 | B2 |
7240022 | Bistriceanu et al. | Jul 2007 | B1 |
7243129 | Thomas | Jul 2007 | B1 |
7260823 | Schlack et al. | Aug 2007 | B2 |
7302419 | Conkwright et al. | Nov 2007 | B2 |
7328448 | Eldering et al. | Feb 2008 | B2 |
7331057 | Eldering et al. | Feb 2008 | B2 |
7356547 | Ozer et al. | Apr 2008 | B2 |
7370073 | Yen et al. | May 2008 | B2 |
7370342 | Ismail et al. | May 2008 | B2 |
7383243 | Conkwright et al. | Jun 2008 | B2 |
7406434 | Chang et al. | Jul 2008 | B1 |
7487523 | Hendricks | Feb 2009 | B1 |
7536316 | Ozer et al. | May 2009 | B2 |
7546619 | Anderson et al. | Jun 2009 | B2 |
7552458 | Finseth et al. | Jun 2009 | B1 |
7562064 | Chickering et al. | Jul 2009 | B1 |
7584490 | Schlack | Sep 2009 | B1 |
7587731 | Oyabu et al. | Sep 2009 | B1 |
20010042002 | Koopersmith | Nov 2001 | A1 |
20020019774 | Kanter | Feb 2002 | A1 |
20020022996 | Sanborn et al. | Feb 2002 | A1 |
20020026359 | Long et al. | Feb 2002 | A1 |
20020052774 | Parker et al. | May 2002 | A1 |
20020056093 | Kunkel et al. | May 2002 | A1 |
20020083439 | Eldering | Jun 2002 | A1 |
20020095332 | Doherty et al. | Jul 2002 | A1 |
20020099605 | Weitzman et al. | Jul 2002 | A1 |
20020104083 | Hendricks et al. | Aug 2002 | A1 |
20020116258 | Stamatelatos et al. | Aug 2002 | A1 |
20020138284 | DeCotiis et al. | Sep 2002 | A1 |
20020138285 | DeCotiis et al. | Sep 2002 | A1 |
20020138333 | DeCotiis et al. | Sep 2002 | A1 |
20020138334 | DeCotiis et al. | Sep 2002 | A1 |
20020152117 | Cristofalo et al. | Oct 2002 | A1 |
20030023489 | McGuire et al. | Jan 2003 | A1 |
20030036944 | Lesandrini et al. | Feb 2003 | A1 |
20030036949 | Kaddeche et al. | Feb 2003 | A1 |
20030041156 | Pickover et al. | Feb 2003 | A1 |
20030101451 | Bentolila et al. | May 2003 | A1 |
20030101454 | Ozer et al. | May 2003 | A1 |
20030145323 | Hendricks et al. | Jul 2003 | A1 |
20030172374 | Vinson et al. | Sep 2003 | A1 |
20030220833 | Benderev | Nov 2003 | A1 |
20040083133 | Nicholas et al. | Apr 2004 | A1 |
20040122735 | Meshkin | Jun 2004 | A1 |
20040133480 | Domes | Jul 2004 | A1 |
20040163101 | Swix et al. | Aug 2004 | A1 |
20040243623 | Ozer et al. | Dec 2004 | A1 |
20050091104 | Abraham | Apr 2005 | A1 |
20050120045 | Klawon | Jun 2005 | A1 |
20050251820 | Stefanik et al. | Nov 2005 | A1 |
20060085254 | Grim, III et al. | Apr 2006 | A1 |
20060085263 | Greer et al. | Apr 2006 | A1 |
20060122857 | DeCotiis et al. | Jun 2006 | A1 |
20060127869 | Fields et al. | Jun 2006 | A1 |
20060265507 | Banga et al. | Nov 2006 | A1 |
20070156532 | Nyhan et al. | Jul 2007 | A1 |
20070199017 | Cozen et al. | Aug 2007 | A1 |
20070244753 | Grouf et al. | Oct 2007 | A1 |
20080034386 | Cherry et al. | Feb 2008 | A1 |
20080059308 | Gerken | Mar 2008 | A1 |
20080077478 | Kim | Mar 2008 | A1 |
20080082396 | O'Connor et al. | Apr 2008 | A1 |
20080082397 | Dennison et al. | Apr 2008 | A1 |
20080091516 | Giunta | Apr 2008 | A1 |
20080109376 | Walsh et al. | May 2008 | A1 |
20080114648 | Chen et al. | May 2008 | A1 |
20080127252 | Eldering et al. | May 2008 | A1 |
20080133370 | Gehlot et al. | Jun 2008 | A1 |
20080189734 | Schepers et al. | Aug 2008 | A1 |
20080195468 | Malik | Aug 2008 | A1 |
20080199042 | Smith | Aug 2008 | A1 |
20080221987 | Sundaresan et al. | Sep 2008 | A1 |
20080235722 | Baugher et al. | Sep 2008 | A1 |
20080243614 | Tu et al. | Oct 2008 | A1 |
20080249858 | Angell et al. | Oct 2008 | A1 |
20080271070 | Kanojia et al. | Oct 2008 | A1 |
20080276270 | Kotaru et al. | Nov 2008 | A1 |
20080281687 | Hurwitz et al. | Nov 2008 | A1 |
20080281711 | Bridges et al. | Nov 2008 | A1 |
20080319786 | Stivoric et al. | Dec 2008 | A1 |
20090030801 | Meggs | Jan 2009 | A1 |
20090063250 | Burgess et al. | Mar 2009 | A1 |
20090063268 | Burgess et al. | Mar 2009 | A1 |
20090063278 | Song et al. | Mar 2009 | A1 |
20090063283 | Kusumoto et al. | Mar 2009 | A1 |
20090075738 | Pearce | Mar 2009 | A1 |
20090094096 | Riise et al. | Apr 2009 | A1 |
20090094640 | Anderson et al. | Apr 2009 | A1 |
20090100047 | Jones | Apr 2009 | A1 |
20090112701 | Turpin et al. | Apr 2009 | A1 |
20090113468 | Steelberg et al. | Apr 2009 | A1 |
20090119172 | Soloff | May 2009 | A1 |
20090119173 | Parsons et al. | May 2009 | A1 |
20090125399 | Weathersby | May 2009 | A1 |
20090132342 | Klinger et al. | May 2009 | A1 |
20090132373 | Redlich | May 2009 | A1 |
20090132374 | Weathersby | May 2009 | A1 |
20090138329 | Wanker | May 2009 | A1 |
20090157507 | Agius et al. | Jun 2009 | A1 |
20090172725 | Heilbron et al. | Jul 2009 | A1 |
20090186704 | Goldberg et al. | Jul 2009 | A1 |
20090187939 | Lajoie | Jul 2009 | A1 |
20090228912 | Reynolds et al. | Sep 2009 | A1 |
20090228914 | Wong et al. | Sep 2009 | A1 |
20110016482 | Tidwell et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
2006184944 | Jul 2006 | JP |
WO 0237384 | May 2002 | WO |
Entry |
---|
International Search Report for PCT/US2010/025790 dated Apr. 29, 2010. |
Number | Date | Country | |
---|---|---|---|
20100269134 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61160115 | Mar 2009 | US |