BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 is a diagrammatic elevational view of the continuous casting furnace and temperature control mechanism of the present invention and shows an early stage of the formation of a metal cast.
FIG. 2 is similar to FIG. 1 and shows a further stage of the formation of the metal cast.
FIG. 3 is a flow chart showing the basic method of the present invention.
Similar numbers refer to similar parts throughout the specification.
DETAILED DESCRIPTION OF THE INVENTION
The continuous casting furnace of the present invention is indicated generally at 10 and FIGS. 1 and 2. Furnace 10 includes a melting hearth 12 having a melting cavity and a feed mechanism 14 for feeding solid metal feed material 16 into the melting cavity of hearth 12. Furnace 10 further includes a continuous casting mold 18 situated for receiving molten material 20 from an overflow of melting hearth 12 in order to form a metal cast 22 therewith. First and second heat sources 24 and 26 are respectively positioned above melting hearth 12 and mold 18. First heat source 24 provides heat for melting material 16 to form molten material 20 and second heat source 26 provides heat for controlling the solidification rate of the material once it has entered mold 18. The above components are typically disposed within a melting chamber 25 which is sealed from the external environment. Chamber 25 may be filled with an inert gas such as argon or helium, as is used in plasma arc melting, or may be under vacuum, as is the case with the use of electron beam melting. Heat sources 24 and 26 are most typically plasma torches or electron beam guns although other heat sources known in the art may be used.
In accordance with a feature of the invention, furnace 10 includes a temperature control mechanism 28 for controlling the temperature of metal cast 22 as it exits mold 18 in order to provide the improved qualities as noted in the Background section of the present application. Mechanism 28 includes a third heat source in the form of an induction coil 30, a cooling device preferably in the form of an argon or helium cooling ring 32 and a temperature sensor 34. Induction coil 30 and cooling ring 32 are disposed adjacent a metal cast pathway 36 which extends downwardly from mold 18 and through which metal cast 22 passes as it exits mold 18. Preferably, each of induction coil 30 and cooling ring 32 circumscribe pathway 36 and thus circumscribe metal cast 22 as it passes there through as it is lowered at indicated at arrow A by a lift 38. Each of induction coil 30 and cooling ring 32 are disposed below mold 18. While ring 32 is shown below coil 30, these positions may be reversed if desired. Temperature sensor 34 is configured to measure or sense the temperature of metal cast 22 at a temperature measurement location 40 disposed on pathway 36. In particular, location 40 is disposed below mold 18 and above each of coil 30 and ring 32 although this may also vary. Sensor 34 is suitable for use in inert gas and vacuum environments or otherwise.
Mechanism 28 further includes an electric power source 42 which is in electrical communication with induction coil 30 via electrical conductors 44. In addition, coil 30 is typically a water cooled coil and is thus in communication with a source 46 of cooling water or other cooling liquid via conduits 48. Source 46 includes a pump for recirculating the liquid through coil 30, the pump having on and off positions and a rate control mechanism. Mechanism 28 further includes a source 50 of cooling gas which is in communication with cooling ring 32 via at least one conduit 52. Source 50 includes a gas flow control with on and off positions and a rate control mechanism. In one embodiment, a gas may be recirculated through ring 32 in a closed loop fashion. In an alternate embodiment, a cooling gas pathway 54 is in fluid communication with cooling device 32 and metal cast pathway 36 to allow the gas to flow from ring 32 to pathway 36. Mechanism 28 further includes a control unit 56 which is in communication with each of temperature sensor 34, electrical power source 42, source 46 of cooling liquid and source 50 of cooling gas, typically via electrical conductors 58.
The operation of temperature mechanism 28 is described with reference to FIGS. 1-2. As metal cast 22 is formed via mold 18 and is lowered by lift 38, temperature sensor 34 measures or senses the temperature of metal cast 22 along the outer surface thereof at location 40. A signal corresponding to the temperature is sent from sensor 34 via conductor 58 to control unit 56, which includes a logic circuit programmed to control operation of power source 42, source 46 of cooling liquid and source 50 of cooling gas as needed in order to adjust the temperature of metal cast 22 as it passes through coil 30 and ring 32. Control unit 56 compares the temperature sensed by sensor 34 with a predetermined value range of temperatures which is desired for metal cast 22 and controls mechanism 28 in accordance therewith.
The basic process is indicated in FIG. 3. More particularly, sensor 34 checks the temperature of metal cast 22 as indicated at block 60, and as long as the temperature is within an acceptable range, sensor 34 continues to check the temperature without control unit 56 making any changes to adjust the temperature of metal cast 22. In the simplistic mode illustrated in FIG. 3, if the temperature is too low, control unit 56 turns on heating coil 30 in order to raise the temperature of metal cast 22 and if the temperature of metal cast 22 is too high, control unit 56 turns on cooling ring 32 to cool metal cast 22 as needed.
However, the process may be modified in a variety of ways in order to control the temperature of metal cast 22 as it moves downwardly as indicated in FIGS. 1 and 2. For instance, if the temperature of metal cast 22 sensed by sensor 34 is too low, the heat source such as induction coil 30 may be turned on as previously indicated or the power to the heat source may be increased if it is already on in order to increase the temperature. If the temperature of the metal cast sensed is too high, heating coil 30 or another heat source may either be turned off or the heat output thereof may be reduced, which in the present embodiment would involve reduction of the power to coil 30 provided by source 42. In short, coil 30 may be operated to raise the temperature of metal cast 22 or may be operated to reduce the amount of heat output to effectively lower the temperature of metal cast 22. In addition, coil 30 may be configured to double as a cooling device. For example, source 46 of cooling liquid may be operated to move cooling liquid via conduit 48 through the tubular structure of coil 30, as is commonly used with water cooled induction coils. Of course coil 30 may also be a resistively heated element which may also involve the use of a tubular coil which allows for the circulation of the cooling liquid via source 46. Thus, if the temperature of metal cast 22 is too high, coil 30 may be operated in its cooling mode via the circulation of cooling liquid there through in order to cool metal cast 22.
Alternately or in conjunction therewith, control unit 56 may operate source 50 of cooling gas to circulate said gas through cooling ring 32 in order to provide cooling effects to metal cast 22 as it passes there through, as shown in FIG. 2. Cooling ring 32 may be configured to simply re-circulate the gas from source 50 in a closed loop or may be configured to allow the gas to move out of ring 32 through cooling gas pathway 54 toward metal cast 22 as cast 22 passes by ring 32 in order to provide a more direct cooling effect by bringing the cooling gas into contact with or closely adjacent metal cast 22. When furnace 10 is operated within a sealed chamber filled with an inert gas such as argon or helium, the latter configuration is preferred, and source 50 may simply be the gas within chamber 25. Thus, helium gas or another appropriate inert gas may be used as the cooling gas for cooling ring 32 while maintaining the appropriate atmosphere for the production of metal cast 22 within furnace 10. The closed loop configuration of ring 32 and source 50 may be used in a vacuum environment, inert gas environment or otherwise.
Furnace 10 thus provides an apparatus and method for controlling the temperature of a metal cast produced by a continuous casting mold so that the surface smoothness and internal metallurgical structure of the metal cast may be more closely controlled to provide a higher quality product. While the invention is useful generally, it is particularly beneficial for use in inert gas or vacuum environments, for which forced air cooling and water spray cooling is inappropriate. It will be appreciated by one skilled in the art that various changes may be made which are within the scope of the present invention. The temperature sensor is typically an infrared sensor although any suitable temperature sensor may be used for the purpose. In addition, the heat source is primarily represented as including an induction coil. However, the figures alternately represent the use of a resistively heated coil powered by the electric power source. Induction coils or resistance heaters may be used in both inert gas and vacuum environments or otherwise. Other heat sources known in the art may be utilized as well. Similarly, the cooling device may be any device which is suitable for the purpose. In addition, an insulating blanket (not shown) may be used to cover the ingot surface to slow down the ingot cooling rate. Insulating blankets may be used in both inert gas and vacuum environments or otherwise.
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed.
Moreover, the description and illustration of the invention is an example and the invention is not limited to the exact details shown or described.