Method and apparatus for tensioning a suture

Information

  • Patent Grant
  • 9271713
  • Patent Number
    9,271,713
  • Date Filed
    Monday, November 14, 2011
    13 years ago
  • Date Issued
    Tuesday, March 1, 2016
    8 years ago
Abstract
An apparatus can include a tensioning member having a body defining a first bone engaging surface, a second opposite suture receiving surface, and an outer perimeter. First and second suture attachment members can be positioned relative to the second surface and spaced apart from each other, and can be configured to be coupled to a suture. First and second suture engaging members can extend from the second surface and can be positioned in spaced relation to the first and second suture attachment members. Rotation of the tensioning member in a first direction can selectively engage the first and second suture receiving members with the suture, thereby forming a non-linear path of travel of the suture relative to the first and second suture attachment members and suture engaging members and increasing the tension in the suture.
Description
FIELD

The present disclosure relates generally to methods and apparatus for tensioning a suture.


BACKGROUND

The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.


After trauma or surgical intervention, there may be a need to fix bone fragments or portions together to immobilize the fragments and permit healing. Compressive force can be applied to the bone fragments by encircling the bone fragments or bridging the fragments together across a broken, sectioned (cut) or otherwise compromised portion of the bone. The compressive forces should be applied such that upon ingrowth of new bone, the fragments will heal together and restore strength to the site of trauma or surgical intervention.


Accordingly, there is a need for apparatus and methods to apply compressive force to a bone across a fracture or section (cut) to maintain alignment and assist healing. Further, there is a need for apparatus and methods that are easy to use intraoperatively to accommodate various bone sizes or shapes, or locations of bone fractures or sections.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


In one aspect, an apparatus for applying tension to a suture is provided in accordance with the present teachings. The apparatus can include a tensioning member having a body, first and second suture attachment members and first and second suture engaging members. The body can define a first bone engaging surface, an opposite second suture receiving surface, and an outer perimeter. The first and second suture attachment members can be positioned relative to the second surface and spaced apart from each other, and can be adapted to be coupled to the suture. The first and second suture engaging members can extend from the second surface and can be positioned in spaced relation to the respective first and second suture attachment members. Rotation of the tensioning member in a first direction can be adapted to selectively engage the first and second suture receiving members with the suture, thereby forming a non-linear path of travel of the suture relative to the first and second suture attachment members and suture engaging members and increasing the tension in the suture.


In another aspect, a method for applying tension to a flexible member is provided in accordance with the present teachings. The method can include positioning a tensioning member relative to a first bone portion and a second bone portion, where the tensioning member can have first and second flexible member attachment members and a corresponding set of first and second flexible member engaging members extending therefrom. The flexible member can be positioned about the first and second bone portions and can be coupled to the first and second attachment members. The flexible member can be tensioned to draw the first and second bone portions toward each other under a first tension. The tensioning member can be rotated such that the first and second attachment members draw the flexible member in opposite directions applying additional tension to the flexible member to place the flexible member and the first and second bone portions under a second tension. The flexible member can be engaged with the first and second flexible member engaging members and can create a non-linearity in the flexible member about each of the flexible member engaging members. The second tension can be maintained via engagement of the flexible member with the first and second attachment members and the first and second engagement members in an absence of an external force.


In yet another aspect, a method for applying tension to a suture is provided in accordance with the present teachings. The method can include positioning a tensioning member relative to a first bone portion and a second bone portion, where the tensioning member can have first and second suture attachment members and a corresponding first and second plurality of suture engaging members extending therefrom. An adjustable suture construct can be positioned about the first and second bone portions. First and second adjustable loops of the adjustable suture construct can be coupled to the first and second attachment members. Free ends of the adjustable suture construct can be tensioned to reduce a size of the first and second adjustable loops and draw the first and second bone portions toward each other under a first tension. The tensioning member can be rotated such that the first and second attachment members draw the adjustable suture construct in opposite directions applying additional tension to the suture construct to place the suture construct and the first and second bone portions under a second tension. The first and second adjustable loops can be engaged with a respective one of the plurality of first and second suture engaging members and can create a non-linearity in the adjustable loops about each of the one of the plurality of first and second suture engaging members. The second tension can be maintained via engagement of the first and second adjustable loops with the first and second suture attachment members and the one of the plurality of first and second suture engagement members in an absence of an external force.


In still another aspect, a method for applying tension to a flexible member is provided in accordance with the present teachings. The method can include positioning a tensioning member in a first position relative to a first bone portion and a second bone portion, where the tensioning member can have first and second flexible member attachment members. The flexible member can be positioned about the first and second bone portions and can be coupled to the first and second attachment members. The flexible member can be tensioned to draw the first and second bone portions toward each other under a first tension. The tensioning member can be rotated to a second position such that the first and second attachment members draw first and second ends of the flexible member in opposite directions applying additional tension to the flexible member to place the flexible member and the first and second bone portions under a second tension. The tensioning member can be secured in the second position to at least one of the first and second bone portions to maintain the second tension.


In another aspect, an apparatus for applying tension to a suture is provided in accordance with the present teachings. The apparatus can include a tensioning member having a first member and a second member. The first member can have a body defining a first bone engaging surface, an opposite second surface, and a pocket formed in the second surface and extending toward the first surface. The pocket can include a first retention arrangement. The second member can be sized and shaped to be received in the pocket and can include a first lower surface and a second upper surface. The second upper surface can include first and second suture attachment members spaced apart from each other. The first and second suture attachment members can be adapted to be coupled to the suture, where the second member can be configured to be positioned at least partially into the pocket and can include a second retention arrangement operable to engage the first retention arrangement. The second member can be configured to be rotated relative to the first member to impart tension onto the suture, wherein the first retention arrangement can be configured to engage the second retention arrangement to prevent rotation of the second member relative to the first member in at least one rotational direction.


In yet another aspect, a method for applying tension to a flexible member is provided in accordance with the present teachings. The method can include positioning a first member of a tensioning member assembly relative to a first bone portion and a second bone portion, where the tensioning member can include a pocket formed therein on an upper surface opposite a lower bone engaging surface. The flexible member can be positioned about the first and second bone portions and can be coupled to first and second attachment members associated with a second member of the tensioning member assembly. The second member can be rotated in a first rotational direction relative to the pocket of the first member to impart tension onto the flexible member. The second member can be positioned in the pocket of the first member such that a second retention arrangement associated with the second member engages a first retention arrangement associated with the pocket of the first member to prevent rotation of the second member relative to the first member in a second rotational direction opposite the first rotational direction to maintain the tension imparted onto the flexible member.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The present teachings will become more fully understood from the detailed description, the appended claims and the following drawings. The drawings are for illustrative purposes only and are not intended to limit the scope of the present disclosure.



FIG. 1 depicts an adjustable flexible member construct according to the present teachings;



FIGS. 1A and 1B depict an exemplary method of assembling the adjustable flexible construct of FIG. 1 according to the present teachings;



FIG. 2 depicts an exemplary assembly configuration of the flexible member construct of FIG. 1 having an attachment member and an insertion member according to the present teachings;



FIG. 2A depicts a side view of the attachment member of FIG. 2 according to the present teachings;



FIGS. 3, 3A and 3B depict alternative flexible member constructs according to the present teachings;



FIGS. 4 and 5 depict exemplary views of the adjustable flexible member construct of FIG. 1 in a surgical procedure for sternal closure according to the present teachings;



FIGS. 6-9 depict views of exemplary alternative attachment members associated with one or more of the adjustable flexible member constructs according to the present teachings;



FIGS. 10 and 11 depict views of the attachment members of FIGS. 6-9 in exemplary configurations for use in a sternal closure procedure according to the present teachings;



FIG. 12 depicts a view of an exemplary use of the flexible member construct of FIG. 3A in a surgical method for sternal closure according to the present teachings;



FIG. 13 depicts an exemplary alternative attachment member according to the present teachings;



FIG. 14 depicts exemplary configurations of the attachment member of FIG. 13 associated with various adjustable flexible member constructs according to the present teachings;



FIG. 15 depicts an exemplary surgical method for sternal closure according to the present teachings;



FIG. 16 depicts an exemplary surgical method for sternal closure according to the present teachings;



FIGS. 17-21 depict aspects of an exemplary tensioning member for tensioning a flexible member construct according to the present teachings;



FIGS. 22-23 depict another exemplary tensioning member for tensioning a flexible member construct according to the present teachings;



FIGS. 24-25 depict another exemplary tensioning member for tensioning a flexible member construct according to the present teachings;



FIG. 26 depicts an exemplary instrument for adjusting the tensioning members according to the present teachings;



FIGS. 27-28 depict another exemplary tensioning member for tensioning a flexible member construct according to the present teachings;



FIGS. 29-31 depict exemplary use of the tensioning members in exemplary sternal closure and fracture fixation procedures;



FIGS. 32-33 depict aspects of another exemplary tensioning member for tensioning a flexible member construct according to the present teachings;



FIG. 34-36 depict aspects of another exemplary tensioning member for tensioning a flexible member construct according to the present teachings;



FIGS. 37-40 depict aspects of another exemplary tensioning member for tensioning a flexible member construct according to the present teachings;



FIG. 41 depicts another exemplary tensioning member for tensioning a flexible member construct according to the present teachings; and



FIG. 42 depicts another exemplary tensioning member for tensioning a flexible member construct according to the present teachings.





DETAILED DESCRIPTION

The following description is merely exemplary in nature and is in no way intended to limit the present disclosure, its application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. While the disclosure generally relates to apparatus and associated methods for tensioning a suture in connection with a fractured or section bone, such as in a sternal closure procedure, the apparatus and methods of the present teachings can be used in connection with various other fracture fixation methods and/or other procedures where suture tensioning is required, such as for example, in tensioning soft tissue or portions of two separate bones.


Referring to FIG. 1, an adjustable flexible member construct 10 is provided according to various aspects of the present teachings. The adjustable flexible member construct 10 can be fashioned from a flexible member 14 made of any biocompatible material including, but not limited to, non-resorbable polymers, such as polyethylene or polyester, resorbable polymers, and various combinations thereof. In various aspects, the adjustable flexible member construct 10 can include a hollow material or core to allow for appropriate tensioning, as will be discussed herein. In various aspects, the adjustable flexible member construct 10 can be a suture. In such aspects, the suture can be hollow or a braided or a multiple-filament braided suture structure having a hollow core. In various aspects, the suture can be resorbable. In various aspects, the adjustable flexible member construct 10 can define a substantially tubular hollow shape.


The adjustable flexible member construct 10 can include a first end 18, a first formed passage portion 22, a second end 26, a second formed passage portion 30, and a fixed length loop portion 34 connecting the first and second passage portions 22, 30, as shown in FIG. 1. In one exemplary aspect, flexible member construct 10 can include an elongated body 32 having an exterior surface and an interior surface defining an elongated passage between the first and second ends 18, 26. The body 32 can define the first and second passage portions 22, 30 and the fixed length portion 34 therebetween. Passage portions 22, 30 can each include first apertures 38, 42 positioned proximate one end thereof, and second apertures 46, 50 positioned proximate a second opposite end thereof. The passage portions 22, 30 can be formed to have a larger width or diameter than remaining portions of flexible member 14, as shown for example in FIG. 1. Alternatively, the passage portions 22, 30 can be formed initially to have the same width or diameter as the remaining portions of flexible member 14, later expanding in diameter during the construction process. In various aspects, the first and second apertures 38, 42, 46, 50 can be formed during a braiding process of flexible member 14 as loose portions between pairs of fibers defining flexible member 14, or can be formed during the construction process. Alternatively, the first and second ends can be pushed between individual fibers of the braided flexible member 14, as will be discussed herein.


To form the adjustable flexible member construct 10, first end 18 can be passed through second passage portion 30 via first and second apertures 42, 50, as generally shown in FIGS. 1A and 1B. In a similar manner, second end 26 can be passed through the first passage portion 22 via the first and second apertures 38, 46, as also shown in FIGS. 1A and 1B. Subsequently, as shown in FIG. 1B with reference to FIG. 1, first end 18 can be passed through the first passage portion 22 via second and first apertures 46 and 38, respectively. First end 18 can follow a path that is opposite in direction to a path followed by a portion 54 of the flexible member 14 that has already passed through first passage portion 22 while following second end 26 through first and second apertures 38 and 46. Similarly, second end 26 can be passed through the second passage portion 30 via second and first apertures 50 and 42, respectively. First end 26 can follow a path that is opposite in direction to a path followed by a portion 58 of the flexible member 14 that has already passed through second passage portion 30 while following first end 18 through first and second apertures 42 and 50. This results in portions 62, 64 of flexible member 14 being positioned parallel or substantially parallel to portions 54, 58 in passage portions 22, 30. Passing the first and second ends 18, 26 though passage portions 22, 30 as discussed above forms adjustable loops 66, 70, as shown in FIG. 1. The first and second ends can be passed through the same apertures in each passage portion 22, 30 or, alternatively, through separate apertures in each passage portion 22, 30.


The adjustable flexible member construct 10 can thus provide a double adjustable loop configuration via loops 66, 70 while also providing portion 34, which can have a fixed length between the passage portions 22, 30. As will be discussed in greater detail herein, this configuration can be used, for example, to couple an attachment member to loops 66, 70 and couple fixed length portion 34 to either the attachment member or another device. In this manner, the amount of friction developed within the first and second passage portions 22, 30 relative to and among portions 54, 58, 62 and 64 during adjustment of adjustable loops 66, 70 is reduced as compared to that which would occur if the attachment member were coupled to the passage portion when the loops are being adjusted or reduced in size under tension.


With additional reference to FIGS. 2 and 2A, adjustable flexible member construct 10 is shown in an exemplary assembly configuration 76 having an attachment member 80 coupled to a first side 84 of loops 66, 70 opposite a second side 88 facing fixed length portion 34. Attachment member 80 can include a generally T-shaped configuration having a first stem portion 92 defining an aperture 94 for receipt of loops 66, 70 therein at one end, and a transversely extending cross portion 96 at a second opposite end. Transversely extending portion 96 can include opposed lateral ends 104 that include arcuate or curled portions 108, as shown in FIG. 2A. In various aspects, attachment member 80 can be used to secure a flexible member loop thereto by placing the loop over first portion 92 and under arcuate portions 108, as shown for example in FIG. 4.


The assembly configuration 76 can also include an optional grab member or handle 116 and a passing or needle member 118. Handle 116 can be used to aid the surgeon in easily pulling ends 18, 26 of construct 10 to reduce the size of loops 66, 70, as will be discussed in greater detail below. Handle 116 can include a first pair of apertures 120 positioned at opposed ends 124 of handle 116, as shown in FIG. 2. The first and second ends 18, 26 can be passed or routed through apertures 120 and then through a central aperture 128, where ends 18, 26 can be secured to handle 116 by various methods, including a knot 132, as also shown in FIG. 2. The surgeon can use handle 116 to apply simultaneous tension to ends 18, 26, which can thereby evenly reduce or adjust loops 66, 70 to a desired size or tension.


Operation of the adjustable flexible member construct 10 will now be described in greater detail with reference to an exemplary configuration where adjustable flexible member construct 10 is wrapped around or encircles a bone, such as a sternum, and fixed loop 34 is connected to attachment member 80, as shown for example in FIG. 4. It should be appreciated, however, that construct 10 can be used in various attachment configurations, other than the example discussed above, wherein tension is applied to construct 10 via fixed loop 34 and attachment member 80 in connection with reducing or adjusting the size of loops 66, 70.


Upon applying tension to ends 18, 26, with or without handle 116, the loops 66, 70 can be reduced to a desired size and/or placed in a desired tension by causing translation of ends 18, 26 relative to passage portions 22, 30. Tension in fixed length loop portion 34 combined with the tension in adjustable loops 66, 70 can cause the body 32 of flexible member 14 defining the passage portions 22, 30 to constrict about the portions 54, 58 and 62, 64 of flexible member 14 passed therethrough. This constriction can reduce a width or diameter of each of the passage portions 22, 30, thereby forming a mechanical interface between exterior surfaces of the passed through portions of flexible member 14 and interior surfaces of the passage portions 22, 30. The static friction between the interior and exterior surfaces at the mechanical interface formed as a result of the constriction can prevent relative movement of portions 54, 58, and 62, 64 relative to passages 22, 30 and hence prevent relaxation of the tension in construct 10, thereby preventing an increase in the size of loops 66, 70. Thus, adjustable flexible member construct 10 provides for “automatically” locking loops 66, 70 in a reduced length or size under tension without requiring a knot.


Flexible member construct 10 can be provided in various sizes to accommodate differently sized bones, such as sternums, in different patients. In one exemplary configuration, fixed loop portion 34 can be provided in various sizes or lengths. Flexible member construct 10 can also be provided with flexible member 14 having various diameters, such as 30 thousandths of an inch or 37-40 thousandths of an inch. In one exemplary configuration, the 30 thousandths diameter flexible member 14 can be used, for example, where construct 10 is routed or passed through holes drilled in the bone so that flexible member 14 can be more easily manipulated during such routing. The larger 37-40 thousandths diameter flexible member 14 can be used, for example, where the construct 10 is wrapped around the sternum, as will be discussed herein. Forming the construct 10, as well as other constructs discussed herein, with a larger diameter flexible member provides more surface area of the tensioned flexible member to engage the sternum or other bone, and thus distribute the compressive load over a greater area of the bone.


With additional reference to FIG. 3, and FIG. 3A, an exemplary alternative adjustable flexible member construct 150 is shown. Construct 150 can include a hollow flexible member 154 having a first end 158 and a second end 162, and can include a body 164 that defines a longitudinal passage portion 168 therein between first and second ends 158, 162, as shown in FIG. 3. The passage portion 168 can define a pair of apertures 172, 176 at opposed ends thereof, similar to apertures 38, 46 discussed above. To form construct 150, the first end 158 can be passed through aperture 172 and passage portion 168 and out aperture 176 such that a portion 180 of flexible member 154 following first end 158 extends through passage portion 168. In a similar manner, second end 162 can be passed through aperture 176 and passage portion 168 and out aperture 172 such that a portion 184 of flexible member 154 following second end 162 also extends through passage portion 168. This configuration forms two loops 188 and 188′, as shown in FIG. 3. It should be appreciated that each of the first and second ends 158, 162 can alternatively be pushed through a respective space defined between adjacent individual fibers of the braided flexible member 14 such that the respective spaces defined between fibers comprise apertures 172, 176 in communication with an interior longitudinal passage.


The pulling of ends 158, 162 can cause movement of portions 180, 184 relative to passage portion 168, and the loops 188, 188′ can be reduced to a desired size or placed in a desired tension. Tension in loops 188, 188′ can cause the body 164 defining the passage portion 168 to be placed in tension and therefore cause passage portion 168 to constrict about portions 180, 184 passed therethrough. This constriction reduces the diameter of passage portion 168, thus forming a mechanical interface between the exterior surfaces of portions 180, 184 and an interior surface of passage portion 168. This constriction results in static friction between the interior and exterior surfaces at the mechanical interface, causing the adjustable flexible member 154 to “automatically” lock in a reduced size or diameter configuration in which tension is maintained. Flexible member construct 150 with adjustable loops 188, 188′ can be used to compress a fractured or sectioned bone, such as a sectioned sternum in a sternal closure procedure following open chest surgery, as will be discussed herein.


With additional reference to FIG. 3A, adjustable flexible member construct 150 is shown having attachment members or flexible anchors 196 coupled to loops 188, 188′. Each loop can include various numbers of anchors coupled thereto, including more or fewer anchors 196 than shown. Each anchor 196 can define a hollow core and can include a pair of apertures 200, 204 formed in a body 208 thereof in a similar manner as apertures 38, 46 discussed above. Flexible member 154 can pass through first aperture 204 into the hollow core and out through the second aperture 200, as shown in FIG. 3A. Apertures 200, 204 can be placed inward from respective ends 212, 216 of anchors 196 so as to form tail portions 220, 224 adjacent each aperture 200, 204. The tail portions 220, 224 can provide anchoring resistance relative to a corresponding bone or anchoring structure, as will discussed herein.


With reference to FIG. 3B and continuing reference to FIGS. 3 and 3A, an alternative adjustable flexible member construct 150A is shown. Construct 150A can be formed to include a double loop configuration having two loops 240, 240′ that each traverse a path from one end of passage portion 168 to the other end thereof, instead of each loop being disposed at respective opposite ends of passage portion 168 as in construct 150. Flexible member construct 150A can be formed by passing the first end 158 of the flexible member through aperture 176, through passage portion 168 and out aperture 172. The second end 162 can be passed through aperture 172, through the passage portion 168 and out the aperture 176. In various aspects, the first and second apertures 172, 176 can be formed during the braiding process as loose portions between pairs of fibers defining the flexible member 154, as discussed above. Passing ends 158, 162 through the apertures 172, 176 can form the loops 240, 240′. The loops 240, 240′ can define mount or summit portions 244, 244′ of the adjustable flexible member construct 150A and can be disposed generally opposite from the passage portion 168. Flexible member construct 150A can be used, for example, to compress a fractured or sectioned bone or to close a sectioned sternum in sternal closure procedures, as will be discussed herein.


The longitudinal and parallel placement of the first and second ends 158 and 162 of the flexible member 154 within the passage portion 168 resists the reverse relative movement of the first and second portions 180, 184 of the flexible member construct 150A once it is tightened. The tensioning of the ends 158 and 162 can cause relative translation of the portions 180, 184 relative to passage portion 168. Upon applying tension to the first and second ends 158 and 162, the loops 240, 240′ can be reduced to a desired size or placed in a desired tension. Tension in the loops 240, 240′ can cause the body of the flexible member 154 defining the passage portion 168 to be placed in tension and therefore cause passage portion 168 to constrict about the portions 180, 184 similarly to the constriction discussed above with respect to construct 150. This constriction can cause the adjustable flexible member construct 150A to “automatically” lock in a reduced size or smaller diameter configuration. A further discussion of the flexible member constructs 150, 150A are provided in U.S. patent Ser. No. 11/541,506 filed on Sep. 29, 2006 entitled “Method and Apparatus for Forming a Self-Locking Adjustable Suture Loop” assigned to Biomet Sports Medicine, LLC, and the disclosure is incorporated by reference.


Referring now to FIGS. 4-16, the use of flexible member constructs 10, 150 and 150A in various assembly configurations and exemplary sternal closure procedures will now be described. With particular reference to FIGS. 4 and 5, a sternum 304 is shown having a section or cut 308 separating sternal portions 312, 316, such as may be performed in connection with cardiac surgery. Flexible member constructs 10, 150, 150A alone, or in various combinations with each other or additional fixation devices, can be used to compress and secure sternal portions 312, 316 together to assist healing, as will be discussed herein.


In FIGS. 4 and 5, adjustable flexible member construct 10 is shown in various configurations to compress sternal portions 312, 316 toward each other to close section 308. In one exemplary configuration, two flexible member constructs 10 can be used in a diagonal pattern in the manubrium 320 of the sternum in connection with two pairs of diagonally opposite holes 324 formed in the manubrium 320. While the diagonal pattern of flexible member construct 10 is shown in the manubrium 320 in FIG. 4, a non-diagonal or medial-lateral configuration can alternatively be used, as generally shown in FIG. 5.


To secure flexible member construct 10 to the manubrium 320, passing member 118 can be inserted through a first hole 324a of a respective pair of holes 324a, 324b and directed towards a corresponding second hole 324b, as shown in FIG. 5. A surgeon or the like can pull the passing member through the second hole 324b thus routing at least the fixed portion 34 through the first and second holes 324a, 324b. Fixed portion 34 can then be secured to attachment member 80, as shown in FIG. 4. Once fixed portion 34 is secured to the attachment member, first and second ends 18, 26 can be pulled or tensioned to reduce the loops 66, 70 to a desired size and to place construct 10 in a desired tension to compress and close the sectioned sternum 304. Ends 18, 26 of construct 10 can be tensioned by pulling on the respective ends as discussed above, or with the use of the handle 116, as generally shown in FIG. 4. Handle 116 can provide the surgeon with an ability to easily tension ends 18, 26 simultaneously and evenly. Handle 116 can then be removed and discarded. Handle 116 can be used to evenly tension loops 66, 70 as discussed above, or can be used to tension loops 66, 70 at different rates by manipulating an angle of handle 116 so that, for example, a first loop of loops 66, 70 can be tensioned at a faster rate than a second loop of loops 66, 70. In this manner, the first loop can reach a desired final tension before the second loop. In one exemplary configuration, the smaller diameter flexible member can be used with construct 10 in manubrium 320 for easier manipulation through holes 324.


Flexible member construct 10 can also be used to compress a body 332 of sternum 304, as also shown in FIGS. 4 and 5. For the body 332, construct 10 can be wrapped around the sternum and fixed portion 34 can be secured to attachment member 80 such that ends 18, 26 extend from an anterior side 336 of body 332, as shown in FIG. 4. In the exemplary configuration shown in FIG. 4, three flexible member constructs 10 are shown securing the body 332 of the sternum 304. Nevertheless, more or fewer flexible constructs than shown can be used in the intercostal spaces between the ribs to secure the body of the sternum, as may be determined by a surgeon during a sternal closure procedure. In addition, the larger diameter flexible member construct 10 can be utilized in body area 332 of sternum 304, according to one exemplary configuration. The larger diameter flexible member can enable more tension to be applied to the bone or sternum without cutting into or damaging the bone.


The flexible member constructs 10 can be attached and tensioned or secured to the sternum 304 in various orders. For example, flexible member constructs 10 can first be attached to the manubrium 320 and then to the body 332, or vice-versa. Additionally, flexible member constructs 10 can be tensioned in various orders, such as initially tensioning each flexible member construct 10 to a snug or non-slack condition and then further tensioning each construct 10 to a final desired tension. As discussed above, constructs 10 can be tightened with or without use of handle 116. Flexible construct 10 can automatically lock under tension, as also discussed above, after which a portion of ends 18, 26 can be trimmed and removed.


Flexible member construct 10 also can be provided with an antibiotic and/or platelet concentrate coating to resist bacterial adhesion and/or promote healing. In this regard, flexible member construct 10, as well as other constructs discussed herein, can be pre-configured with such a coating or the coating can be applied intraoperatively. Further, the surgeon can also apply the platelet coating to the sectioned area during the sternal closure procedure.


With additional reference to FIGS. 6 and 10, flexible member construct 150A is shown in an assembly configuration 350 having a pair of attachment members 354 coupled to opposed sides 356 of loops 240 and 240′. Attachment members 354 can include a generally arcuate shape 358 and, in the exemplary configuration shown in FIG. 6, a generally semicircular shape or U-shape. The shape 358 of attachment members 354 can be used to secure the attachment members 354 to medial and lateral sides 362 of sternum 304, as generally shown in FIG. 10. Attachment members 354 can include an aperture 366 for receiving loops 240, 240′ therethrough, as shown in FIG. 6. In an exemplary configuration, flexible member construct 150A can be formed integrally with attachment members 354 for use in a sternal closure or other fracture reduction procedure. In this manner, attachment members 354 can be preformed and coupled to loops 240, 240′ to form assembly configuration 350, which can be provided in the assembly configuration for use in the sternal closure procedure.


With particular reference to FIG. 10, construct 150A in the assembly configuration 350 can be used to compress the sternum 304 by securing attachment members 354 to the sides 362 of sternal portions 312, 316 and then applying tension to ends 158, 162 of construct 150A. The adjustable loops of construct 150A can then be reduced to the desired size and placed in the desired tension to compress sternum 304 about section 308. Flexible member construct 150A can automatically lock under tension to maintain the reduced size of loops 240, 240′, as discussed above. It should be appreciated that while attachment members 354 are described above in connection with flexible member construct 150A, the attachment members 354 can also be used with alternative flexible member constructs, such as construct 150.


Turning now to FIG. 7 and with reference to FIG. 10, flexible member construct 150 is shown in an assembly configuration 376 operatively associated with an attachment member or frame 380. Frame 380 can be used to facilitate securing flexible member construct 150 around a fractured bone or the sectioned sternum 304 to compress the fracture or section and affect healing. Frame 380 can include a pair of attachment portions 384 at opposed ends 388 of the frame. In the exemplary configuration shown, frame 380 can include a generally rectangular plate 392 and the attachment portions 384 can be in the form of V-shaped apertures extending through plate 392 from a top surface 396 to a bottom surface 400, as shown in FIG. 7. Bottom surface 400 can optionally include a pair of fixation members 404 to prevent movement of frame 380 relative to the sternum 304 upon placement thereon. Fixation members 404 can include spikes, posts, screws, adhesive or the like that are coupled to or pass through or extend from the bottom surface 400.


With additional reference to FIG. 10, flexible member construct 150 in the assembly configuration 376 is shown with the bottom surface of frame 380 positioned on the anterior side 336 of sternum 304. Flexible member construct 150 can then be wrapped around sternum 304 and opposed ends 412 of loops 188, 188′ can be secured to frame 380 via attachment portions 384. In this configuration, passage portion 168 can be positioned on a posterior side of sternum 304, as generally shown in FIG. 10. Ends 158, 162 of construct 150 can then be tensioned to reduce the loops 188, 188′ to the desired size and tension to compress and close section 308 and assist healing of sternum 304. Flexible member construct 150 can automatically lock and maintain the reduced size of loops 188, 188′ under tension, as discussed above. It should be appreciated that frame 80 can also be used with flexible member construct 10.


Referring now to FIGS. 8 and 10, flexible member construct 150 is shown in an assembly configuration 420 operatively associated with an attachment member or frame 430. Frame 430 can include a base 434, a post 438 extending from an upper surface 442 of base 434, and at least one optional fixation member 446 extending from a lower surface 448 of base 434. Fixation member 446 can include spikes, posts, screws, adhesive or the like that are coupled to or extend from lower surface 448. Post 438 can include a reduced diameter neck portion 450 coupled to the base and a larger diameter or head portion 454 coupled to the neck portion 450 and configured to retain loops 188, 188′ of construct 150, as discussed below. Frame 430 can be placed on sternum 304 with lower surface 448 engaging the anterior side 336 of sternum 304, as shown in FIG. 10. Flexible member construct 150 can be wrapped around sternum 304 in one of the intercostal spaces and each loop 188, 188′ can be secured to the frame 380 via post 438, as also shown in FIG. 10.


In this exemplary configuration, passage portion 168 can be positioned on the posterior side of sternum 304. Once frame 430 is positioned and construct 150 is wrapped around the sternum and secured to post 438, ends 158 and 162 extending from the posterior side of sternum 304 can be tensioned. Applying tension to ends 158, 162 can reduce loops 188, 188′ to a desired size and tension to compress sectioned sternal portions 312, 316 together to assist healing at section 308, as generally shown in FIG. 10. Flexible construct 150 can automatically lock loops 188, 188′ under tension to maintain the reduced size of loops 188, 188′ and compression of sternal portions 312, 316 together, as discussed above.


It should be appreciated that while reference to FIG. 10 has been made with respect to the assembly configurations 350, 376 and 420, these assembly configurations have been combined in one figure for illustration purposes only and need not be used together. In this regard, an exemplary sternal closure procedure could utilize only one of the assemblies shown in the intercostal spaces, or combinations thereof, as may be desired by a particular surgeon performing a sternal closure procedure. It should also be appreciated that assemblies 350, 376 and 420 could be used individually or in various combinations with flexible member constructs 10 secured to the manubrium 320, as discussed above with reference to FIG. 4.


Referring now to FIGS. 9 and 11, adjustable flexible member construct 150 is shown in an assembly configuration 468 operatively associated with a frame 472. As shown in FIG. 9, frame 472 can include a generally rectangular body 476 with attachment portions 480 positioned at one pair of diagonally opposed corners 484 and a groove or channel 486 extending diagonally across a top surface of frame 472 from a second pair of opposed corners 488. While frame 472 is shown having rectangular body 476, it should be appreciated that frame 472 can be configured in other shapes, such as various polygonal shapes for use in coupling frame 472 to flexible member construct 150, as will be described below. Attachment portions 480 can each include a recess 492 at least partially surrounding a post 496. Post 496 can include a neck portion 500 and a cap or head portion 504 having a width dimension 508 greater than a corresponding width of neck portion 500 such that at least a portion of head portion 504 overhangs neck portion 500, as shown in FIG. 9. At least one optional fixation member 512 can extend from a bottom surface 516 of frame 472.


With particular reference to FIG. 11, frame 472 can be positioned in various configurations relative to sternum 304, as illustrated by the two exemplary configurations shown in FIG. 11. Frame 472 can be positioned on sternum 304 such that the bottom surface 516 engages the anterior side 336 of sternum 304. Flexible member construct 150 can be wrapped around sternum 304 within an intercostal space thereof and loops 188, 188′ can be coupled to respective attachment portions 480. More specifically, flexible construct 150 can be placed in channel 486 such that passage portion 168 is positioned within channel 486, as shown in FIG. 11. Positioning construct 150 in channel 486 can provide a low profile closure arrangement that can be more conformable or provide less discomfort to a recipient patient. Loop portion 188 can then be wrapped around the posterior side of sternum 304 in one direction and coupled to attachment portion 480A of the pair of attachment portions 480. Similarly, loop portion 188′ can be wrapped around the posterior side of sternum 304 in an opposite direction of loop 188 and then be coupled to attachment portion 480B. Tension can then be applied to ends 158, 162 to reduce the size of loops 188, 188′ to compress sternal portions 312, 316 together to assist healing of sectioned sternum 304 at section 308. Flexible member construct 150 can automatically lock loops 188, 188′ at the desired reduced size under tension, as discussed above. In addition, placing frame 472 over the section can also stabilize the sternum to align sternal portions 312, 316 to be co-planar.


Flexible member construct 150 in the assembly configuration 468 can be used alone or in various combinations with flexible member constructs 10 and 150A and/or assembly configurations 350, 376 and 420 discussed above. For example, flexible member constructs 10 can be used in the manubrium 320 as shown in FIG. 4 and assembly 468 can be used alone or in various combinations with assemblies 350, 376 and 420 in the body 332 to compress sternal portions 312, 316, as discussed above.


Referring now to FIG. 12, adjustable flexible member construct 150 is shown operatively associated with anchors 196 and an orthopedic mesh 550 for use in a sternal closure procedure. More particularly, orthopedic mesh 550 can be positioned on the anterior side 336 of sternum 304 such that portions 554 extend around the lateral sides 362 in the intercostal spaces, as shown in FIG. 12. The orthopedic mesh 550 can be, for example, a product sold by Biomet Sports Medicine, LLC under the name SportMesh™. With the orthopedic mesh 550 positioned on sternum 304 as discussed above, construct 150 with anchors 196 can be used in various configurations to compress the sectioned sternum 304 at section 308, as generally shown in FIG. 12.


The orthopedic mesh 550 can be coated with the platelet concentrate discussed above, and/or antibiotics, bone growth agents, etc. to aid in soft tissue healing. The mesh 550 can provide a barrier between the flexible member constructs and the bone to aid in transferring load from the flexible member construct to the mesh 550, which can decrease the pressure applied to the bone by the tensioned flexible member construct. The mesh 550 can be particularly useful, for example, in patients with soft bone tissue. It should also be appreciated that load distribution in the intercostal spaces can be provided by the portions 554 that extend around the medial and lateral sides. Moreover, the orthopedic mesh can aid in the retention of anchors 196, particularly where the bone tissue may be soft.


In one exemplary configuration, four holes 558 can be formed through the mesh 550 and the manubrium 320. Flexible anchors 196 associated with two flexible member constructs 150 can be inserted through respective diagonal pairs of holes 558 through the manubrium, as shown in FIG. 12. The constructs 150 can be in diagonal overlapping pattern and be disposed primarily on top of the orthopedic mesh 550. Upon tensioning the free ends 158, 162 of each construct 150, the tail portions 220, 224 of anchors 196 can engage the posterior manubrium adjacent holes 558 and provide anchoring resistance to retain the anchors 196 outside of holes 558 on the posterior side of the sternum 304. The loops 188, 188′ subsequently can be reduced to the desired size or tension to compress sternal portions 312, 316 and assist closure and healing of the sectioned sternum. The orthopedic mesh 550 can work to distribute the load placed on the anterior side 336 of the sternum by the constructs 150 under tension. A similar configuration 562 can be used at a lower portion 566 of the sternum 304 adjacent the Xiphoid process, as also shown in FIG. 12. It should be appreciated that configuration 562, as well as the configuration discussed immediately above with respect to the manubrium, can alternatively be in a parallel transverse pattern as opposed to the illustrated diagonal patterns.


Continuing with FIG. 12, adjustable flexible construct 150 having a pair of anchors 196 attached to respective loops 188, 188′ can be inserted through transverse bores 586 formed in sternum 304. In particular, the constructs 150 can be positioned in bores 586 such that the passage portions 168 are each aligned in a respective bore 586, as shown in FIG. 12. The constructs 150 can be pierced or routed through the portions 554 of orthopedic mesh 550 that extend around the lateral sides of sternum 304 so as to provide additional anchoring resistance and load distribution for flexible anchors 196, as shown in FIG. 12. Ends 158, 162 can be tensioned to compress sternal portions 312, 316, as discussed herein. It should be appreciated that while orthopedic mesh 550 is shown in FIG. 12 with reference to construct 150 and flexible anchors 196, orthopedic mesh 550 can be used in various other sternal closure configurations disclosed herein, for example, to distribute a load applied by the various disclosed flexible member constructs relative to the sternum 304.


Referring now to FIGS. 13 and 14, adjustable flexible member construct 150 is shown in exemplary assembly configurations 600 and 604 operatively associated with attachment members 608. Each attachment member 608 can include a body 612 having a substantially U-shaped configuration and can be sized for positioning about the lateral sides 362 of sternum 304 such that top and bottom portions 616, 620 extend about the respective anterior and posterior sides of the sternum, as shown in FIG. 14. In one exemplary configuration, attachment member 608 can include an aperture 624 positioned within a side portion 628 connecting the top and bottom portions 616, 620. In another configuration, attachment member 608 can include an aperture 632 in the top portion 616, as shown in FIG. 14. Aperture 632 can be in lieu of or in addition to aperture 624.


With reference to assembly configuration 600, flexible member construct 150 with anchors 196 can be positioned through transverse bore 636 in sternum 304 such that passage portion 168 is positioned within the bore. Each respective loop 188, 188′ with anchors 196 can be passed through aperture 624 in attachment member 608 such that the anchors 196 are on a first side of portion 628 opposite a second side adjacent the sternum 304. Ends 158, 162 can then be tensioned thereby reducing a size of loops 188, 188′ so as to draw attachment members 608 against the lateral sides of sternum 304 and compress sternal portions 312, 316 together. Flexible member construct 150 can automatically lock the loops in the reduced diameter configuration under tension, as described herein. Attachment members 608 can facilitate distributing a compression load applied to the sternum by the tensioned construct 150, which can enable more tension to be applied.


With continuing reference to FIG. 14, assembly configuration 604 can include attachment members 608 integrally formed or pre-assembled with flexible member construct 150A such that loops 240, 240′ are coupled to apertures 632. In this configuration, attachment members 608 can be positioned against the respective lateral sides of sternum 304, similar to assembly configuration 600 discussed above. Flexible member construct 150A can be positioned relative to the anterior side 336 of sternum 304 such that it does not wrap around or extend through sternum 304. It should be appreciated that assembly configurations 600, 604 can be used alone or with various other flexible member construct and assembly configurations disclosed herein to compress sternal portions 312, 316 to assist healing of sectioned sternum 304.


Turning now to FIG. 15, an alternative configuration 650 for compression of sternum 304 in a sternal closure procedure is provided. Configuration 650 can include two flexible member constructs 10 in a transverse orientation in the manubrium 320, as generally discussed above with reference to FIGS. 4 and 5. Configuration 650 can also include flexible member construct 150A coupled around the two constructs 10 before fixed portion 34 of each construct 10 is coupled to the respective attachment member 80, as shown in FIG. 15. Construct 150A can be positioned generally in a superior-inferior orientation perpendicular to the transverse orientation of constructs 10. Construct 150A can be tensioned after tensioning constructs 10 to draw any remaining tension from the system. In this configuration, constructs 10 can provide cross-tensioning generally perpendicular to section 308 and construct 150A can provide tensioning generally parallel to section 308. Configuration 650 can also be utilized to compress the body 332 of sternum 304, where constructs 10 are wrapped around the sternum 304 instead of through holes 324, as also shown in FIG. 15.


Referring now to FIG. 16, another alternative configuration 670 for compression of sternum 304 in a sternal closure procedure is provided. Configuration 670 can include two separate continuous suture or flexible member loops 674 having a fixed length. Alternatively, a flexible member construct, such as construct 150, can be used in place of fixed loops 674 to provide additional adjustment and tensioning capability. Flexible member construct 150A can be provided with four attachment members 80 integrally coupled to loops 240, 240′. In the manubrium area, loops 674 can be routed or passed along the posterior side of sternum 304 in a transverse orientation such that opposed ends 678 of loops 674 extend through a respective pair of holes 324, as shown in FIG. 16. The opposed ends 678 of each of loops 674 can be coupled to a respective two of the four attachment members 80. The ends 158, 162 of flexible member construct 150A can then be tensioned to compress sternal portions 312, 316, as discussed herein. Additional configurations 670 can be used to compress body 332 of sternum 304 where the fixed loops are wrapped around the sides of sternum 304 as opposed to being passed through holes 324, as also shown in FIG. 16. It should be appreciated that configurations 650 and 670 can be used alone or with various combinations of the flexible member constructs and assembly configurations discussed herein.


Turning now to FIGS. 17-28, various frames or tensioning members are shown operatively associated with a flexible member or suture construct. The tensioning members can facilitate attachment and/or additional tensioning of the various suture constructs discussed above, as well as individual strands of suture, and can be used in addition to or in lieu of the various attachment members (e.g., 380, 430, 472) discussed above.


With particular reference to FIGS. 17-21, a tensioning member 700 is shown operatively associated with a pair of suture loops. The pair of suture loops can be loops of two separate strands of suture or can be the adjustable suture loops of the suture constructs 10, 150, 150A discussed above. In this regard, it should be appreciated that while the following discussion will continue with reference to adjustable loops 188, 188′ of adjustable suture construct 150, the pair of adjustable loops shown operatively associated with tensioning member 700 can also include adjustable loops 66, 70 of suture construct 10, adjustable loops 240, 240′ of suture construct 150A, loops of individual looped stands of suture, and/or a single strand of suture secured to each of the attachment members such as by wrapping and/or tying thereto. It should also be appreciated that while the tensioning members discussed herein illustrate adjustable suture loops of the suture constructs being attached thereto, other portions of the suture constructs discussed herein, such as the passage portions, can also be coupled to the attachment members in lieu of one of the adjustable loops.


The tensioning member 700 can be used to facilitate securing suture construct 150 around a fractured bone or the sectioned sternum 304 to compress the fracture or section and affect healing, as shown for example in FIGS. 29-31. The tensioning member 700 can be used for attachment of adjustable loops 188, 188′ as well as to provide additional tensioning of suture construct 150 after the construct 150 has been tensioned as discussed above.


With particular reference to FIG. 17, tensioning member 700 can include a body 710 having a perimeter 714 with a generally circular shape 718. It should be appreciated that the shape of tensioning member 700 can be varied as may be desired for various surgical procedures and/or to facilitate gripping an outer perimeter of the tensioning member 700, as will be discussed below. Body 710 can include a first bone or soft tissue engaging side 722 and an opposite second or upper side 726. A pair of attachment members 730 and a first and second set of suture engaging members 734, 738 can extend from the upper side 726, as shown in FIG. 17. In the exemplary configuration shown in FIG. 17, the upper side 726 can include a substantially smooth or uninterrupted planar surface, except for members 730, 734 and 738, so as to not interfere with suture loops 188, 188′ during adjustment of tensioning member 700, as will be discussed in greater detail below. Similarly, the first side 722 can also include a substantially smooth or uninterrupted planar bone engaging surface.


In the exemplary configuration shown in FIG. 17, the attachment members 730 can include a pair of opposed posts 744 having a first portion 748 extending from the upper side 726 and a second portion 752 having a larger diameter than the first portion 748 so as to form an undercut retention feature for retaining loops 188, 188′. Alternatively, the attachment members can include recessed posts 496, such as shown in FIG. 9, and/or recessed apertures, such as the attachment portions 384 of FIG. 7. In another exemplary alternative configuration, the suture or suture loops 188, 188′ could be integrally formed with or attached to one of the attachment members 730.


The first and second set of suture engaging members 734, 738 can each include a plurality of ramped members 756 having an angled or inclined upper surface 758 with a first end 762 extending from the upper side 726 and a second end 766 spaced apart from the upper side 726 so as to form a wall 770 configured to selectively engage the suture loops 188, 188′. In an exemplary configuration, the wall 770 can be perpendicular or substantially perpendicular to upper side 726. In another exemplary configuration, the wall 770 can include an arcuate portion and/or an undercut to aid in retention of the suture loops 188, 188′. In an exemplary configuration, the plurality of ramped members 756 can be positioned along an arcuate path, as shown for example in FIG. 17.


The first and second set of suture engaging members 734, 738 can include a varying number of ramped members 756 to provide a varying degree of tension adjustment capability, as will be discussed in greater detail below. In this regard, spacing 778 between the number of provide ramped members 756 can also be varied, such as the different spacing shown between the ramped members 756 of FIGS. 17 and 18. Further, a distance 782 from the perimeter 714 to each of the attachment members 730 can be varied to vary an amount of additional tension applied to the suture construct 150 as the tensioning member 700 is rotated, as will also be discussed below in connection with operation of the tensioning member 700.


With continuing reference to FIG. 17 and additional reference to FIGS. 18-20, tensioning member 700 can include various features configured to facilitate rotationally driving tensioning member 700 to impart additional tension on suture construct 150. For example, FIG. 17 illustrates a pair of apertures 794 extending through body 17 proximate a center thereof. Apertures 794 can receive a pair of projections 798 extending from a distal end 802 of a driver 806 (FIG. 26). Rotation of driver 806 can thereby rotate tensioning member 700, as will be discussed below. As another example, FIG. 18 illustrates a hexagon shaped aperture 810 in lieu of the pair of apertures 794. For this configuration, driver 806 could include a singe projection (not shown) having a hexagon shaped outer surface sized and shaped to drivingly engaging the hexagon shaped aperture 810.



FIG. 19 illustrates another exemplary configuration where a pair of notches 818 are formed in the perimeter 714 for receiving a corresponding driving tool (not shown) or to facilitate manual manipulation with a surgeon's or clinician's hand. In FIG. 20, the perimeter 714 is shown with a hexagon shape 822 to facilitate hand manipulation by the surgeon or clinician. It should be appreciated that tensioning member 700 can be provided with one or more of the driving features discussed above. In this regard, it should also be appreciated that the attachment members 730 can be used in addition to or in lieu of the driving features discussed above to rotate tensioning member 700.


With additional reference to FIGS. 21 and 29-31, operation of tensioning member 700 will now be discussed in greater detail. Tensioning member 700 can be used to facilitate attachment of loops 188, 188′ of suture construct 150, as well as to provide additional tension to suture construct 150 after it has been tensioned in the manner discussed above in connection with the sternal closure procedure. In the exemplary procedure shown in FIGS. 29-31, tensioning member 700 can be positioned on the sectioned sternum 304 (FIGS. 29-30) and/or the fractured bone 840 (FIG. 31) to facilitate attachment of suture construct 150 to the respective bone as well as providing additional tensioning capabilities.


As discussed above in connection with the sternal closure surgical procedure, suture construct 150 can be similarly wrapped around the sternum 304 or bone 840 such that the loops 188, 188′ are coupled to the pair of attachment members 730. Alternatively, passage portion 168 could be coupled to one of the attachment members 730 and the first and second loops 188, 188′ could be coupled to the second attachment member. Similarly, in another alternative configuration, passage portion 168 of suture construct 150A could be coupled to one of the attachment members and the first and second loops 240, 240′ could be coupled to the other attachment member.


Free ends 158, 162 of suture construct 150 can then be tensioned to reduce loops 188, 188′ to the desired size and tension to compress and close section 308 of sternum 304 (or fracture 844 of bone 840) and assist healing, as shown in FIGS. 29 and 31 with reference to FIG. 10 and attachment member 380. With particular reference to FIG. 31, suture construct 150 can be wrapped around bone 840 about fracture 844 to compress fractured bone portions 840A and 840B and promote healing. It should be appreciated that the tensioning members and suture constructs discussed herein can also be used in connection with two separate bones where the suture construct is wrapped around the two bones and tension is applied to draw the bones toward each other.


Once suture construct 150 has been tensioned as discussed above, tensioning member 700 can be optionally rotated to impart additional tension on suture construct 150 and thus additional compression on section 308 or fracture 844. In the configuration illustrated in FIGS. 21 and 29-31, tensioning member 700 can be rotated clockwise to impart additional tension on suture construct 150. In particular, tensioning member 700 can be rotated clockwise to engage one of the ramped members 756 of each set of suture engaging members 734, 738 with a respective adjustable loop 188, 188′, as shown in FIG. 21. Rotation of tensioning member 700 in the clockwise direction will draw adjustable loop 188 in the direction of arrow A and will draw adjustable loop 188′ in the direction of arrow B thereby imparting additional tension on suture construct 150, as also shown in FIG. 21. As tensioning member 700 is rotated clockwise and attachment members 730 draw loops 188, 188′ in the respective directions A and B, the ramped members 756 of the first and second set of suture engaging members 734, 738 are brought into engagement with the respective adjustable loops 188, 188′.


As each ramped member 756 is brought into contact with the respecting suture loops 188, 188′, the inclined surface 758 is facing the adjustable loops 188, 188′ and facilitates the adjustable loops 188, 188′ sliding over the inclined surfaces 758 from the first end 762 toward the second end 766 to be positioned adjacent the wall 770 of a desired ramped member 756. Upon a desired amount of tension being imparted on the suture construct 150 by rotation of tensioning member 700 such that the adjustable loops 188, 188′ are positioned about the first and second set of suture engaging members 734, 738, an external force (e.g. surgeon's hand and/or driver 806) that is being used to rotate tensioning member 700 can be removed. Upon removing the external driving force, the increased tension in suture construct 150 from rotation of tensioning member 700 can urge tensioning member 700 to rotate in a counterclockwise direction toward the initial position shown in FIGS. 17-20. This action can bring the wall 770 of the ramped member 756 adjacent adjustable loops 188, 188′ into contact with the adjustable loops 188, 188′ such that the ramped members 756 exert a force on the adjustable loops 188, 188′, as shown in FIG. 21.


As a result, the adjustable loops 188, 188′ can be bent and tensioned around the respective engaging ramped members 756 such that a non-linearity 850 is created in the adjustable loops 188, 188′. This non-linearity 850 effectively increases a distance the adjustable loops 188, 188′ are required to extend relative to the original position of the adjustable loops 188, 188′ (before tensioning member 700 was rotated into engagement with adjustable loops 188, 188′) and thus increases the tension in suture construct 150. In particular, the suture construct 150 can be tensioned about sectioned sternum 304 or fractured bone 840 to a first tension by tensioning the free ends 158, 162 in the manner discussed above. In an exemplary aspect, the first tension can draw the respective bone portions into contact with each other and compress the bone portions together. Subsequently, the tensioning member 700 can be rotated in the manner discussed above to tension suture construct to a second tension and apply further compression to the bone portions to promote fusion and healing.


As can be appreciated, a larger degree of clockwise rotation of tensioning member 700 such that adjustable loops 188, 188′ are engaged with ramped members 756 that are positioned further away (i.e., in a counterclockwise direction) from the adjustable loops 188, 188′, can impart a greater amount of additional tension on suture construct 150. For example, rotating tensioning member 700 such that adjustable loops 188, 188′ are positioned behind a second ramped member 756B of the three ramped members 756 shown in FIG. 21 can create a larger bend or non-linearity 850 in adjustable loops 188, 188′ as compared to the adjustable loops being positioned behind a first ramped member 756A. Similarly, positioning the adjustable loops behind a third ramped member 756C will create a larger non-linearity 850 than discussed above with respect to ramped members 756B and thus provide the largest amount of additional tensioning associated with the exemplary tensioning member 700 shown in FIG. 21. In this regard, it should be appreciated that additional ramped members 756 and/or increased spacing between the ramped members 756 can provide for additional tension increasing capability of tensioning member 700.


With additional reference to FIGS. 22 and 23, an alternative tensioning member 700A will now be discussed. Tensioning member 700A can be similar to tensioning member 700 such that like reference numerals refer to like features and only differences will be discussed in detail. Tensioning member 700A can include an attachment member 870 configured to receive a flexible member 874. Flexible member 874 can be a portion of one of the suture constructs 10, 150, 150A discussed above, or can be a portion of an individual suture strand or a portion of a flexible member such as a wire. In an aspect where suture 874 is a portion of one of the suture constructs discussed above, it should be appreciated that a portion of one of the loops and/or the passage portions of such suture constructs can be received in attachment member 870. Thus, while the following discussion will continue with reference to suture 874, it will be appreciated that suture 874 is representative of any of the suture constructs discussed herein.


Attachment member 870 can include a protrusion 878 extending from the upper side 726, as shown in FIG. 22. The protrusion 878 can include a channel 882 extending therethrough that receives the suture 874. In one exemplary aspect, attachment member 870 can include two separate protrusions 878 spaced apart from each other so as to form channel 882. Tensioning member 700A can similarly include a plurality of ramped members 756 positioned on the upper side 726 and extending along an arcuate path. In the exemplary configuration illustrated, the ramped members 756 can extend circumferentially around the body 710 proximate the perimeter 714. In another exemplary configuration, the ramped members can be positioned as two sets, similar to the ramped members 756 of the first and second set of suture engaging members 734, 738 of tensioning member 700.


In operation, tensioning member 700A can be rotated clockwise similar to the rotation discussed above for tensioning member 700 to impart additional tension on suture 874. With particular reference to FIG. 23, tensioning member 700A can be rotated clockwise whereby channel 882 bends suture 874 and draws a portion of suture 874 proximate a first end 888 of channel 882 in the direction of arrow C and another portion of the suture 874 proximate a second end 892 of channel 882 in the opposite direction of arrow D. Such drawing of the suture 874 requires suture 874 to extend a greater distance and thus increases the tension in suture 874.


Similar to tensioning member 700 discussed above, the rotation of tensioning member 700A can cause suture 874 to slide over ramped members 756 until a rotational driving force used to rotate tensioning member 700A is removed. In this regard, it should be appreciated that tensioning member 700A can include one or more of the driving features discussed above in connection with tensioning member 700. For example, apertures 794 can be positioned in each of protrusions 78 and/or the outer perimeter can include the notches 818 or hexagon shape 822. Upon removal of the driving force, the additional tension in suture 874 can urge tensioning member 700A to rotate in the counterclockwise direction partially back toward the original position shown in FIG. 23. However, as with tensioning member 700, the ramped member wall 770 adjacent the suture 874 can engage the suture 874 and resist such counter rotation in cooperation with channel 882 and thereby create the non-linearity or bend 850 in suture 874. The non-linearity 850 requires the suture 874 to extend a greater distance and thereby increases the tension in suture 874 similar to tensioning member 700. Further, tensioning member 700A can automatically maintain the increased tension in suture 874 similar to tensioning member 700 due to the counteracting forces imparted on suture 874 from the engaging ramped members 756 and the attachment members 870.


With additional reference to FIGS. 24-26, a tensioning member 910 is shown in accordance with the present teachings. Tensioning member 910 can include a body 914 having an upper surface 918 and an opposite lower tissue or bone engaging surface 920. Body 914 can define a generally rectangular perimeter 922, although it should be appreciated that tensioning member 910 can include a body 914 with other shapes as may be desired depending on different procedures in which tensioning member 910 may be used. A pair of generally centrally located attachment members 926 can extend from the upper surface 918 and can include an undercut portion 930 similar to that discussed above for attachment members 730. Attachment members 926 can each include an aperture 934 formed in a top surface thereof configured to receive the projections 798 of driver 806, as will be discussed below.


In the exemplary configuration illustrated in FIG. 24, the pair of attachment members 926 can be spaced apart from each other such that they are offset from each other in both a longitudinal direction of body 914 and a perpendicular lateral direction of body 914. The offset can facilitate generating the bending of suture 874 similar to the tensioning members discussed above. As also discussed above, tensioning member 910 can be used in addition to or in lieu of the various attachment members 380, 430 and 472 shown for example in FIGS. 7-9. Further, tensioning member 910 can also be used with any of the suture constructs discussed herein similar to that discussed above for tensioning members 700 and 700A.


Tensioning member 910 can include a single ramped member 756 extending from the upper surface 918 and spaced apart from each of the respective attachment members 926 in a direction toward opposed longitudinal ends 938, as shown in FIG. 24. It should be appreciated that tensioning member 910 can alternatively include a plurality of ramped members 756, such as shown for example in FIG. 27. It should also be appreciated that tensioning member 910 can use any of the alternative driving features discussed above in lieu of or in addition to the apertures 934.


In operation, tensioning member 910 can be positioned on soft tissue or bone and suture 874 or one of the suture constructs discussed herein can be positioned between attachment members 926, as shown in FIGS. 24 and 25. The suture 874 can then be tensioned around the sternum 304 or other bone 840 to compress the respective section 308 or fracture 844 as discussed above and shown in FIG. 31. Tensioning member 910 can then be rotated clockwise using driver 806 or another suitable method and/or instrument. For example, the projections 798 of driver 806 can be positioned in apertures 934. Driver 806 can then be rotated to rotate tensioning member 910 clockwise and drive attachment members 926 into portions of suture 874 and draw the suture 874 in the direction of arrows E and F shown in FIG. 25. Drawing suture 874 in the direction of arrows E and F requires the suture 874 to extend over a greater distance thereby increasing the tension in suture 874.


Tensioning member 910 can be rotated clockwise until suture 874 slides over ramped members 756. The rotational driving force (i.e., from driver 806) can then be removed, upon which tensioning member 910 can be urged counterclockwise partially toward the initial position shown in FIG. 24 until the walls 770 of ramped members 756 engage suture 874. This action can impart a force on suture 874 thereby causing the non-linearity or bending 850 relative to each attachment member 926 and ramped member 756. In this regard, a first one of the attachment members 926A can engage a first side 940 of suture 874 and the wall 770 of the adjacent ramped member 756 can engage a second opposite side 942 of suture 874. Similarly, a second one of the attachment members 926B can engage the second side 942 of suture 874 and the wall 770 of the corresponding ramped member 756 can engage the first side 940, as shown in FIG. 25.


The non-linearity 850 can effectively increase a distance the suture 874 is required to extend, such as around bone 840 to compress fracture 844, and can thereby increase tension in suture 874, as shown for example in FIG. 31. In the exemplary configuration shown in FIG. 25, the non-linearity 850 with respect to attachment member 926A can include a first bend or non-linearity 850A as the suture is bent around attachment member 926A, and a second non-linearity 850B as the suture is bent around the associated ramped member 756. Similarly, the non-linearity with respect to attachment member 926B can include a third bend or non-linearity 850C as the suture is bent around attachment member 926B, and a fourth non-linearity 850D as the suture is bent around the associated ramped member 756. The tension in suture 874 in cooperation with the engagement of the ramped members 756 and the attachment members 926 can automatically maintain the non-linearity 850 and increased tension in suture 874 imparted by tensioning member 910.


With additional reference to FIGS. 27 and 28, a tensioning member 910A is shown according to the present teachings. Tensioning member 910A can be similar to tensioning member 910 such that like reference numerals refer to like components and only differences will be discussed in detail. Tensioning member 910A can include two sets of ramped members 756 spaced apart from the respective attachment members 926, as shown in FIG. 27. In an exemplary aspect, each set of ramped members 756 can be positioned in an arcuate path. In an exemplary aspect, each set of ramped members 756 can be positioned relative to a longitudinal centerline 950 such that a first set 954 of the ramped members 756 are positioned between centerline 950 and a first lateral side 958 and a second set 962 of the ramped members 756 are positioned between centerline 950 and a second opposite lateral side 966. Tensioning member 910A can also include the hexagon shaped aperture 810 in place of or in addition to the apertures 934.


In operation, tensioning member 910A can be utilized in a similar manner as tensioning member 910 and can be used in addition to or in lieu of tensioning members 700, 700A and 910. Further, tensioning member 910A can be used in lieu of or in addition to attachment members 380, 430, and/or 472. For example, and with reference to FIGS. 29 and 30, tensioning member 910A can be positioned on the sternum 304 and suture 874 (or one of the suture constructs discussed above) can be positioned around the sternum 304 and section 308. The suture 874 or suture construct 150 can then be appropriately tensioned. Tensioning member 910A can then be rotated in a clockwise direction to engage attachment members 926 and ramped members 756 with suture 874 in the manner discussed above and shown in FIG. 31 to impart additional tension on suture 874.


Turning now to FIGS. 32-33, a tensioning member 1000 is shown in accordance with the present teachings. Tensioning member 1000 can include a body 1004 having a first or upper surface 1008 and a second or bone engaging surface 1012. Tensioning member 1000 can define an outer perimeter 1016 and, in the exemplary configuration illustrated, can have an elongated or rectangular shape. Tensioning member 1000 can include a first set of fastener receiving holes 1020 extending through body 1004, as shown in FIG. 32. It should be appreciated that tensioning member 1000 can include more or less than the set of two fastener receiving holes 1020 illustrated in FIGS. 32 and 33. Tensioning member 1000 can also include a pair of attachment members 1024 that can be similar to attachment members 730 discussed above. Attachment members 1024 and can be positioned along an axis perpendicular to a longitudinal axis 1028 of tensioning member 1000, as shown in FIG. 32, or at an offset angle from perpendicular, as shown in FIG. 33. Attachment members 1024 can be configured to receive suture 874 or loops of one or more of the suture constructs discussed above, such as loops 188, 188′ of construct 150. Tensioning member 100 can further include a pair of apertures 1032 configured to receive projection 798 of driver 806 similar to apertures 934 discussed above.


In operation, tensioning member 1000 can be positioned relative to the fractured bone 840 or sectioned sternum 304. Tensioning member 1000 can be coupled to one of the suture constructs, such as to the loops 188, 188′ of exemplary suture construct 150, in a manner similar to tensioning member 700 discussed above in connection with FIGS. 30 and 31. Driver 806 can then be used to rotate tensioning member 1000 to impart additional tension on to associated suture construct 150 by requiring suture construct 150 to span or extend a longer distance similar to operation of the tensioning members discussed above. Upon rotating tensioning member 1000 to impart a sufficient amount of additional tension onto associated suture construct 150 and/or compression onto section 308 or fracture 844, a pair of bone screws or fasteners 1038 can secure tensioning member 1000 in the tensioned and rotated position to the sternum 304 or bone 840.


With additional reference to FIGS. 34-36, another tensioning member 1000′ is shown in accordance with the present teachings. Tensioning member 1000′ can be similar to tensioning member 1000 such that like reference numerals refer to like components and features and only differences will be discussed in detail. Tensioning member 1000′ can include a pair of attachment members 1050 in the form of apertures in place of attachment members 1024 of tensioning member 1000. Attachment members 1050 can be positioned along an axis substantially perpendicular to longitudinal axis of 1028 or offset therefrom, as shown in the exemplary configuration of FIG. 34.


In operation, flexible anchors 196 associated with any of the suture constructs discussed above, such as construct 150A of FIG. 3B or construct 10A of FIG. 35, can be coupled to attachment members 1050. In particular, one of the flexible anchors 196 carried by a respective suture construct can be coupled to one of the attachment members 1050. Tensioning member 1000′ can then be positioned about fracture 844 or section 308 and wrapped around the respective bone 840 or sternum 308. The other flexible anchor 196 coupled to an opposite end of the respective suture construct, such as construct 10A, can be coupled to the other attachment member 1050, as generally shown in FIG. 36. Tensioning member 1000′ can then be tensioned and secured in a similar manner as tensioning member 1000 discussed above.


Turning now to FIGS. 37-40, a tensioning member 1070 is shown in accordance with the present teachings. Tensioning member 1070 can operate similarly to tensioning member 1000 and can include a body 1074 in the form of an I-shape 1078 in the exemplary configuration illustrated. In this exemplary configuration, body 1074 can include a first portion 1082 having opposed ends 1086 and 1090. First portion 1082 can define a longitudinal axis 1094 of tensioning member 1070. Second and third portions 1098 and 1102 can extend perpendicular or substantially perpendicular to first portion 1082 about respective ends 1086 and 1090 thereby forming the I-shape 1078.


Similar to tensioning member 1000, first portion 1082 can include a pair of attachment members 1106 and a pair of driver engagement apertures 1110. Attachment members 1106 can be positioned along an axis substantially perpendicular to longitudinal axis 1094, or along an axis offset from perpendicular to longitudinal axis 1094, as shown in FIG. 37. Each of the second and third portions 1098 and 1102 can include at least one bone screw receiving aperture 1114. In the exemplar configuration illustrated, each of the second and third portions 1098 and 1102 include four apertures 1114 configured to receive bone screws 1038.


In operation, tensioning member 1070 can be positioned relative to fractured bone 840 or sectioned sternum 304, as shown in FIG. 37. One of the suture constructs discussed above can be coupled to attachment members 1106, such as via loops 188, 188′ of exemplary suture construct 150. Suture construct 150 can then be tensioned in the manner discussed above to impart compression on fracture 844 or section 308. Tensioning member 1070 can then be rotated to impart additional tension onto suture construct 150 and compression onto fracture 844 or section 308, as generally shown in FIGS. 37 and 38. In this regard, by having the attachment members 1106 offset from perpendicular to the longitudinal axis, as shown in FIG. 37, rotation of tensioning member 1070 can bring longitudinal axis 1094 generally in line with fracture 844 or section 308 such that the second and third portions 1098, 1102 span fracture 844 or section 308, as generally shown in FIG. 38.


Bone screws 1038 can then received through apertures 1114 to secure tensioning member 1070 to bone 840 or sternum 304 in the rotated position, as shown in FIG. 39. In this regard, tensioning member 1070 can be used not only to impart additional tension on the associated suture construct, but also to secure the fracture bone 840 or section sternum 304 together in its compressed state when second and third portions 1098, 1102 span both sides of fracture 844 or section 308, as also shown in FIG. 39.


With additional reference to FIG. 40, an alternative exemplary process for rotating tensioning member about bone 840 or sternum 304 will be discussed. Tensioning member 1070 can be positioned relative to the fractured bone 840 or sternum 304 in a similar manner as discussed above such that the longitudinal axis 1094 of tensioning member 1070 is angled relative to fracture 844 or section 308 and tensioning member 1070 is skewed to one side of fracture 844 or section 308, as shown in FIG. 40. One bone screw 1038 can be positioned in the second portion 1098 and partially secured to bone 840 or sternum 304 so as to initially serve as a pivot point 1122 for rotating tensioning member 1070. In the exemplary configuration illustrated in FIG. 40, bone screw 1038 can be positioned in one of the apertures 1114 that is furthest from fracture 844 or section 308. Suture construct 150 can then be coupled to attachment members 1106 in the manner discussed above.


Tensioning member 1070 can then be rotated about the partially secured bone screw 1038 in a direction toward fracture 844 or section 308 so as impart additional tension onto suture construct 150 and thus compression onto fracture 844 or section 308. Once tensioning member 1070 is rotated to the position generally shown in FIG. 39, the additional bone screws 1038 can be positioned in the apertures 1114 and all of the bone screws 1038 can be driven into the associated bone to secure tensioning member 1070 thereto in the rotated state.


Turning now to FIG. 41, a tensioning member assembly 1130 is shown in accordance with the present teachings. Tensioning member assembly 1130 can include a first member 1132 having a body 1134 and a second member 1136 configured to be selectively movable relative thereto, as will be discussed below in greater detail. Body 1134 can include a pair of bone screw receiving holes 1138 proximate opposed ends 1142 thereof. In the exemplary configuration illustrated, body 1134 can be elongated so as to have an oval or rectangular shape. Body 1134 can also include a centrally positioned circular closed-end recess or pocket 1146 having an opening 1150 formed in an upper surface 1152 of body 1134 opposite a bottom or bone engaging surface 1154.


Pocket 1146 can extend partially toward bone engaging surface 1154 and can include a floor or bottom 1158 and a perimeter sidewall 1162. Alternatively, pocket 1146 can be formed as an aperture extending through body 1134. The sidewall 1162 of pocket 1146 can include a splined configuration 1164 configured to mate or mesh with a complimentary splined configuration 1166 of second member 1136. In the exemplary configuration illustrated, the sidewall 1162 can include the splined configuration 1164 on only a lower portion 1168 proximate bone engaging surface 1154 such that an upper portion 1172 does not include splined configuration 1164.


Second member 1136 can include an upper surface 1178, a lower surface 1182 and an outer perimeter 1186. In the exemplary configuration illustrated in FIG. 41, second member 1136 can have a circular shape with a diameter complimentary to a diameter of pocket 1146. The outer perimeter 1186 can include the splined configuration 1166 such that second member 1136 can be selectively received in splined engagement with first member 1132. A pair of attachment members 1190 can extend from the upper surface 1178 in a similar manner as the various attachment members discussed above. A pair of driver engagement apertures 1194 can also be formed in the upper surface 1178 for receiving driver 806.


In operation, one of the suture constructs discussed above, such as construct 150, can be coupled to attachment members 1190 of second member 1136. First member 1132 can be positioned about a fractured bone, such as bone 840, and secured thereto with bone screws 1038. Second member 1136 can be coupled to driver 806 and positioned proximate first member 1132. In one exemplary configuration, the driver 806 can be configured to cooperate with the second member 1136 such that second member 1136 can remain removably coupled to driver 806 upon engagement of projections 798 with apertures 1194. In one exemplary configuration, second member 1136 can be positioned relative to pocket 1146 such that the splined configuration 1166 resides in the upper portion 1172 of sidewall 1162 and does not engage the splined configuration 1164 of pocket 1146. Second member 1136 can be rotated via driver 816 to impart additional tension onto tensioned suture construct 150 optionally using upper portion 1172 as a guide. Upon imparting the desired additional tension onto suture construct 150 and thus compression onto fractured bone 840, second member 1136 can be positioned in pocket 1146 such that the second member splined configuration 1166 engages the first member splined configuration 1164 thereby preventing relative movement between the first and second members 1132, 1136 to maintain the additional tension and compression.


With additional reference to FIG. 42, another tensioning member assembly 1200 is shown in accordance with the present teachings. Aspects of tensioning member assembly 1200 can be similar to tensioning member assembly 1130 such that like reference numerals refer to like features and only differences will be discussed in detail. Tensioning member assembly 1200 can similarly include a first member 1204 and a second member 1208. Second member 1208 can be configured to be received in a pocket 1212 formed in the body 1134 of first member 1204. Pocket 1212 can be similar to pocket 1146, but can include a plurality of ramped members 1218 on floor 1158 in place of the splined configuration 1164. As will be discussed in greater detail below, ramped members 1218 can be configured to cooperate with a corresponding plurality of opposed ramped members 1222 on second member 1208 to allow selective rotation of second member 1208 relative to first member 1204 in a first predetermined rotation direction while preventing relative rotation in a second opposite rotational direction.


Similar to tensioning member assembly 1130, second member 1208 can have a diameter complimentary to a diameter of pocket 1212. Second member 1208 can also include the plurality of ramped members 1222 on bottom or lower surface 1182 radially spaced so as to align with the plurality of ramped members 1218 of first member 1204. In this regard, as can be seen in FIG. 42, the ramped members 1218, 1222 can cooperate to allow rotation of the second member 1208 relative to the first member 1204 in the first rotational direction where inclined surfaces 1228, 1232 of respective ramped members 1218, 1222 can slide relative to each other, and can prevent rotation in the second rotational direction where end faces 1236, 1240 of respective ramped members 1218, 1222 can engage each other.


In operation, loops 188, 188′ of suture construct 150 can be coupled to second member 1208 in a similar manner as second member 1136 discussed above. Likewise, first member 1204 can be positioned about fractured bone 844 and coupled thereto with bone screws 1038. Second member 1208 can be positioned in pocket 1212 such that the ramped members 1218, 1222 are in engagement or substantial engagement with each other. Suture construct 150 can be tensioned in the manner discussed above to compress fractured bone portions 840A, 840B (or sectioned sternum 304) together also in a similar manner as discussed above. Driver 806 can be coupled to second member 1208, if not already coupled thereto, and can be used to rotate second member 1208 in the first direction relative to first member 1204 to impart additional tension on suture construct 150 and thus compression on fracture 844 of bone 840. Upon imparting the desired additional tension and compression, driver 806 can be released thereby allowing the second member 1208 to rotate slightly in the second direction until the end faces 1236, 1240 engage each other thereby preventing any further rotation in the second direction and maintaining the additional imparted tension on suture construct 150 and thus compression on fractured bone 840.


While one or more specific examples have been described and illustrated, it will be understood by those skilled in the art that various changes may be made and equivalence may be substituted for elements thereof without departing from the scope of the present teachings as defined in the claims. Furthermore, the mixing and matching of features, elements and/or functions between various examples may be expressly contemplated herein so that one skilled in the art would appreciate from the present teachings that features, elements and/or functions of one example may be incorporated into another example as appropriate, unless described otherwise above. Moreover, many modifications may be made to adapt a particular situation or material to the present teachings without departing from the essential scope thereof.

Claims
  • 1. A method for applying tension to a flexible member, comprising: positioning a tensioning member relative to a first bone portion and a second bone portion, the tensioning member having first and second flexible member attachment members and a corresponding set of first and second flexible member engaging members extending therefrom;positioning the flexible member about the first and second bone portions;coupling the flexible member to the first and second attachment members;tensioning the flexible member to draw the first and second bone portions toward each other under a first tension;rotating the tensioning member such that the first and second attachment members draw the flexible member in opposite directions applying additional tension to the flexible member to place the flexible member and the first and second bone portions under a second tension;engaging the flexible member with the first and second flexible member engaging members and creating a non-linearity in the flexible member about each of the flexible member engaging members; andmaintaining the second tension via engagement of the flexible member with the first and second attachment members and the first and second engagement members in an absence of an external force.
  • 2. The method of claim 1, wherein positioning the flexible member about the first and second bone portions includes wrapping the flexible member around the first and second bone portions.
  • 3. The method of claim 1, wherein coupling the flexible member to the first and second attachment members includes coupling a first adjustable loop of an adjustable suture construct formed from a suture to a first post and coupling a second adjustable loop of the adjustable suture construct to a second post, the first and second adjustable loops extending from a passage portion of the adjustable suture construct.
  • 4. The method of claim 1, wherein coupling the flexible member to the first and second attachment members includes coupling an adjustable suture construct formed from a suture to the first and second attachment members, the adjustable suture construct having a first end of the suture that extends through a first aperture defined by the suture into the passage portion and out a second aperture defined by the suture so that the first end is outside of the passage portion and defines a first adjustable loop, and having a second end of the suture that extends through the second aperture into the passage portion and out the first aperture so that the second end is outside of the passage portion and defines a second adjustable loop.
  • 5. The method of claim 4, wherein coupling the flexible member to the first and second attachment members includes coupling the first adjustable loop to the first attachment member and coupling the second adjustable loop to the second attachment member.
  • 6. The method of claim 4, wherein coupling the flexible member to the first and second attachment members includes coupling the first and second adjustable loops to the first attachment member and coupling the passage portion to the second attachment member.
  • 7. The method of claim 1, wherein tensioning the flexible member to draw the first and second bone portions toward each other under a first tension includes tensioning the flexible member relative to the first and second attachment members.
  • 8. The method of claim 1, wherein rotating the tensioning member such that the attachment members draw the flexible member in opposite directions applying additional tension to the flexible member to place the flexible member and the first and second bone portions under a second tension includes engaging a driver with the tensioning member and rotating the driver to rotate the tensioning member.
  • 9. The method of claim 1, wherein engaging the flexible member with the first and second flexible member engaging members includes: sliding the flexible member over a first ramped surface of the flexible member engaging members; andengaging the flexible member against a second side surface of the flexible member engaging member;wherein the flexible member is bent around the second side surface of each flexible member engaging member thereby creating the non-linearity.
  • 10. The method of claim 9, wherein the first and second flexible member engaging members include a first and second plurality of flexible member engaging members each having the first ramped surface and second side surface, each plurality of flexible member engaging members being positioned consecutively in a single row; wherein continued rotation of the tensioning member slides the flexible member over consecutive flexible member engaging members of each of the first and second plurality of flexible member engaging members; andwherein engaging the flexible member with each consecutive ramped member second side surface increases the second tension applied to the flexible member and first and second bone portions.
  • 11. The method of claim 1, wherein tensioning the flexible member to draw the first and second bone portions toward each other under a first tension includes compressing the first and second bone portions of the same fractured bone.
  • 12. The method of claim 1, wherein tensioning the flexible member to draw the first and second bone portions toward each other under a first tension includes drawing the first and second bone portions of a different bone toward each other.
  • 13. The method of claim 1, wherein engaging the flexible member with the first and second flexible member engaging members and creating a non-linearity in the flexible member about each of the flexible member engaging members includes engaging a first side of the flexible member with the first engaging member and engaging a second side of the flexible member opposite the first side with the second engaging member.
  • 14. The method of claim 1, wherein engaging the flexible member with the first and second flexible member engaging members and creating a non-linearity in the flexible member about each of the flexible member engaging members includes: engaging a first side of the flexible member with the first attachment member and a second opposite side of the flexible member with the first engaging member; andengaging the second side of the flexible member with the second attachment member and the first side of the flexible member with the second engaging member.
  • 15. A method for applying tension to a suture, comprising: positioning a tensioning member relative to a first bone portion and a second bone portion, the tensioning member having first and second suture attachment members and a corresponding first and second plurality of suture engaging members extending therefrom;positioning an adjustable suture construct about the first and second bone portions;coupling first and second adjustable loops of the adjustable suture construct to the first and second attachment members;tensioning free ends of the adjustable suture construct to reduce a size of the first and second adjustable loops and draw the first and second bone portions toward each other under a first tension;rotating the tensioning member such that the first and second attachment members draw the adjustable suture construct in opposite directions applying additional tension to the suture construct to place the suture construct and the first and second bone portions under a second tension;engaging the first and second adjustable loops with a respective one of the plurality of first and second suture engaging members and creating a non-linearity in the adjustable loops about each of the one of the plurality of first and second suture engaging members; andmaintaining the second tension via engagement of the first and second adjustable loops with the first and second suture attachment members and the one of the plurality of first and second suture engagement members in an absence of an external force.
  • 16. The method of claim 15, wherein engaging the first and second adjustable loops with the respective one of the plurality of first and second suture engaging members and creating the non-linearity in the adjustable loops about each of the one of the plurality of first and second suture engaging members includes: sliding the first and second adjustable loops over a ramped surface of the respective one of the plurality of first and second engaging members; andengaging the first and second adjustable loops against a side surface of the respective one of the plurality of first and second engaging members;wherein the first and second adjustable loops are bent around the side surfaces thereby creating the non-linearity.
  • 17. The method of claim 16, wherein the first and second plurality of suture engaging members are each positioned consecutively in a single row, each consecutively positioned suture engaging member after a first suture engaging member of the first and second plurality of suture engaging members providing additional tension to the adjustable suture construct upon engagement with the respective first and second adjustable loops; and wherein sliding the first and second adjustable loops over the ramped surface of the respective one of the plurality of first and second engaging members includes rotating the tensioning member to slide the first and second adjustable loops over the ramped surfaces of a respective sub-plurality of the plurality of first and second suture engaging members.
  • 18. The method of claim 15, wherein tensioning free ends of the adjustable suture construct to reduce a size of the first and second adjustable loops and draw the first and second bone portions toward each other under a first tension includes compressing the first and second bone portions of the same fractured bone.
  • 19. The method of claim 18, wherein tensioning free ends of the adjustable suture construct to reduce a size of the first and second adjustable loops includes compressing the first and second bone portions of a sectioned sternum.
  • 20. The method of claim 15, wherein tensioning free ends of the adjustable suture construct to reduce a size of the first and second adjustable loops and draw the first and second bone portions toward each other under a first tension includes drawing the first and second bone portions of a different bone toward each other.
  • 21. A method for applying tension to a flexible member, comprising: positioning a tensioning member relative to a first bone portion and a second bone portion, the tensioning member having first and second flexible member attachment members and a corresponding set of first and second flexible member engaging members extending therefrom;positioning the flexible member about the first and second bone portions;coupling the flexible member to the first and second attachment members;tensioning the flexible member to draw the first and second bone portions toward each other under a first tension;rotating the tensioning member such that the first and second attachment members draw the flexible member in opposite directions applying additional tension to the flexible member to place the flexible member and the first and second bone portions under a second tension;engaging the flexible member with the first and second flexible member engaging members and creating a non-linearity in the flexible member about each of the flexible member engaging members; andmaintaining the second tension via engagement of the flexible member with the first and second attachment members and the first and second engagement members in an absence of an external force;wherein rotating the tensioning member such that the attachment members draw the flexible member in opposite directions applying additional tension to the flexible member to place the flexible member and the first and second bone portions under a second tension includes engaging a driver with the tensioning member and rotating the driver to rotate the tensioning member.
  • 22. The method of claim 21, wherein positioning the flexible member about the first and second bone portions includes wrapping the flexible member around the first and second bone portions.
  • 23. The method of claim 21, wherein coupling the flexible member to the first and second attachment members includes coupling a first adjustable loop of an adjustable suture construct formed from a suture to a first post and coupling a second adjustable loop of the adjustable suture construct to a second post, the first and second adjustable loops extending from a passage portion of the adjustable suture construct.
  • 24. The method of claim 21, wherein coupling the flexible member to the first and second attachment members includes coupling an adjustable suture construct formed from a suture to the first and second attachment members, the adjustable suture construct having a first end of the suture that extends through a first aperture defined by the suture into the passage portion and out a second aperture defined by the suture so that the first end is outside of the passage portion and defines a first adjustable loop, and having a second end of the suture that extends through the second aperture into the passage portion and out the first aperture so that the second end is outside of the passage portion and defines a second adjustable loop.
  • 25. The method of claim 21, wherein engaging the flexible member with the first and second flexible member engaging members includes: sliding the flexible member over a first ramped surface of the flexible member engaging members; andengaging the flexible member against a second side surface of the flexible member engaging member;wherein the flexible member is bent around the second side surface of each flexible member engaging member thereby creating the non-linearity.
  • 26. The method of claim 25, wherein the first and second flexible member engaging members include a first and second plurality of flexible member engaging members each having the first ramped surface and second side surface, each plurality of flexible member engaging members being positioned consecutively in a single row; wherein continued rotation of the tensioning member slides the flexible member over consecutive flexible member engaging members of each of the first and second plurality of flexible member engaging members; andwherein engaging the flexible member with each consecutive ramped member second side surface increases the second tension applied to the flexible member and first and second bone portions.
  • 27. A method for applying tension to a flexible member, comprising: positioning a tensioning member relative to a first bone portion and a second bone portion, the tensioning member having first and second flexible member attachment members and a corresponding set of first and second flexible member engaging members extending therefrom;positioning the flexible member about the first and second bone portions;coupling the flexible member to the first and second attachment members;tensioning the flexible member to draw the first and second bone portions toward each other under a first tension;rotating the tensioning member such that the first and second attachment members draw the flexible member in opposite directions applying additional tension to the flexible member to place the flexible member and the first and second bone portions under a second tension;engaging the flexible member with the first and second flexible member engaging members and creating a non-linearity in the flexible member about each of the flexible member engaging members; andmaintaining the second tension via engagement of the flexible member with the first and second attachment members and the first and second engagement members in an absence of an external force;wherein engaging the flexible member with the first and second flexible member engaging members includes:sliding the flexible member over a first ramped surface of the flexible member engaging members; andengaging the flexible member against a second side surface of the flexible member engaging member;wherein the flexible member is bent around the second side surface of each flexible member engaging member thereby creating the non-linearity; andwherein the first and second flexible member engaging members include a first and second plurality of flexible member engaging members each having the first ramped surface and second side surface, each plurality of flexible member engaging members being positioned consecutively in a single row;wherein continued rotation of the tensioning member slides the flexible member over consecutive flexible member engaging members of each of the first and second plurality of flexible member engaging members; andwherein engaging the flexible member with each consecutive ramped member second side surface increases the second tension applied to the flexible member and first and second bone portions.
  • 28. The method of claim 27, wherein positioning the flexible member about the first and second bone portions includes wrapping the flexible member around the first and second bone portions.
  • 29. The method of claim 27, wherein coupling the flexible member to the first and second attachment members includes coupling a first adjustable loop of an adjustable suture construct formed from a suture to a first post and coupling a second adjustable loop of the adjustable suture construct to a second post, the first and second adjustable loops extending from a passage portion of the adjustable suture construct.
  • 30. The method of claim 27, wherein coupling the flexible member to the first and second attachment members includes coupling an adjustable suture construct formed from a suture to the first and second attachment members, the adjustable suture construct having a first end of the suture that extends through a first aperture defined by the suture into the passage portion and out a second aperture defined by the suture so that the first end is outside of the passage portion and defines a first adjustable loop, and having a second end of the suture that extends through the second aperture into the passage portion and out the first aperture so that the second end is outside of the passage portion and defines a second adjustable loop.
  • 31. The method of claim 27, wherein rotating the tensioning member such that the attachment members draw the flexible member in opposite directions applying additional tension to the flexible member to place the flexible member and the first and second bone portions under a second tension includes engaging a driver with the tensioning member and rotating the driver to rotate the tensioning member.
CROSS-RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 12/938,902 filed on Nov. 3, 2010, now issued as U.S. Pat. No. 8,597,327, which is a continuation-in-part of U.S. patent application Ser. No. 12/915,962 filed on Oct. 29, 2010, now issued as U.S. Pat. No. 8,562,647, which is a continuation-in-part of U.S. patent application Ser. No. 12/719,337 filed on Mar. 8, 2010, now issued as U.S. Pat. No. 9,078,644, which is a continuation-in-part of U.S. patent application Ser. No. 12/489,168 filed on Jun. 22, 2009, now issued as U.S. Pat. No. 8,361,113, which is a continuation-in-part of U.S. patent application Ser. No. 12/474,802 filed on May 29, 2009, now issued as U.S. Pat. No. 8,088,130, which is a continuation-in-part of (a) U.S. patent application Ser. No. 12/196,405 filed on Aug. 22, 2008, now issued as U.S. Pat. No. 8,128,658; (b) U.S. patent application Ser. No. 12/196,407 filed on Aug. 22, 2008, now issued as U.S. Pat. No. 8,137,382; (c) U.S. patent application Ser. No. 12/196,410 filed on Aug. 22, 2008, now issued as U.S. Pat. No. 8,118,836; and (d) a continuation-in-part of U.S. patent application Ser. No. 11/541,506 filed on Sep. 29, 2006, which is now U.S. Pat. No. 7,601,165 issued on Oct. 13, 2009. This application is a continuation-in-part of U.S. patent application Ser. No. 12/570,854 filed on Sep. 30, 2009, now issued as U.S. Pat. No. 8,303,604, which is a continuation-in-part of U.S. patent application Ser. No. 12/014,399 filed on Jan. 15, 2008, which is now U.S. Pat. No. 7,909,851 issued on Mar. 22, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 11/347,661 filed on Feb. 3, 2006, which is now U.S. Pat. No. 7,749,250 issued on Jul. 6, 2010. This application is a continuation-in-part of U.S. patent application Ser. No. 12/029,861 filed on Feb. 12, 2008, now issued as U.S. Pat. No. 8,672,968, which is a continuation-in-part of U.S. patent application Ser. No. 11/504,882 filed on Aug. 16, 2006, which is a continuation-in-part of U.S. patent application Ser. No. 11/408,282 filed on Apr. 20, 2006, and now abandoned. This application is a continuation-in-part of U.S. patent application Ser. No. 12/702,067 filed on Feb. 8, 2010, now issued as U.S. Pat. No. 8,672,968, which is a continuation of U.S. patent application Ser. No. 11/541,505 filed on Sep. 29, 2006 and is now U.S. Pat. No. 7,658,751 issued on Feb. 9, 2010. This application is a continuation-in-part of U.S. patent application Ser. No. 13/102,182 filed on May 6, 2011, now issued as U.S. Pat. No. 8,231,654, which is a divisional of U.S. patent application Ser. No. 12/196,398 filed Aug. 22, 2008, now U.S. Pat. No. 7,959,650 issued on Jun. 14, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 11/784,821 filed Apr. 10, 2007, now issued as U.S. Pat. No. 9,017,381. The disclosures of all of the above applications are incorporated by reference herein.

US Referenced Citations (1676)
Number Name Date Kind
65499 Miller Jun 1867 A
126366 Wills Apr 1872 A
233475 Cook et al. Oct 1880 A
261501 Vandermark Jul 1882 A
268407 Hughes Dec 1882 A
394739 Toulmin Dec 1888 A
417805 Beaman Dec 1889 A
487304 Todd Dec 1892 A
762710 Hall Jun 1901 A
837767 Aims Dec 1906 A
838203 Neil Dec 1906 A
1059631 Popovics Apr 1913 A
1131155 Murphy Mar 1915 A
1153450 Schaff Sep 1915 A
1346940 Collins Jul 1920 A
1635066 Wells Jul 1927 A
401677 Roeder Nov 1933 A
1950799 Jones Mar 1934 A
2065659 Cullen Dec 1936 A
2108206 Meeker Feb 1938 A
2121193 Hanicke Jun 1938 A
2242003 Lorenzo May 1941 A
2267925 Johnston Dec 1941 A
2302986 Vollrath Nov 1942 A
2329398 Duffy Sep 1943 A
2397216 Stellin Mar 1946 A
RE22857 Ogburn Mar 1947 E
2526959 Lorenzo Oct 1950 A
2528456 Stevenson Oct 1950 A
2562419 Ferris Jul 1951 A
2581564 Villegas Jan 1952 A
2600395 Domoj et al. Jun 1952 A
2610631 Calicchio Sep 1952 A
2665597 Hill Jan 1954 A
2669774 Mitchell Feb 1954 A
2698986 Brown Jan 1955 A
2760488 Pierce Aug 1956 A
2833284 Springer May 1958 A
2846712 Markman Aug 1958 A
2860393 Brock Nov 1958 A
2880728 Rights Apr 1959 A
2881762 Lowrie Apr 1959 A
2883096 Dawson Apr 1959 A
2913042 Taylor Nov 1959 A
3000009 Selstad Sep 1961 A
3003155 Mielzynski et al. Oct 1961 A
3013559 Thomas Dec 1961 A
3037619 Stevans Jun 1962 A
3039460 Chandler Jun 1962 A
3081781 Stermer Mar 1963 A
3090386 Curtis May 1963 A
3103666 Bone Sep 1963 A
3123077 Alcamo Mar 1964 A
3125095 Kaufman et al. Mar 1964 A
3209422 Dritz Oct 1965 A
3234938 Robinson Feb 1966 A
3240379 Bremer et al. Mar 1966 A
3250271 Lippes May 1966 A
3399432 Merser Sep 1968 A
3409014 Shannon Nov 1968 A
RE26501 Kendrick et al. Dec 1968 E
3435475 Bisk Apr 1969 A
3467089 Hasson Sep 1969 A
3470834 Bone Oct 1969 A
3470875 Johnson Oct 1969 A
3500820 Almen Mar 1970 A
3507274 Soichet Apr 1970 A
3513484 Hausner May 1970 A
3515132 McKnight Jun 1970 A
3522803 Majzlin Aug 1970 A
3527223 Shein Sep 1970 A
3533406 Hutterer et al. Oct 1970 A
3541591 Hoegerman Nov 1970 A
3547389 Mitchell Dec 1970 A
3579831 Stevens et al. May 1971 A
3590616 Schussler et al. Jul 1971 A
3608095 Barry Sep 1971 A
3618447 Goins Nov 1971 A
3628530 Schwartz Dec 1971 A
3643649 Amato Feb 1972 A
3648705 Lary Mar 1972 A
3650274 Edwards et al. Mar 1972 A
3656483 Rudel Apr 1972 A
3659597 Wolfers May 1972 A
3664345 Dabbs et al. May 1972 A
3665560 Bennett et al. May 1972 A
3675639 Cimber Jul 1972 A
3683422 Stemmer et al. Aug 1972 A
3692022 Ewing Sep 1972 A
3695271 Chodorow Oct 1972 A
3699969 Allen Oct 1972 A
3716058 Tanner, Jr. Feb 1973 A
3744488 Cox Jul 1973 A
3752516 Mumma Aug 1973 A
3757629 Schneider Sep 1973 A
3763856 Blomberg Oct 1973 A
3771520 Lerner Nov 1973 A
3777748 Abramson Dec 1973 A
3807407 Schweizer Apr 1974 A
3810456 Karman May 1974 A
3825010 McDonald Jul 1974 A
3840017 Violante et al. Oct 1974 A
3842824 Neufeld Oct 1974 A
3842840 Schweizer Oct 1974 A
3845772 Smith Nov 1974 A
3867933 Kitrilakis Feb 1975 A
3867944 Samuels Feb 1975 A
3871368 Johnson et al. Mar 1975 A
3871379 Clarke Mar 1975 A
3874388 King et al. Apr 1975 A
3875648 Bone Apr 1975 A
3877570 Barry Apr 1975 A
3880156 Hoff Apr 1975 A
3881475 Gordon et al. May 1975 A
3889666 Lerner Jun 1975 A
3892240 Park Jul 1975 A
3896500 Rambert et al. Jul 1975 A
3907442 Reid Sep 1975 A
3910281 Kletschka et al. Oct 1975 A
3918444 Hoff et al. Nov 1975 A
3918455 Coplan Nov 1975 A
3927666 Hoff Dec 1975 A
3931667 Merser et al. Jan 1976 A
3933153 Csatary et al. Jan 1976 A
3937217 Kosonen et al. Feb 1976 A
3943932 Woo Mar 1976 A
3946446 Schofield Mar 1976 A
3946728 Bettex et al. Mar 1976 A
3946740 Bassett Mar 1976 A
3953896 Treace May 1976 A
3954103 Garcia-Roel et al. May 1976 A
3961632 Moossun Jun 1976 A
3973560 Emmett et al. Aug 1976 A
3976079 Samuels et al. Aug 1976 A
3977050 Perez et al. Aug 1976 A
3979799 Merser et al. Sep 1976 A
3985138 Jarvik Oct 1976 A
3990619 Russell Nov 1976 A
4005707 Moulding, Jr. Feb 1977 A
4006747 Kronenthal et al. Feb 1977 A
4007743 Blake Feb 1977 A
4013071 Rosenberg et al. Mar 1977 A
4026281 Mayberry et al. May 1977 A
4036101 Burnett Jul 1977 A
4050100 Barry Sep 1977 A
4054954 Nakayama et al. Oct 1977 A
4084478 Simmons Apr 1978 A
4085466 Goodfellow et al. Apr 1978 A
4094313 Komamura et al. Jun 1978 A
4099750 McGrew Jul 1978 A
4103690 Harris Aug 1978 A
RE29819 Bone Oct 1978 E
4121487 Bone Oct 1978 A
4143656 Holmes et al. Mar 1979 A
4144876 DeLeo Mar 1979 A
4146022 Johnson et al. Mar 1979 A
4149277 Bokros Apr 1979 A
4157714 Foltz et al. Jun 1979 A
4158250 Ringwald Jun 1979 A
4160453 Miller Jul 1979 A
4164225 Johnson et al. Aug 1979 A
4172458 Pereyra Oct 1979 A
4175555 Herbert et al. Nov 1979 A
4185636 Gabbay et al. Jan 1980 A
4196883 Einhorn et al. Apr 1980 A
4210148 Stivala Jul 1980 A
4235161 Kunreuther Nov 1980 A
4235238 Ogiu et al. Nov 1980 A
4237779 Kunreuther Dec 1980 A
4243037 Smith Jan 1981 A
4249525 Krzeminski Feb 1981 A
4263913 Malmin Apr 1981 A
4265246 Barry May 1981 A
4273117 Neuhauser et al. Jun 1981 A
4275490 Bivins Jun 1981 A
4275717 Bolesky Jun 1981 A
4287807 Pacharis et al. Sep 1981 A
4291698 Fuchs et al. Sep 1981 A
4301551 Dore et al. Nov 1981 A
4307723 Finney Dec 1981 A
4312337 Donohue Jan 1982 A
4316469 Kapitanov et al. Feb 1982 A
4326531 Shimonaka et al. Apr 1982 A
4345601 Fukuda Aug 1982 A
4349027 DiFrancesco Sep 1982 A
4388921 Sutter et al. Jun 1983 A
4400833 Kurland Aug 1983 A
4402445 Green Sep 1983 A
4409974 Freedland Oct 1983 A
4438769 Pratt et al. Mar 1984 A
4441489 Evans et al. Apr 1984 A
4454875 Pratt et al. Jun 1984 A
4462395 Johnson Jul 1984 A
4463753 Gustilo Aug 1984 A
4473102 Ohman et al. Sep 1984 A
4484570 Sutter et al. Nov 1984 A
4489446 Reed Dec 1984 A
4489464 Massari et al. Dec 1984 A
4493323 Albright et al. Jan 1985 A
4496468 House et al. Jan 1985 A
4505274 Speelman Mar 1985 A
4509516 Richmond Apr 1985 A
4531522 Bedi et al. Jul 1985 A
4532926 O'Holla Aug 1985 A
4534350 Golden et al. Aug 1985 A
4535764 Ebert Aug 1985 A
4537185 Stednitz Aug 1985 A
4549545 Levy Oct 1985 A
4549652 Free Oct 1985 A
4561432 Mazor Dec 1985 A
4564007 Coombs et al. Jan 1986 A
4570623 Ellison et al. Feb 1986 A
4573844 Smith Mar 1986 A
4576608 Homsy Mar 1986 A
4584722 Levy et al. Apr 1986 A
4587963 Leibinger et al. May 1986 A
4590928 Hunt et al. May 1986 A
4595007 Mericle Jun 1986 A
4596249 Freda et al. Jun 1986 A
4602635 Mulhollan et al. Jul 1986 A
4602636 Noiles Jul 1986 A
4604997 De Bastiani et al. Aug 1986 A
4605414 Czajka Aug 1986 A
4616650 Green et al. Oct 1986 A
4621640 Mulhollan et al. Nov 1986 A
4624254 McGarry et al. Nov 1986 A
4632100 Somers et al. Dec 1986 A
4635637 Schreiber Jan 1987 A
4636121 Miller Jan 1987 A
4641652 Hutterer et al. Feb 1987 A
4649952 Jobe Mar 1987 A
4653486 Coker Mar 1987 A
4653487 Maale Mar 1987 A
4653489 Tronzo Mar 1987 A
4655777 Dunn et al. Apr 1987 A
4662068 Polonsky May 1987 A
4667662 Titone et al. May 1987 A
4667675 Davis May 1987 A
4669473 Richards et al. Jun 1987 A
4683895 Pohndorf Aug 1987 A
4688561 Reese Aug 1987 A
4690169 Jobe Sep 1987 A
4696300 Anderson Sep 1987 A
4705040 Mueller et al. Nov 1987 A
4708132 Silvestrini Nov 1987 A
4714475 Grundei et al. Dec 1987 A
4716893 Fischer et al. Jan 1988 A
4719671 Ito et al. Jan 1988 A
4719917 Barrows et al. Jan 1988 A
4723540 Gilmer, Jr. Feb 1988 A
4724839 Bedi et al. Feb 1988 A
4728332 Albrektsson Mar 1988 A
4738255 Goble et al. Apr 1988 A
4741330 Hayhurst May 1988 A
4741336 Failla et al. May 1988 A
4744353 McFarland May 1988 A
4744793 Parr et al. May 1988 A
4750492 Jacobs Jun 1988 A
4760843 Fischer et al. Aug 1988 A
4760844 Kyle Aug 1988 A
4760848 Hasson Aug 1988 A
4770663 Hanslik et al. Sep 1988 A
4772261 Von Hoff et al. Sep 1988 A
4772286 Goble et al. Sep 1988 A
4773910 Chen et al. Sep 1988 A
4775380 Seedhom et al. Oct 1988 A
4776328 Frey et al. Oct 1988 A
4781190 Lee et al. Nov 1988 A
4784126 Hourahane et al. Nov 1988 A
4787882 Claren et al. Nov 1988 A
4790297 Luque et al. Dec 1988 A
4793363 Ausherman et al. Dec 1988 A
4809695 Gwathmey et al. Mar 1989 A
4813406 Ogle, II Mar 1989 A
4823794 Pierce Apr 1989 A
4828562 Kenna May 1989 A
4832026 Jones May 1989 A
4834098 Jones May 1989 A
4838282 Strasser et al. Jun 1989 A
4841960 Garner Jun 1989 A
4851005 Hunt et al. Jul 1989 A
4858608 McQuilkin et al. Aug 1989 A
4860513 Whitman Aug 1989 A
4863383 Grafelmann et al. Sep 1989 A
4870957 Goble et al. Oct 1989 A
4873976 Schreiber Oct 1989 A
4887601 Richards Dec 1989 A
4889110 Galline et al. Dec 1989 A
4890615 Caspari et al. Jan 1990 A
4893619 Dale et al. Jan 1990 A
4893974 Fischer et al. Jan 1990 A
4895148 Bays et al. Jan 1990 A
4896668 Popoff et al. Jan 1990 A
4898156 Gatturna et al. Feb 1990 A
4899743 Nicholson et al. Feb 1990 A
4901721 Hakki Feb 1990 A
4923461 Caspari et al. May 1990 A
4927421 Goble et al. May 1990 A
4946377 Kovach Aug 1990 A
4946468 Li Aug 1990 A
4950270 Bowman et al. Aug 1990 A
4950285 Wilk Aug 1990 A
4960381 Niznick Oct 1990 A
4961741 Hayhurst Oct 1990 A
4968315 Gatturna Nov 1990 A
4968317 Tormala et al. Nov 1990 A
4969886 Cziffer et al. Nov 1990 A
4976736 White et al. Dec 1990 A
4978350 Wagenknecht et al. Dec 1990 A
4979956 Silvestrini Dec 1990 A
4983176 Cushman et al. Jan 1991 A
4988351 Paulos et al. Jan 1991 A
4994074 Bezwada et al. Feb 1991 A
4997433 Goble et al. Mar 1991 A
5002550 Li Mar 1991 A
5002562 Oberlander Mar 1991 A
5007921 Brown Apr 1991 A
5030224 Wright et al. Jul 1991 A
5030235 Campbell, Jr. Jul 1991 A
5037422 Hayhurst et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5047030 Draenert et al. Sep 1991 A
5053046 Janese Oct 1991 A
5053047 Yoon Oct 1991 A
5059201 Asnis Oct 1991 A
5059206 Winters Oct 1991 A
5061277 Carpentier et al. Oct 1991 A
5062344 Gerker Nov 1991 A
5062843 Mahony, III Nov 1991 A
5064431 Gilbertson et al. Nov 1991 A
5074874 Yoon et al. Dec 1991 A
5078731 Hayhurst Jan 1992 A
5078843 Pratt Jan 1992 A
5084050 Draenert Jan 1992 A
5084058 Li Jan 1992 A
5085661 Moss Feb 1992 A
5087263 Li Feb 1992 A
5089012 Prou Feb 1992 A
5092866 Breard et al. Mar 1992 A
5098435 Stednitz et al. Mar 1992 A
5100415 Hayhurst Mar 1992 A
5100417 Cerier et al. Mar 1992 A
5108433 May et al. Apr 1992 A
5116337 Johnson May 1992 A
5116373 Jakob et al. May 1992 A
5116375 Hofmann May 1992 A
5123913 Wilk et al. Jun 1992 A
5123914 Cope Jun 1992 A
5127785 Faucher et al. Jul 1992 A
5129901 Decoste Jul 1992 A
5129902 Goble et al. Jul 1992 A
5129904 Illi et al. Jul 1992 A
5129906 Ross et al. Jul 1992 A
5139498 Astudillo Ley Aug 1992 A
5139499 Small et al. Aug 1992 A
5139520 Rosenberg Aug 1992 A
5143498 Whitman Sep 1992 A
5147362 Goble Sep 1992 A
5149329 Richardson Sep 1992 A
5151104 Kenna Sep 1992 A
5152790 Rosenberg et al. Oct 1992 A
5154189 Oberlander Oct 1992 A
5156616 Meadows et al. Oct 1992 A
5163960 Bonutti Nov 1992 A
D331626 Hayhurst et al. Dec 1992 S
5169400 Muhling et al. Dec 1992 A
5176682 Chow Jan 1993 A
5178629 Kammerer Jan 1993 A
5183458 Marx Feb 1993 A
5190545 Corsi et al. Mar 1993 A
5192282 Draenert et al. Mar 1993 A
5197987 Koch et al. Mar 1993 A
5199135 Gold Apr 1993 A
5203784 Ross et al. Apr 1993 A
5203787 Noblitt et al. Apr 1993 A
5207679 Li May 1993 A
5209753 Biedermann et al. May 1993 A
5209805 Spraggins May 1993 A
5211647 Schmieding May 1993 A
5211650 Noda May 1993 A
5214987 Fenton, Sr. Jun 1993 A
5219359 McQuilkin et al. Jun 1993 A
5222976 Yoon Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5230699 Grasinger Jul 1993 A
5232436 Janevski Aug 1993 A
5234435 Seagrave, Jr. Aug 1993 A
5235238 Nomura et al. Aug 1993 A
5236445 Hayhurst et al. Aug 1993 A
5236461 Forte Aug 1993 A
5242447 Borzone Sep 1993 A
5246441 Ross et al. Sep 1993 A
5249899 Wilson Oct 1993 A
5250053 Snyder Oct 1993 A
5258015 Li et al. Nov 1993 A
5258016 DiPoto et al. Nov 1993 A
5258040 Bruchman et al. Nov 1993 A
5261908 Campbell, Jr. Nov 1993 A
5268001 Nicholson et al. Dec 1993 A
5269160 Wood Dec 1993 A
5269783 Sander Dec 1993 A
5269806 Sardelis et al. Dec 1993 A
5269809 Hayhurst et al. Dec 1993 A
5279311 Snyder Jan 1994 A
5281422 Badylak et al. Jan 1994 A
5282809 Kammerer et al. Feb 1994 A
5282832 Toso et al. Feb 1994 A
5282867 Mikhail Feb 1994 A
5285040 Brandberg et al. Feb 1994 A
5290217 Campos Mar 1994 A
5290243 Chodorow et al. Mar 1994 A
5306301 Graf et al. Apr 1994 A
5312422 Trott May 1994 A
5312438 Johnson May 1994 A
5318566 Miller Jun 1994 A
5318575 Chesterfield et al. Jun 1994 A
5318577 Li Jun 1994 A
5318578 Hasson Jun 1994 A
5320115 Kenna Jun 1994 A
5320626 Schmieding Jun 1994 A
5320633 Allen et al. Jun 1994 A
5324308 Pierce Jun 1994 A
5330489 Green et al. Jul 1994 A
5333625 Klein Aug 1994 A
5334204 Clewett et al. Aug 1994 A
5336229 Noda Aug 1994 A
5336231 Adair Aug 1994 A
5336240 Metzler et al. Aug 1994 A
5339870 Green et al. Aug 1994 A
5342369 Harryman, II Aug 1994 A
5346462 Barber Sep 1994 A
5354292 Braeuer et al. Oct 1994 A
5354298 Lee et al. Oct 1994 A
5356412 Golds et al. Oct 1994 A
5356413 Martins et al. Oct 1994 A
5356417 Golds Oct 1994 A
5358511 Gatturna et al. Oct 1994 A
5360431 Puno et al. Nov 1994 A
5362294 Seitzinger Nov 1994 A
5364400 Rego, Jr. et al. Nov 1994 A
5366461 Blasnik Nov 1994 A
5368599 Hirsch et al. Nov 1994 A
5370661 Branch Dec 1994 A
5370662 Stone et al. Dec 1994 A
5372146 Branch Dec 1994 A
5372604 Trott Dec 1994 A
5372821 Badylak et al. Dec 1994 A
5374268 Sander Dec 1994 A
5379492 Glesser Jan 1995 A
5383878 Roger et al. Jan 1995 A
5383904 Totakura et al. Jan 1995 A
5391171 Schmieding Feb 1995 A
5391176 de la Torre Feb 1995 A
5391182 Chin Feb 1995 A
5393302 Clark et al. Feb 1995 A
RE34871 McGuire et al. Mar 1995 E
5395374 Miller et al. Mar 1995 A
5397356 Goble et al. Mar 1995 A
5403328 Shallman Apr 1995 A
5403329 Hinchcliffe Apr 1995 A
5403348 Bonutti Apr 1995 A
5405359 Pierce Apr 1995 A
5411550 Herweck et al. May 1995 A
5415658 Kilpela et al. May 1995 A
5417690 Sennett et al. May 1995 A
5417691 Hayhurst May 1995 A
5417698 Green et al. May 1995 A
5417712 Whittaker et al. May 1995 A
5423819 Small et al. Jun 1995 A
5423821 Pasque Jun 1995 A
5423823 Schmieding Jun 1995 A
5423860 Lizardi et al. Jun 1995 A
5425733 Schmieding Jun 1995 A
5425766 Bowald et al. Jun 1995 A
5433751 Christel et al. Jul 1995 A
5437680 Yoon Aug 1995 A
5437685 Blasnik Aug 1995 A
5439684 Prewett et al. Aug 1995 A
5441508 Gazielly et al. Aug 1995 A
5443468 Johnson Aug 1995 A
5443482 Stone et al. Aug 1995 A
5443483 Kirsch et al. Aug 1995 A
5443509 Boucher et al. Aug 1995 A
5445833 Badylak et al. Aug 1995 A
5447512 Wilson et al. Sep 1995 A
5449361 Preissman Sep 1995 A
5451203 Lamb Sep 1995 A
5454811 Huebner Oct 1995 A
5454821 Harm et al. Oct 1995 A
5456685 Huebner Oct 1995 A
5456722 McLeod et al. Oct 1995 A
5458601 Young, Jr. et al. Oct 1995 A
5458604 Schmieding Oct 1995 A
5462542 Alesi, Jr. Oct 1995 A
5462560 Stevens Oct 1995 A
5464426 Bonutti Nov 1995 A
5464427 Curtis et al. Nov 1995 A
5464440 Johansson et al. Nov 1995 A
5466237 Byrd, III et al. Nov 1995 A
5467786 Allen et al. Nov 1995 A
5470334 Ross et al. Nov 1995 A
5470337 Moss Nov 1995 A
5470338 Whitfield et al. Nov 1995 A
5472452 Trott Dec 1995 A
5474565 Trott Dec 1995 A
5474568 Scott Dec 1995 A
5474572 Hayhurst Dec 1995 A
5476465 Preissman Dec 1995 A
5478344 Stone et al. Dec 1995 A
5478345 Stone et al. Dec 1995 A
5480403 Lee et al. Jan 1996 A
5480406 Nolan et al. Jan 1996 A
5484442 Melker et al. Jan 1996 A
5486197 Le et al. Jan 1996 A
5490750 Gundy Feb 1996 A
5496331 Xu et al. Mar 1996 A
5496348 Bonutti Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5505736 Reimels et al. Apr 1996 A
5507754 Green et al. Apr 1996 A
5520691 Branch May 1996 A
5520700 Beyar et al. May 1996 A
5520702 Sauer et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5522820 Caspari et al. Jun 1996 A
5522844 Johnson Jun 1996 A
5522845 Wenstrom, Jr. Jun 1996 A
5522846 Bonutti Jun 1996 A
5524946 Thompson Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5527343 Bonutti Jun 1996 A
5534012 Bonutti Jul 1996 A
5536270 Songer et al. Jul 1996 A
5540698 Preissman Jul 1996 A
5540703 Barker, Jr. et al. Jul 1996 A
5540718 Bartlett Jul 1996 A
5545168 Burke Aug 1996 A
5545178 Kensey et al. Aug 1996 A
5545180 Le et al. Aug 1996 A
5545228 Kambin Aug 1996 A
5549613 Goble et al. Aug 1996 A
5549617 Green et al. Aug 1996 A
5549619 Peters et al. Aug 1996 A
5549630 Bonutti Aug 1996 A
5549631 Bonutti Aug 1996 A
5562683 Chan Oct 1996 A
5562685 Mollenauer et al. Oct 1996 A
5562686 Sauer et al. Oct 1996 A
5569269 Hart et al. Oct 1996 A
5569305 Bonutti Oct 1996 A
5571090 Sherts Nov 1996 A
5571139 Jenkins, Jr. Nov 1996 A
5572655 Tuljapurkar et al. Nov 1996 A
5573286 Rogozinski Nov 1996 A
5573542 Stevens Nov 1996 A
5573548 Nazre et al. Nov 1996 A
5577299 Thompson et al. Nov 1996 A
5578057 Wenstrom, Jr. Nov 1996 A
5584695 Lal Sachdeva et al. Dec 1996 A
5584835 Greenfield Dec 1996 A
5584836 Ballintyn et al. Dec 1996 A
5584862 Bonutti Dec 1996 A
5586986 Hinchliffe Dec 1996 A
5588575 Davignon Dec 1996 A
5591180 Hinchliffe Jan 1997 A
5591181 Stone et al. Jan 1997 A
5591207 Coleman Jan 1997 A
5593407 Reis et al. Jan 1997 A
5593425 Bonutti et al. Jan 1997 A
5601557 Hayhurst Feb 1997 A
5601559 Melker et al. Feb 1997 A
5601571 Moss Feb 1997 A
5603716 Morgan et al. Feb 1997 A
5607429 Hayano et al. Mar 1997 A
5607430 Bailey Mar 1997 A
5618290 Toy et al. Apr 1997 A
5626611 Liu et al. May 1997 A
5626614 Hart May 1997 A
5628756 Barker, Jr. et al. May 1997 A
5628766 Johnson May 1997 A
5630824 Hart May 1997 A
5632748 Beck, Jr. et al. May 1997 A
5641256 Gundy Jun 1997 A
5643266 Li Jul 1997 A
5643269 Harle et al. Jul 1997 A
5643295 Yoon Jul 1997 A
5643319 Green et al. Jul 1997 A
5643320 Lower et al. Jul 1997 A
5643321 McDevitt Jul 1997 A
5645546 Fard Jul 1997 A
5645547 Coleman Jul 1997 A
5645568 Chervitz et al. Jul 1997 A
5645588 Graf et al. Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5649960 Pavletic Jul 1997 A
5649963 McDevitt Jul 1997 A
5658289 Boucher et al. Aug 1997 A
5658299 Hart Aug 1997 A
5658313 Thal Aug 1997 A
5662658 Wenstrom, Jr. Sep 1997 A
5662663 Shallman Sep 1997 A
5662681 Nash et al. Sep 1997 A
5665112 Thal Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5671695 Schroeder Sep 1997 A
5674224 Howell et al. Oct 1997 A
5679723 Cooper et al. Oct 1997 A
5681334 Evans et al. Oct 1997 A
5681352 Clancy, III et al. Oct 1997 A
5683404 Johnson Nov 1997 A
5683419 Thal Nov 1997 A
5688285 Yamada et al. Nov 1997 A
5690676 DiPoto et al. Nov 1997 A
5690678 Johnson Nov 1997 A
5693046 Songer et al. Dec 1997 A
5695497 Stahelin et al. Dec 1997 A
5697929 Mellinger Dec 1997 A
5699657 Paulson Dec 1997 A
5702397 Goble et al. Dec 1997 A
5702422 Stone Dec 1997 A
5702462 Oberlander Dec 1997 A
5707373 Sevrain et al. Jan 1998 A
5709708 Thal Jan 1998 A
5711969 Patel et al. Jan 1998 A
5713005 Proebsting Jan 1998 A
5713904 Errico et al. Feb 1998 A
5713905 Goble et al. Feb 1998 A
5713921 Bonutti Feb 1998 A
5715578 Knudson Feb 1998 A
5716359 Ojima et al. Feb 1998 A
5716397 Myers Feb 1998 A
5718717 Bonutti Feb 1998 A
5720747 Burke Feb 1998 A
5720765 Thal Feb 1998 A
5720766 Zang et al. Feb 1998 A
5722976 Brown Mar 1998 A
5725529 Nicholson et al. Mar 1998 A
5725549 Lam Mar 1998 A
5725556 Moser et al. Mar 1998 A
5725581 Brånemark et al. Mar 1998 A
5725582 Bevan et al. Mar 1998 A
5726722 Uehara et al. Mar 1998 A
5728107 Zlock et al. Mar 1998 A
5728109 Schulze et al. Mar 1998 A
5728136 Thal Mar 1998 A
5733293 Scirica et al. Mar 1998 A
5733306 Bonutti Mar 1998 A
5733307 Dinsdale Mar 1998 A
5735875 Bonutti et al. Apr 1998 A
5741259 Chan Apr 1998 A
5741260 Songer et al. Apr 1998 A
5741281 Martin et al. Apr 1998 A
5743912 Lahille et al. Apr 1998 A
5746751 Sherts May 1998 A
5746752 Burkhart May 1998 A
5746754 Chan May 1998 A
5749898 Schulze et al. May 1998 A
5755729 de la Torre et al. May 1998 A
5755791 Whitson et al. May 1998 A
5766176 Duncan Jun 1998 A
5766218 Arnott Jun 1998 A
5766250 Chervitz et al. Jun 1998 A
5769894 Ferragamo Jun 1998 A
5769899 Schwartz et al. Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5776196 Matsuzaki et al. Jul 1998 A
5782845 Shewchuk Jul 1998 A
5782862 Bonutti Jul 1998 A
5782864 Lizardi Jul 1998 A
5782866 Wenstrom, Jr. Jul 1998 A
5785714 Morgan et al. Jul 1998 A
5792142 Galitzer Aug 1998 A
5792149 Sherts et al. Aug 1998 A
5796127 Hayafuji et al. Aug 1998 A
5797913 Dambreville et al. Aug 1998 A
5797915 Pierson, III et al. Aug 1998 A
5797916 McDowell Aug 1998 A
5797928 Kogasaka Aug 1998 A
5800407 Eldor et al. Sep 1998 A
5810824 Chan Sep 1998 A
5810848 Hayhurst Sep 1998 A
5814069 Schulze et al. Sep 1998 A
5814070 Borzone et al. Sep 1998 A
5814072 Bonutti Sep 1998 A
5814073 Bonutti Sep 1998 A
5823980 Kopfer Oct 1998 A
5824011 Stone et al. Oct 1998 A
5830234 Wojciechowicz et al. Nov 1998 A
5843084 Hart et al. Dec 1998 A
5845645 Bonutti Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5848983 Basaj et al. Dec 1998 A
5849012 Abboudi Dec 1998 A
5860973 Michelson Jan 1999 A
5868740 LeVeen et al. Feb 1999 A
5868748 Burke Feb 1999 A
5868789 Huebner Feb 1999 A
5871484 Spievack et al. Feb 1999 A
5871486 Huebner et al. Feb 1999 A
5871490 Schulze et al. Feb 1999 A
5885294 Pedlick et al. Mar 1999 A
5891168 Thal Apr 1999 A
5893592 Schulze et al. Apr 1999 A
5895395 Yeung Apr 1999 A
5897564 Schulze et al. Apr 1999 A
5897574 Bonutti Apr 1999 A
5899902 Brown et al. May 1999 A
5899938 Sklar et al. May 1999 A
5908421 Beger et al. Jun 1999 A
5908436 Cuschieri et al. Jun 1999 A
5910148 Reimels et al. Jun 1999 A
5911721 Nicholson et al. Jun 1999 A
5918604 Whelan Jul 1999 A
5921986 Bonutti Jul 1999 A
5925008 Douglas Jul 1999 A
5928231 Klein et al. Jul 1999 A
5928267 Bonutti et al. Jul 1999 A
RE36289 Le et al. Aug 1999 E
5931838 Vito Aug 1999 A
5931844 Thompson et al. Aug 1999 A
5931869 Boucher et al. Aug 1999 A
5935119 Guy et al. Aug 1999 A
5935133 Wagner et al. Aug 1999 A
5935149 Ek Aug 1999 A
5938668 Scirica et al. Aug 1999 A
5941439 Kammerer et al. Aug 1999 A
5941900 Bonutti Aug 1999 A
5944739 Zlock et al. Aug 1999 A
5946783 Plociennik et al. Sep 1999 A
5947915 Thibodo, Jr. Sep 1999 A
5947982 Duran Sep 1999 A
5947999 Groiso Sep 1999 A
5948002 Bonutti Sep 1999 A
5951559 Burkhart Sep 1999 A
5951560 Simon et al. Sep 1999 A
5954747 Clark Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5961521 Roger et al. Oct 1999 A
5961524 Crombie Oct 1999 A
5964764 West, Jr. et al. Oct 1999 A
5964767 Tapia et al. Oct 1999 A
5964769 Wagner et al. Oct 1999 A
5964783 Grafton et al. Oct 1999 A
5968045 Frazier Oct 1999 A
5968047 Reed Oct 1999 A
5968077 Wojciechowicz et al. Oct 1999 A
5972006 Sciaino, Jr. Oct 1999 A
5976125 Graham Nov 1999 A
5976127 Lax Nov 1999 A
5980524 Justin et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5980558 Wiley Nov 1999 A
5980559 Bonutti Nov 1999 A
5989252 Fumex Nov 1999 A
5989256 Kuslich et al. Nov 1999 A
5989282 Bonutti Nov 1999 A
5993452 Vandewalle Nov 1999 A
5993476 Groiso Nov 1999 A
5997542 Burke Dec 1999 A
5997552 Person et al. Dec 1999 A
5997575 Whitson et al. Dec 1999 A
6001100 Sherman et al. Dec 1999 A
6007538 Levin Dec 1999 A
6007567 Bonutti Dec 1999 A
6010525 Bonutti et al. Jan 2000 A
6016727 Morgan Jan 2000 A
6022352 Vandewalle Feb 2000 A
6022373 Li Feb 2000 A
6024758 Thal Feb 2000 A
6027523 Schmieding Feb 2000 A
6030410 Zurbrugg Feb 2000 A
6033429 Magovern Mar 2000 A
6033430 Bonutti Mar 2000 A
6039753 Meislin Mar 2000 A
6041485 Pedlick et al. Mar 2000 A
6042601 Smith Mar 2000 A
6045551 Bonutti Apr 2000 A
6045571 Hill et al. Apr 2000 A
6045572 Johnson et al. Apr 2000 A
6045573 Wenstrom, Jr. et al. Apr 2000 A
6045574 Thal Apr 2000 A
6047826 Kalinski et al. Apr 2000 A
6048343 Mathis et al. Apr 2000 A
6051006 Shluzas et al. Apr 2000 A
6051007 Hogendijk et al. Apr 2000 A
6053916 Moore Apr 2000 A
6053921 Wagner et al. Apr 2000 A
6056752 Roger May 2000 A
6056772 Bonutti May 2000 A
6056773 Bonutti May 2000 A
6059817 Bonutti et al. May 2000 A
6059818 Johnson et al. May 2000 A
6062344 Okabe et al. May 2000 A
6068648 Cole et al. May 2000 A
6071305 Brown et al. Jun 2000 A
6074403 Nord Jun 2000 A
6077277 Mollenauer et al. Jun 2000 A
6077292 Bonutti Jun 2000 A
6080185 Johnson et al. Jun 2000 A
6086591 Bojarski Jul 2000 A
6086592 Rosenberg et al. Jul 2000 A
6086608 Ek et al. Jul 2000 A
6093200 Liu et al. Jul 2000 A
6096060 Fitts et al. Aug 2000 A
6099527 Hochschuler et al. Aug 2000 A
6099530 Simonian et al. Aug 2000 A
6099568 Simonian et al. Aug 2000 A
6106545 Egan Aug 2000 A
6110128 Andelin et al. Aug 2000 A
6117160 Bonutti Sep 2000 A
6117162 Schmieding et al. Sep 2000 A
6123710 Pinczewski et al. Sep 2000 A
6132433 Whelan Oct 2000 A
6132437 Omurtag et al. Oct 2000 A
6139565 Stone et al. Oct 2000 A
RE36974 Bonutti Nov 2000 E
6143017 Thal Nov 2000 A
6146406 Shluzas et al. Nov 2000 A
6146408 Bartlett Nov 2000 A
6149653 Deslauriers Nov 2000 A
6149669 Li Nov 2000 A
6152928 Wenstrom, Jr. Nov 2000 A
6152934 Harper et al. Nov 2000 A
6152936 Christy et al. Nov 2000 A
6152949 Bonutti Nov 2000 A
6156039 Thal Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6159234 Bonutti et al. Dec 2000 A
6165203 Krebs Dec 2000 A
6168598 Martello Jan 2001 B1
6168628 Huebner Jan 2001 B1
6171310 Giordano et al. Jan 2001 B1
6179840 Bowman Jan 2001 B1
6183461 Matsuura et al. Feb 2001 B1
6187025 Machek Feb 2001 B1
6190401 Green et al. Feb 2001 B1
6190411 Lo et al. Feb 2001 B1
6193754 Seedhom Feb 2001 B1
6200318 Har-Shai et al. Mar 2001 B1
6200329 Fung et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6203556 Evans et al. Mar 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6203572 Johnson et al. Mar 2001 B1
6206883 Tunc Mar 2001 B1
6210376 Grayson Apr 2001 B1
6214012 Karpman et al. Apr 2001 B1
6217580 Levin Apr 2001 B1
6221107 Steiner et al. Apr 2001 B1
6228096 Marchand May 2001 B1
6231592 Bonutti et al. May 2001 B1
6235057 Roger et al. May 2001 B1
6238395 Bonutti May 2001 B1
6241734 Scribner et al. Jun 2001 B1
6241747 Ruff Jun 2001 B1
6241771 Gresser et al. Jun 2001 B1
6245081 Bowman et al. Jun 2001 B1
6258091 Sevrain et al. Jul 2001 B1
6267766 Burkhart Jul 2001 B1
6269716 Amis Aug 2001 B1
6270518 Pedlick et al. Aug 2001 B1
6273890 Frazier Aug 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6283973 Hubbard et al. Sep 2001 B1
6283996 Chervitz et al. Sep 2001 B1
6287307 Abboudi Sep 2001 B1
6287325 Bonutti Sep 2001 B1
6293961 Schwartz et al. Sep 2001 B2
6296659 Foerster Oct 2001 B1
6299615 Huebner Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6302899 Johnson et al. Oct 2001 B1
6303158 Odgaard et al. Oct 2001 B1
6306156 Clark Oct 2001 B1
6306158 Bartlett Oct 2001 B1
6306159 Schwartz et al. Oct 2001 B1
6309405 Bonutti Oct 2001 B1
6312448 Bonutti Nov 2001 B1
6315788 Roby Nov 2001 B1
6319271 Schwartz et al. Nov 2001 B1
6328758 Tornier et al. Dec 2001 B1
6342060 Adams Jan 2002 B1
6343531 Amis Feb 2002 B2
6358270 Lemer Mar 2002 B1
6364897 Bonutti Apr 2002 B1
6368322 Luks et al. Apr 2002 B1
6368326 Dakin et al. Apr 2002 B1
6368343 Bonutti et al. Apr 2002 B1
6371124 Whelan Apr 2002 B1
6379361 Beck, Jr. et al. Apr 2002 B1
6383190 Preissman May 2002 B1
6383199 Carter et al. May 2002 B2
6387113 Hawkins et al. May 2002 B1
6387129 Rieser et al. May 2002 B2
6391030 Wagner et al. May 2002 B1
6398785 Carchidi et al. Jun 2002 B2
6406479 Justin et al. Jun 2002 B1
6409743 Fenton, Jr. Jun 2002 B1
6413260 Berrevoets et al. Jul 2002 B1
6423088 Fenton, Jr. Jul 2002 B1
6428562 Bonutti Aug 2002 B2
6432123 Schwartz et al. Aug 2002 B2
6436123 Magovern Aug 2002 B1
6436124 Anderson et al. Aug 2002 B1
6440134 Zaccherotti et al. Aug 2002 B1
6440136 Gambale et al. Aug 2002 B1
6447516 Bonutti Sep 2002 B1
6451030 Li et al. Sep 2002 B2
6454768 Jackson Sep 2002 B1
6458134 Songer et al. Oct 2002 B1
6461373 Wyman et al. Oct 2002 B2
6464690 Castaneda et al. Oct 2002 B1
6464713 Bonutti Oct 2002 B2
6468293 Bonutti et al. Oct 2002 B2
6471707 Miller et al. Oct 2002 B1
6475230 Bonutti et al. Nov 2002 B1
6482210 Skiba et al. Nov 2002 B1
6485504 Johnson et al. Nov 2002 B1
6491714 Bennett Dec 2002 B1
6497901 Royer Dec 2002 B1
6500184 Chan et al. Dec 2002 B1
6500195 Bonutti Dec 2002 B2
RE37963 Thal Jan 2003 E
6503267 Bonutti et al. Jan 2003 B2
6506190 Walshe Jan 2003 B1
6508820 Bales Jan 2003 B2
6508821 Schwartz et al. Jan 2003 B1
6508830 Steiner Jan 2003 B2
6511498 Fumex Jan 2003 B1
6511499 Schmieding et al. Jan 2003 B2
6517542 Papay et al. Feb 2003 B1
6517552 Nord et al. Feb 2003 B1
6517578 Hein Feb 2003 B2
6517579 Paulos et al. Feb 2003 B1
6520964 Tallarida et al. Feb 2003 B2
6520980 Foerster Feb 2003 B1
6524317 Ritchart et al. Feb 2003 B1
6527777 Justin Mar 2003 B2
6527794 McDevitt et al. Mar 2003 B1
6527795 Lizardi Mar 2003 B1
6533795 Tran et al. Mar 2003 B1
6533802 Bojarski et al. Mar 2003 B2
6537319 Whelan Mar 2003 B2
6540750 Burkhart Apr 2003 B2
6540769 Miller, III Apr 2003 B1
6540770 Tornier et al. Apr 2003 B1
6543094 D'Addario Apr 2003 B2
6544281 ElAttrache et al. Apr 2003 B2
6547564 Hansson et al. Apr 2003 B1
6547778 Sklar et al. Apr 2003 B1
6547800 Foerster et al. Apr 2003 B2
6551330 Bain et al. Apr 2003 B1
6551343 Tormala et al. Apr 2003 B1
6553802 Jacob et al. Apr 2003 B1
6554830 Chappius Apr 2003 B1
6554852 Oberlander Apr 2003 B1
6554862 Hays et al. Apr 2003 B2
6562071 Jarvinen et al. May 2003 B2
6565572 Chappius May 2003 B2
6565573 Ferrante et al. May 2003 B1
6569186 Winters et al. May 2003 B1
6569187 Bonutti et al. May 2003 B1
6572635 Bonutti Jun 2003 B1
6575925 Noble Jun 2003 B1
6579295 Supinski Jun 2003 B1
6582453 Tran et al. Jun 2003 B1
6585730 Foerster Jul 2003 B1
6585740 Schlapfer et al. Jul 2003 B2
6585750 Bonutti et al. Jul 2003 B2
6589245 Weiler et al. Jul 2003 B1
6589246 Hack et al. Jul 2003 B1
6592609 Bonutti Jul 2003 B1
6595911 LoVuolo Jul 2003 B2
6599289 Bojarski et al. Jul 2003 B1
6605096 Ritchart Aug 2003 B1
6607548 Pohjonen et al. Aug 2003 B2
6610079 Li et al. Aug 2003 B1
6613018 Bagga et al. Sep 2003 B2
6616694 Hart Sep 2003 B1
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6620185 Harvie et al. Sep 2003 B1
6620195 Goble et al. Sep 2003 B2
6620329 Rosen et al. Sep 2003 B2
6620349 Lopez Sep 2003 B1
6623492 Berube et al. Sep 2003 B1
6623524 Schmieding Sep 2003 B2
6626910 Hugues et al. Sep 2003 B1
6626919 Swanstrom Sep 2003 B1
6629977 Wolf Oct 2003 B1
6635073 Bonutti Oct 2003 B2
6638279 Bonutti Oct 2003 B2
6638312 Plouhar et al. Oct 2003 B2
6641596 Lizardi Nov 2003 B1
6641597 Burkhart et al. Nov 2003 B2
6645211 Magana Nov 2003 B2
6645227 Fallin et al. Nov 2003 B2
6652450 Neisz et al. Nov 2003 B2
6652562 Collier et al. Nov 2003 B2
6652563 Dreyfuss Nov 2003 B2
6656182 Hayhurst Dec 2003 B1
6656183 Colleran et al. Dec 2003 B2
6658182 Gonthier et al. Dec 2003 B1
6660008 Foerster et al. Dec 2003 B1
6660022 Li et al. Dec 2003 B1
6663634 Ahrens et al. Dec 2003 B2
6663656 Schmieding et al. Dec 2003 B2
6666868 Fallin Dec 2003 B2
6682533 Dinsdale et al. Jan 2004 B1
6682549 Bartlett Jan 2004 B2
6685728 Sinnott et al. Feb 2004 B2
6689137 Reed Feb 2004 B2
6689153 Skiba Feb 2004 B1
6689154 Bartlett Feb 2004 B2
6692499 Tormala et al. Feb 2004 B2
6692516 West, Jr. et al. Feb 2004 B2
6695852 Gleason Feb 2004 B2
6712849 Re et al. Mar 2004 B2
6716224 Singhatat Apr 2004 B2
6716957 Tunc Apr 2004 B2
6730092 Songer May 2004 B2
6730124 Steiner May 2004 B2
6736799 Erbe et al. May 2004 B1
6737053 Goh et al. May 2004 B1
6746483 Bojarski et al. Jun 2004 B1
6752810 Gao et al. Jun 2004 B1
6752831 Sybert et al. Jun 2004 B2
6755836 Lewis Jun 2004 B1
6761739 Shepard Jul 2004 B2
6767037 Wenstrom, Jr. Jul 2004 B2
6770076 Foerster Aug 2004 B2
6770084 Bain et al. Aug 2004 B1
6773450 Leung et al. Aug 2004 B2
6779701 Bailly et al. Aug 2004 B2
6780190 Maroney Aug 2004 B2
6780198 Gregoire et al. Aug 2004 B1
6793595 Monnet Sep 2004 B1
6802862 Roger et al. Oct 2004 B1
6808502 Nguyen et al. Oct 2004 B2
6808526 Magerl et al. Oct 2004 B1
6814741 Bowman et al. Nov 2004 B2
6830572 McDevitt et al. Dec 2004 B2
6833005 Mantas et al. Dec 2004 B1
6840953 Martinek Jan 2005 B2
6860885 Bonutti Mar 2005 B2
6863671 Strobel et al. Mar 2005 B1
6872040 Deeg et al. Mar 2005 B2
6872210 Hearn Mar 2005 B2
6875216 Wolf Apr 2005 B2
6884249 May et al. Apr 2005 B2
6887259 Lizardi May 2005 B2
6890354 Steiner et al. May 2005 B2
6893448 O'Quinn et al. May 2005 B2
6896686 Weber May 2005 B2
6899722 Bonutti May 2005 B2
6902573 Strobel et al. Jun 2005 B2
6905513 Metzger Jun 2005 B1
6908466 Bonutti et al. Jun 2005 B1
6916292 Morawski et al. Jul 2005 B2
6916321 TenHuisen et al. Jul 2005 B2
6921402 Contiliano et al. Jul 2005 B2
6923823 Bartlett et al. Aug 2005 B1
6923824 Morgan et al. Aug 2005 B2
6951565 Keane et al. Oct 2005 B2
6966887 Chin Nov 2005 B1
6966916 Kumar Nov 2005 B2
6969391 Gazzani Nov 2005 B1
6969398 Stevens et al. Nov 2005 B2
6972027 Fallin et al. Dec 2005 B2
6980903 Daniels et al. Dec 2005 B2
6984237 Hatch et al. Jan 2006 B2
6986781 Smith Jan 2006 B2
6989034 Hammer et al. Jan 2006 B2
6994719 Grafton Feb 2006 B2
7001429 Ferguson Feb 2006 B2
7004959 Bonutti Feb 2006 B2
7048754 Martin et al. May 2006 B2
7052499 Steger et al. May 2006 B2
7066942 Treace Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7081126 McDevitt et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7105010 Hart et al. Sep 2006 B2
7112221 Harris et al. Sep 2006 B2
7118583 O'Quinn et al. Oct 2006 B2
7131467 Gao et al. Nov 2006 B2
7137996 Steiner et al. Nov 2006 B2
7141066 Steiner et al. Nov 2006 B2
7144414 Harvie et al. Dec 2006 B2
7153127 Struble et al. Dec 2006 B2
7153307 Scribner et al. Dec 2006 B2
7153312 Torrie et al. Dec 2006 B1
7153327 Metzger Dec 2006 B1
7160333 Plouhar et al. Jan 2007 B2
7201722 Krueger Apr 2007 B2
7207993 Baldwin et al. Apr 2007 B1
7255675 Gertner et al. Aug 2007 B2
7255715 Metzger Aug 2007 B2
7261716 Strobel et al. Aug 2007 B2
7264634 Schmieding Sep 2007 B2
7279008 Brown et al. Oct 2007 B2
7285124 Foerster Oct 2007 B2
7303577 Dean Dec 2007 B1
7306417 Dorstewitz Dec 2007 B2
7326222 Dreyfuss et al. Feb 2008 B2
7329272 Burkhart et al. Feb 2008 B2
7361179 Rousseau et al. Apr 2008 B2
7377845 Stewart et al. May 2008 B2
7390329 Westra et al. Jun 2008 B2
7390332 Selvitelli et al. Jun 2008 B2
7399018 Khachaturian Jul 2008 B1
7442210 Segal et al. Oct 2008 B2
7465308 Sikora et al. Dec 2008 B2
7494506 Brulez et al. Feb 2009 B2
7500983 Kaiser et al. Mar 2009 B1
7513910 Buskirk et al. Apr 2009 B2
7578825 Huebner Aug 2009 B2
7585311 Green et al. Sep 2009 B2
7591823 Tipirneni Sep 2009 B2
7601165 Stone Oct 2009 B2
7608092 Schaffhausen Oct 2009 B1
7608098 Stone et al. Oct 2009 B1
7615076 Cauthen, III et al. Nov 2009 B2
7632287 Baker et al. Dec 2009 B2
7651509 Bojarski et al. Jan 2010 B2
7658750 Li Feb 2010 B2
7658751 Stone et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7678123 Chanduszko Mar 2010 B2
7695493 Saadat et al. Apr 2010 B2
7695503 Kaiser et al. Apr 2010 B1
7717929 Fallman May 2010 B2
7736364 Stone Jun 2010 B2
7736379 Ewers et al. Jun 2010 B2
7749250 Stone et al. Jul 2010 B2
7758594 Lamson et al. Jul 2010 B2
7776041 Walters Aug 2010 B1
7819895 Ginn et al. Oct 2010 B2
7828820 Stone et al. Nov 2010 B2
7856698 Hays Dec 2010 B2
7857830 Stone et al. Dec 2010 B2
7867264 McDevitt et al. Jan 2011 B2
7875058 Holmes, Jr. Jan 2011 B2
7878058 Blendinger et al. Feb 2011 B2
7905903 Stone et al. Mar 2011 B2
7905904 Stone et al. Mar 2011 B2
7909851 Stone et al. Mar 2011 B2
7938847 Fanton et al. May 2011 B2
7959650 Kaiser et al. Jun 2011 B2
7981140 Burkhart Jul 2011 B2
7998203 Blum Aug 2011 B2
8062334 Green et al. Nov 2011 B2
8075574 May et al. Dec 2011 B2
8088130 Kaiser et al. Jan 2012 B2
8114127 West, Jr. Feb 2012 B2
8114128 Cauldwell et al. Feb 2012 B2
8118836 Denham et al. Feb 2012 B2
8128658 Kaiser et al. Mar 2012 B2
8137354 Stone Mar 2012 B2
8137382 Denham et al. Mar 2012 B2
8167906 Cauldwell et al. May 2012 B2
8202318 Willobee Jun 2012 B2
8221454 Schaffhausen Jul 2012 B2
8231654 Kaiser et al. Jul 2012 B2
8251998 Hoeppner et al. Aug 2012 B2
8273106 Stone et al. Sep 2012 B2
8292921 Stone et al. Oct 2012 B2
8298284 Cassani Oct 2012 B2
8337525 Stone et al. Dec 2012 B2
8343155 Fisher et al. Jan 2013 B2
8343227 Metzger et al. Jan 2013 B2
8361113 Stone et al. Jan 2013 B2
8409253 Stone et al. Apr 2013 B2
8486114 Gillard et al. Jul 2013 B2
8500818 Metzger et al. Aug 2013 B2
8506597 Kaiser et al. Aug 2013 B2
8551140 Denham et al. Oct 2013 B2
8562645 Stone et al. Oct 2013 B2
8562647 Kaiser et al. Oct 2013 B2
8597327 Stone et al. Dec 2013 B2
8608777 Kaiser et al. Dec 2013 B2
8632566 Olson Jan 2014 B2
8632569 Stone et al. Jan 2014 B2
8652171 Stone et al. Feb 2014 B2
8652172 Denham et al. Feb 2014 B2
8672968 Stone et al. Mar 2014 B2
8672969 Stone et al. Mar 2014 B2
8721650 Fanton et al. May 2014 B2
8721684 Denham et al. May 2014 B2
8771316 Denham et al. Jul 2014 B2
8771352 Conner et al. Jul 2014 B2
8777956 Hoeppner et al. Jul 2014 B2
8801783 Stone et al. Aug 2014 B2
8840645 Denham et al. Sep 2014 B2
8900314 Metzger et al. Dec 2014 B2
8932331 Kaiser et al. Jan 2015 B2
8936621 Denham et al. Jan 2015 B2
8968364 Berelsman et al. Mar 2015 B2
8998949 Stone et al. Apr 2015 B2
9005287 Stone Apr 2015 B2
9017381 Kaiser et al. Apr 2015 B2
9023058 Jaramillo et al. May 2015 B2
20010010005 Kammerer et al. Jul 2001 A1
20010014825 Burke et al. Aug 2001 A1
20010019649 Field et al. Sep 2001 A1
20010029387 Wolf et al. Oct 2001 A1
20010037131 Schmieding et al. Nov 2001 A1
20010037153 Rockwood et al. Nov 2001 A1
20010041916 Bonutti Nov 2001 A1
20010041937 Rieser et al. Nov 2001 A1
20010041938 Hein Nov 2001 A1
20010044639 Levinson Nov 2001 A1
20010047206 Sklar et al. Nov 2001 A1
20010051816 Enzerink et al. Dec 2001 A1
20010053934 Schmieding Dec 2001 A1
20020001964 Choi Jan 2002 A1
20020004669 Bartlett Jan 2002 A1
20020007182 Kim Jan 2002 A1
20020010513 Schmieding Jan 2002 A1
20020013607 Lemer Jan 2002 A1
20020013608 ElAttrache et al. Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020029066 Foerster Mar 2002 A1
20020032465 Lemer Mar 2002 A1
20020055780 Sklar May 2002 A1
20020058966 Tormala et al. May 2002 A1
20020068254 Campbell Jun 2002 A1
20020077659 Johnson et al. Jun 2002 A1
20020099411 Bartlett Jul 2002 A1
20020111653 Foerster Aug 2002 A1
20020120270 Trieu et al. Aug 2002 A1
20020120292 Morgan Aug 2002 A1
20020123752 Schultheiss et al. Sep 2002 A1
20020128654 Steger et al. Sep 2002 A1
20020128684 Foerster Sep 2002 A1
20020129820 Ryan et al. Sep 2002 A1
20020143336 Hearn Oct 2002 A1
20020147463 Martinek Oct 2002 A1
20020156475 Lerch et al. Oct 2002 A1
20020161401 Steiner Oct 2002 A1
20020161439 Strobel et al. Oct 2002 A1
20020165548 Jutley Nov 2002 A1
20020165611 Enzerink et al. Nov 2002 A1
20020169452 Tormala et al. Nov 2002 A1
20020169477 Demopulos et al. Nov 2002 A1
20020169478 Schwartz et al. Nov 2002 A1
20020173788 Bojarski et al. Nov 2002 A1
20020177853 Chervitz et al. Nov 2002 A1
20020188298 Chan Dec 2002 A1
20020193830 Bonutti Dec 2002 A1
20030009235 Manrique et al. Jan 2003 A1
20030023268 Lizardi Jan 2003 A1
20030032961 Pelo et al. Feb 2003 A1
20030033021 Plouhar et al. Feb 2003 A1
20030033022 Plouhar et al. Feb 2003 A1
20030036797 Malaviya et al. Feb 2003 A1
20030036801 Schwartz et al. Feb 2003 A1
20030065391 Re et al. Apr 2003 A1
20030065402 Anderson et al. Apr 2003 A1
20030078585 Johnson et al. Apr 2003 A1
20030078603 Schaller et al. Apr 2003 A1
20030078617 Schwartz et al. Apr 2003 A1
20030083662 Middleton May 2003 A1
20030083694 Miller May 2003 A1
20030088251 Braun et al. May 2003 A1
20030088272 Smith May 2003 A1
20030105477 Schwartz et al. Jun 2003 A1
20030105489 Eichhorn et al. Jun 2003 A1
20030120309 Colleran et al. Jun 2003 A1
20030130670 Anderson et al. Jul 2003 A1
20030130694 Bojarski et al. Jul 2003 A1
20030130695 McDevitt et al. Jul 2003 A1
20030135214 Fetto et al. Jul 2003 A1
20030135239 Gabriel et al. Jul 2003 A1
20030135963 Holbrook et al. Jul 2003 A1
20030139775 Grafton Jul 2003 A1
20030149448 Foerster et al. Aug 2003 A1
20030152522 Miller et al. Aug 2003 A1
20030153947 Koseki Aug 2003 A1
20030167072 Oberlander Sep 2003 A1
20030167090 Chervitz et al. Sep 2003 A1
20030171811 Steiner et al. Sep 2003 A1
20030176865 Supinski Sep 2003 A1
20030176919 Schmieding Sep 2003 A1
20030181925 Bain et al. Sep 2003 A1
20030195528 Ritchart Oct 2003 A1
20030195564 Tran et al. Oct 2003 A1
20030208210 Dreyfuss et al. Nov 2003 A1
20030212456 Lipchitz et al. Nov 2003 A1
20030216809 Ferguson Nov 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20030225459 Hammer et al. Dec 2003 A1
20030229361 Jackson Dec 2003 A1
20040002734 Fallin et al. Jan 2004 A1
20040006345 Vlahos et al. Jan 2004 A1
20040006346 Holmen et al. Jan 2004 A1
20040015171 Bojarski et al. Jan 2004 A1
20040015172 Biedermann et al. Jan 2004 A1
20040024456 Brown et al. Feb 2004 A1
20040024457 Boyce et al. Feb 2004 A1
20040044391 Porter Mar 2004 A1
20040059357 Koseki Mar 2004 A1
20040087981 Berube et al. May 2004 A1
20040092936 Miller et al. May 2004 A1
20040093032 Sinnott et al. May 2004 A1
20040098051 Fallin et al. May 2004 A1
20040098053 Tran May 2004 A1
20040111117 Colleran et al. Jun 2004 A1
20040122431 Biedermann et al. Jun 2004 A1
20040127907 Dakin et al. Jul 2004 A1
20040133206 Stevens et al. Jul 2004 A1
20040133211 Raskin et al. Jul 2004 A1
20040138664 Bowman Jul 2004 A1
20040138683 Shelton et al. Jul 2004 A1
20040138704 Gambale et al. Jul 2004 A1
20040138706 Abrams et al. Jul 2004 A1
20040138747 Kaladelfos Jul 2004 A1
20040143344 Malaviya et al. Jul 2004 A1
20040147932 Burkinshaw et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040153103 Schwartz et al. Aug 2004 A1
20040153153 Elson et al. Aug 2004 A1
20040162579 Foerster Aug 2004 A1
20040166169 Malaviya et al. Aug 2004 A1
20040181234 McDevitt et al. Sep 2004 A1
20040182968 Gentry Sep 2004 A1
20040187314 Johnson Sep 2004 A1
20040193185 McBrayer Sep 2004 A1
20040199169 Koons et al. Oct 2004 A1
20040204722 Sikora et al. Oct 2004 A1
20040220574 Pelo et al. Nov 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225292 Sasso et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040236353 Bain et al. Nov 2004 A1
20040236373 Anspach Nov 2004 A1
20040243139 Lewis et al. Dec 2004 A1
20040243178 Haut et al. Dec 2004 A1
20040243180 Donnelly et al. Dec 2004 A1
20040243235 Goh et al. Dec 2004 A1
20040249394 Morris et al. Dec 2004 A1
20040267164 Rhodes et al. Dec 2004 A1
20040267265 Kyle Dec 2004 A1
20040267270 Jacobs et al. Dec 2004 A1
20040267276 Camino et al. Dec 2004 A1
20040267277 Zannis et al. Dec 2004 A1
20040267286 Gao et al. Dec 2004 A1
20040267304 Zannis et al. Dec 2004 A1
20040267309 Garvin Dec 2004 A1
20040267362 Hwang et al. Dec 2004 A1
20050021087 Koseki Jan 2005 A1
20050027307 Schwartz et al. Feb 2005 A1
20050033363 Bojarski et al. Feb 2005 A1
20050038426 Chan Feb 2005 A1
20050049598 West et al. Mar 2005 A1
20050055027 Yeung et al. Mar 2005 A1
20050055037 Fathauer Mar 2005 A1
20050064042 Vunjak-Novakovic et al. Mar 2005 A1
20050065521 Steger et al. Mar 2005 A1
20050070928 Heino et al. Mar 2005 A1
20050074495 Schwartz et al. Apr 2005 A1
20050076478 Miyazaki et al. Apr 2005 A1
20050085819 Ellis et al. Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050090828 Alford Apr 2005 A1
20050090862 McDevitt et al. Apr 2005 A1
20050096696 Forsberg May 2005 A1
20050096697 Forsberg et al. May 2005 A1
20050096743 Schmieding et al. May 2005 A1
20050101957 Buskirk et al. May 2005 A1
20050107795 Morris et al. May 2005 A1
20050107828 Reese May 2005 A1
20050119531 Sharratt Jun 2005 A1
20050119696 Walters et al. Jun 2005 A1
20050124996 Hearn Jun 2005 A1
20050125036 Roby Jun 2005 A1
20050125073 Orban et al. Jun 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050137600 Jacobs et al. Jun 2005 A1
20050137624 Fallman Jun 2005 A1
20050149033 McGuire et al. Jul 2005 A1
20050149122 McDevitt et al. Jul 2005 A1
20050149187 Clark et al. Jul 2005 A1
20050159812 Dinger et al. Jul 2005 A1
20050165416 Bojarski et al. Jul 2005 A1
20050165482 Goldhahn et al. Jul 2005 A1
20050171547 Aram Aug 2005 A1
20050187565 Baker et al. Aug 2005 A1
20050187577 Selvitelli et al. Aug 2005 A1
20050187635 Metzger Aug 2005 A1
20050203620 Steiner et al. Sep 2005 A1
20050222618 Dreyfuss et al. Oct 2005 A1
20050222619 Dreyfuss et al. Oct 2005 A1
20050228448 Li Oct 2005 A1
20050240198 Albertson et al. Oct 2005 A1
20050251177 Saadat et al. Nov 2005 A1
20050251208 Elmer et al. Nov 2005 A1
20050251210 Westra et al. Nov 2005 A1
20050267479 Morgan et al. Dec 2005 A1
20050267533 Gertner Dec 2005 A1
20050277939 Miller Dec 2005 A1
20050277961 Stone et al. Dec 2005 A1
20050283040 Greenhalgh Dec 2005 A1
20050283156 Schmieding et al. Dec 2005 A1
20050283158 West Dec 2005 A1
20050283192 Torrie et al. Dec 2005 A1
20060004410 Nobis et al. Jan 2006 A1
20060015103 Burke Jan 2006 A1
20060015106 Lerch et al. Jan 2006 A1
20060030884 Yeung et al. Feb 2006 A1
20060030948 Manrique et al. Feb 2006 A1
20060036265 Dant Feb 2006 A1
20060052818 Drake et al. Mar 2006 A1
20060064125 Henderson et al. Mar 2006 A1
20060064126 Fallin et al. Mar 2006 A1
20060069334 Moskowitz Mar 2006 A1
20060079904 Thal Apr 2006 A1
20060084943 Rosenman et al. Apr 2006 A1
20060085000 Mohr et al. Apr 2006 A1
20060089672 Martinek Apr 2006 A1
20060100627 Stone et al. May 2006 A1
20060100637 Rathbun et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111721 Puricelli et al. May 2006 A1
20060116685 Urbanski et al. Jun 2006 A1
20060121084 Borden et al. Jun 2006 A1
20060122608 Fallin et al. Jun 2006 A1
20060122611 Morales et al. Jun 2006 A1
20060135958 Marissen et al. Jun 2006 A1
20060149266 Cordasco Jul 2006 A1
20060155328 Foerster Jul 2006 A1
20060161161 Shifrin et al. Jul 2006 A1
20060167458 Gabele Jul 2006 A1
20060167481 Baker et al. Jul 2006 A1
20060167482 Swain et al. Jul 2006 A1
20060178680 Nelson et al. Aug 2006 A1
20060189993 Stone Aug 2006 A1
20060190042 Stone et al. Aug 2006 A1
20060195101 Stevens Aug 2006 A1
20060200235 Bianchi et al. Sep 2006 A1
20060229671 Steiner et al. Oct 2006 A1
20060229676 Doll et al. Oct 2006 A1
20060235407 Wang et al. Oct 2006 A1
20060235413 Denham et al. Oct 2006 A1
20060241624 Kizuka et al. Oct 2006 A1
20060247642 Stone et al. Nov 2006 A1
20060253130 Wolniewicz Nov 2006 A1
20060259048 Koseki Nov 2006 A1
20060271192 Olsen et al. Nov 2006 A1
20060276793 Berry Dec 2006 A1
20060276809 Oliveira Dec 2006 A1
20060276841 Barbieri et al. Dec 2006 A1
20060276896 Fallin et al. Dec 2006 A1
20060280768 Hwang et al. Dec 2006 A1
20060282082 Fanton et al. Dec 2006 A1
20060282085 Stone et al. Dec 2006 A1
20060293709 Bojarski et al. Dec 2006 A1
20070005068 Sklar Jan 2007 A1
20070005080 Wolniewicz et al. Jan 2007 A1
20070016305 Chudik Jan 2007 A1
20070021779 Garvin et al. Jan 2007 A1
20070027476 Harris et al. Feb 2007 A1
20070032800 Ortiz et al. Feb 2007 A1
20070038218 Grevious Feb 2007 A1
20070043371 Teague et al. Feb 2007 A1
20070055249 Jensen et al. Mar 2007 A1
20070055251 Huebner et al. Mar 2007 A1
20070055255 Siegel Mar 2007 A1
20070060922 Dreyfuss Mar 2007 A1
20070067025 Schwartz Mar 2007 A1
20070073307 Scribner et al. Mar 2007 A1
20070073319 Mikkaichi et al. Mar 2007 A1
20070073322 Mikkaichi et al. Mar 2007 A1
20070078435 Stone et al. Apr 2007 A1
20070083236 Sikora et al. Apr 2007 A1
20070093847 Scribner et al. Apr 2007 A1
20070100350 Deffenbaugh et al. May 2007 A1
20070112384 Conlon et al. May 2007 A1
20070118217 Brulez et al. May 2007 A1
20070123883 Ellis et al. May 2007 A1
20070142838 Jordan Jun 2007 A1
20070156174 Kaiser et al. Jul 2007 A1
20070162018 Jensen et al. Jul 2007 A1
20070185488 Pohjonen et al. Aug 2007 A1
20070185532 Stone et al. Aug 2007 A1
20070185568 Schwartz Aug 2007 A1
20070191849 ElAttrache et al. Aug 2007 A1
20070191853 Stone Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070225719 Stone et al. Sep 2007 A1
20070233241 Graf et al. Oct 2007 A1
20070239209 Fallman Oct 2007 A1
20070239275 Willobee Oct 2007 A1
20070250059 Weisshaupt et al. Oct 2007 A1
20070250163 Cassani Oct 2007 A1
20070260251 Weier et al. Nov 2007 A1
20070260279 Hotter et al. Nov 2007 A1
20070270856 Morales et al. Nov 2007 A1
20070270878 Leisinger Nov 2007 A1
20070276387 Morales et al. Nov 2007 A1
20070288023 Pellegrino et al. Dec 2007 A1
20080027440 Marissen et al. Jan 2008 A1
20080027446 Stone et al. Jan 2008 A1
20080046009 Albertorio et al. Feb 2008 A1
20080051836 Foerster et al. Feb 2008 A1
20080065114 Stone et al. Mar 2008 A1
20080071299 Allinniemi et al. Mar 2008 A1
20080082101 Reisberg Apr 2008 A1
20080082127 Stone et al. Apr 2008 A1
20080082128 Stone Apr 2008 A1
20080114460 Willobee et al. May 2008 A1
20080119892 Brailovski et al. May 2008 A1
20080132753 Goddard Jun 2008 A1
20080132932 Hoeppner et al. Jun 2008 A1
20080132948 Surti et al. Jun 2008 A1
20080140092 Stone et al. Jun 2008 A1
20080140093 Stone et al. Jun 2008 A1
20080140128 Smisson et al. Jun 2008 A1
20080161852 Kaiser et al. Jul 2008 A1
20080161861 Huebner Jul 2008 A1
20080172097 Lerch et al. Jul 2008 A1
20080188933 Koob et al. Aug 2008 A1
20080188936 Ball et al. Aug 2008 A1
20080221527 Bradley et al. Sep 2008 A1
20080221578 Zeitani Sep 2008 A1
20080255613 Kaiser et al. Oct 2008 A1
20080257363 Schoenefeld et al. Oct 2008 A1
20080262544 Burkhart Oct 2008 A1
20080268064 Woodell-May Oct 2008 A1
20080269674 Stone Oct 2008 A1
20080275477 Sterrett et al. Nov 2008 A1
20080300611 Houser et al. Dec 2008 A1
20080312689 Denham et al. Dec 2008 A1
20090018589 Smisson, III et al. Jan 2009 A1
20090018655 Brunelle et al. Jan 2009 A1
20090054928 Denham et al. Feb 2009 A1
20090062854 Kaiser et al. Mar 2009 A1
20090082790 Shad et al. Mar 2009 A1
20090082805 Kaiser et al. Mar 2009 A1
20090099598 McDevitt et al. Apr 2009 A1
20090105717 Bluechel Apr 2009 A1
20090105754 Sethi Apr 2009 A1
20090118774 Miller, III May 2009 A1
20090118775 Burke May 2009 A1
20090125073 Rehm May 2009 A1
20090138002 Fenton May 2009 A1
20090138054 Teague et al. May 2009 A1
20090156997 Trenhaile Jun 2009 A1
20090163949 Rolnick et al. Jun 2009 A1
20090177233 Malek Jul 2009 A1
20090192468 Stone Jul 2009 A1
20090198277 Gordon et al. Aug 2009 A1
20090204146 Kaiser et al. Aug 2009 A1
20090228042 Koogle, Jr. et al. Sep 2009 A1
20090234357 Morales et al. Sep 2009 A1
20090234358 Morales et al. Sep 2009 A1
20090240251 Gabele Sep 2009 A1
20090248091 Teague et al. Oct 2009 A1
20090265014 May et al. Oct 2009 A1
20090287215 Fisher et al. Nov 2009 A1
20090306711 Stone et al. Dec 2009 A1
20090312776 Kaiser et al. Dec 2009 A1
20090312793 Huxel et al. Dec 2009 A1
20090318960 Burkhart Dec 2009 A1
20090318961 Stone et al. Dec 2009 A1
20100042114 Schaffhausen Feb 2010 A1
20100087857 Stone et al. Apr 2010 A1
20100094355 Trenhaile Apr 2010 A1
20100121348 van der Burg et al. May 2010 A1
20100145384 Stone et al. Jun 2010 A1
20100191342 Byrd et al. Jul 2010 A1
20100211071 Lettmann et al. Aug 2010 A1
20100211075 Stone Aug 2010 A1
20100256677 Albertorio et al. Oct 2010 A1
20100268273 Albertorio et al. Oct 2010 A1
20100268275 Stone et al. Oct 2010 A1
20100270306 Shiffer Oct 2010 A1
20100292792 Stone et al. Nov 2010 A1
20100305698 Metzger et al. Dec 2010 A1
20100305709 Metzger et al. Dec 2010 A1
20100312341 Kaiser et al. Dec 2010 A1
20110009885 Graf et al. Jan 2011 A1
20110022083 DiMatteo et al. Jan 2011 A1
20110026141 Barrows Feb 2011 A1
20110046733 Eggli Feb 2011 A1
20110087225 Fritzinger Apr 2011 A1
20110087284 Stone et al. Apr 2011 A1
20110098727 Kaiser et al. Apr 2011 A1
20110106153 Stone et al. May 2011 A1
20110112537 Bernstein et al. May 2011 A1
20110112538 Dell'Oca May 2011 A1
20110160767 Stone et al. Jun 2011 A1
20110160768 Stone et al. Jun 2011 A1
20110208239 Stone et al. Aug 2011 A1
20110208240 Stone et al. Aug 2011 A1
20110213416 Kaiser Sep 2011 A1
20110218625 Berelsman et al. Sep 2011 A1
20110224799 Stone Sep 2011 A1
20110245868 Teeslink et al. Oct 2011 A1
20110264141 Denham et al. Oct 2011 A1
20110270278 Overes et al. Nov 2011 A1
20110270306 Denham et al. Nov 2011 A1
20120004669 Overes et al. Jan 2012 A1
20120041485 Kaiser et al. Feb 2012 A1
20120041486 Stone et al. Feb 2012 A1
20120046693 Denham et al. Feb 2012 A1
20120053630 Denham et al. Mar 2012 A1
20120059417 Norton et al. Mar 2012 A1
20120059418 Denham et al. Mar 2012 A1
20120095470 Kaiser et al. Apr 2012 A1
20120109156 Overes et al. May 2012 A1
20120116409 Stone May 2012 A1
20120116450 McDevitt et al. May 2012 A1
20120116452 Stone et al. May 2012 A1
20120123447 Corrao et al. May 2012 A1
20120123474 Zajac et al. May 2012 A1
20120123541 Albertorio et al. May 2012 A1
20120143215 Corrao et al. Jun 2012 A1
20120150223 Manos et al. Jun 2012 A1
20120150297 Denham et al. Jun 2012 A1
20120165866 Kaiser et al. Jun 2012 A1
20120165867 Denham et al. Jun 2012 A1
20120165938 Denham et al. Jun 2012 A1
20120197271 Astorino et al. Aug 2012 A1
20120215257 McDevitt et al. Aug 2012 A1
20120290004 Lombardo et al. Nov 2012 A1
20120310245 Hoeppner et al. Dec 2012 A1
20130018375 Dell'Oca Jan 2013 A1
20130018416 Lombardo et al. Jan 2013 A1
20130023928 Dreyfuss Jan 2013 A1
20130023929 Sullivan et al. Jan 2013 A1
20130023930 Stone et al. Jan 2013 A1
20130035698 Stone et al. Feb 2013 A1
20130035722 McDevitt et al. Feb 2013 A1
20130046341 Stone et al. Feb 2013 A1
20130103082 Kaiser et al. Apr 2013 A1
20130110165 Burkhart et al. May 2013 A1
20130110251 Metzger et al. May 2013 A1
20130116730 Denham et al. May 2013 A1
20130123810 Brown et al. May 2013 A1
20130123813 Stone et al. May 2013 A1
20130131722 Marchand et al. May 2013 A1
20130138123 Stone et al. May 2013 A1
20130144337 Stone et al. Jun 2013 A1
20130144338 Stone et al. Jun 2013 A1
20130158601 Stone et al. Jun 2013 A1
20130190818 Norton Jul 2013 A1
20130190819 Norton Jul 2013 A1
20130204276 Stone et al. Aug 2013 A1
20130211452 Stone et al. Aug 2013 A1
20130237997 Arai et al. Sep 2013 A1
20130245761 Conner et al. Sep 2013 A1
20130274812 Dell'Oca Oct 2013 A1
20130289564 Bernstein et al. Oct 2013 A1
20130317621 Metzger et al. Nov 2013 A1
20130331848 Kaiser et al. Dec 2013 A1
20140046367 Stone et al. Feb 2014 A1
20140046368 Kaiser et al. Feb 2014 A1
20140067081 Stone Mar 2014 A1
20140088655 Stone et al. Mar 2014 A1
20140094913 Berelsman et al. Apr 2014 A1
20140135835 Stone et al. May 2014 A1
20140163613 Stone et al. Jun 2014 A1
20140163614 Denham et al. Jun 2014 A1
20140194927 Kaiser et al. Jul 2014 A1
20140200583 Stone et al. Jul 2014 A1
20140257378 Norton et al. Sep 2014 A1
20140276992 Stone et al. Sep 2014 A1
20140277447 Berelsman et al. Sep 2014 A1
20140324101 Denham et al. Oct 2014 A1
20140330311 Denham et al. Nov 2014 A1
20140350674 Stone et al. Nov 2014 A1
20150012094 Denham et al. Jan 2015 A1
20150057757 Metzger et al. Feb 2015 A1
Foreign Referenced Citations (144)
Number Date Country
4957264 Mar 1966 AU
440266 Oct 1967 AU
5850469 Jan 1971 AU
5963869 Feb 1971 AU
1505470 Nov 1971 AU
2223767 May 1973 AU
3615171 May 1973 AU
5028569 Sep 1973 AU
7110887 Oct 1987 AU
639410 Nov 1989 AU
651929 Aug 1994 AU
2529669 Mar 1976 DE
2747312 Apr 1979 DE
2818254 Oct 1979 DE
2919009 Nov 1979 DE
3027138 Dec 1981 DE
3225620 Feb 1983 DE
3136083 Mar 1983 DE
233303 Feb 1986 DE
4127550 Feb 1993 DE
4302397 Jul 1993 DE
29621340 May 1998 DE
19841252 Mar 2000 DE
20207781 Aug 2002 DE
19062 Nov 1980 EP
0108912 May 1984 EP
0129442 Dec 1984 EP
0172130 Feb 1986 EP
0241240 Oct 1987 EP
0241792 Oct 1987 EP
0260970 Mar 1988 EP
0270704 Jun 1988 EP
0282789 Sep 1988 EP
0315371 May 1989 EP
0317406 May 1989 EP
0340159 Nov 1989 EP
0346183 Dec 1989 EP
0349173 Jan 1990 EP
0374088 Jun 1990 EP
0409364 Jan 1991 EP
0415915 Mar 1991 EP
0440991 Aug 1991 EP
0441065 Aug 1991 EP
0451932 Oct 1991 EP
0464480 Jan 1992 EP
0497079 Aug 1992 EP
0502509 Sep 1992 EP
0502698 Sep 1992 EP
520177 Dec 1992 EP
0546726 Jun 1993 EP
0574707 Dec 1993 EP
0582514 Feb 1994 EP
0591991 Apr 1994 EP
0598219 May 1994 EP
0611551 Aug 1994 EP
0627203 Dec 1994 EP
0651979 May 1995 EP
0669110 Aug 1995 EP
0686373 Dec 1995 EP
0702933 Mar 1996 EP
0775473 May 1997 EP
0913123 May 1999 EP
0913131 May 1999 EP
99121106 Oct 1999 EP
991210527 Oct 1999 EP
0995409 Apr 2000 EP
1013229 Jun 2000 EP
1093773 Apr 2001 EP
1093774 Apr 2001 EP
1555945 Jul 2005 EP
2238944 Oct 2010 EP
2544607 Jan 2013 EP
2709557 Mar 2014 EP
2622790 May 1989 FR
2655840 Jun 1991 FR
2682867 Apr 1993 FR
2687911 Sep 1993 FR
2688689 Sep 1993 FR
2704140 Oct 1994 FR
2717070 Sep 1995 FR
2723528 Feb 1996 FR
2744010 Aug 1997 FR
2745999 Sep 1997 FR
2770764 May 1999 FR
401677 Nov 1933 GB
1413477 Nov 1975 GB
1485681 Sep 1977 GB
2083751 Mar 1982 GB
2118474 Nov 1983 GB
2227175 Jul 1990 GB
2253147 Sep 1992 GB
2312376 Oct 1997 GB
2403416 Jan 2005 GB
5362911 May 1978 JP
5362912 May 1978 JP
5374942 Jun 1978 JP
5378230 Jun 1978 JP
62159647 Jul 1987 JP
62295657 Dec 1987 JP
5269160 Oct 1993 JP
5300917 Nov 1993 JP
751292 Feb 1995 JP
10211213 Aug 1998 JP
WO-8300615 Mar 1983 WO
WO-8603666 Jul 1986 WO
WO-8701270 Mar 1987 WO
WO-8901767 Mar 1989 WO
WO-8909030 Oct 1989 WO
WO-8910096 Nov 1989 WO
WO-9008510 Aug 1990 WO
WO-9203980 Mar 1992 WO
WO-9314705 Aug 1993 WO
WO-9315694 Aug 1993 WO
WO-9502373 Jan 1995 WO
WO-9503003 Feb 1995 WO
WO-9529637 Nov 1995 WO
WO-9532670 Dec 1995 WO
WO-9629029 Sep 1996 WO
WO-9737603 Oct 1997 WO
WO-9812991 Apr 1998 WO
WO-9812992 Apr 1998 WO
WO-9822047 May 1998 WO
WO-9822048 May 1998 WO
WO-9901084 Jan 1999 WO
WO-9912480 Mar 1999 WO
WO-9944544 Sep 1999 WO
WO-0040159 Jul 2000 WO
WO-0139671 Jun 2001 WO
WO-0236020 May 2002 WO
WO-03005914 Jan 2003 WO
WO-03071962 Sep 2003 WO
WO-03077772 Sep 2003 WO
WO-2004091412 Oct 2004 WO
WO-2005104992 Nov 2005 WO
WO-2005122954 Dec 2005 WO
WO-2007103562 Sep 2007 WO
WO-2008002550 Jan 2008 WO
WO-2009012021 Jan 2009 WO
WO-2011112371 Sep 2011 WO
WO-2011150238 Dec 2011 WO
WO-2013066974 May 2013 WO
WO-2013074525 May 2013 WO
WO-2014100109 Jun 2014 WO
WO-2014151766 Sep 2014 WO
Non-Patent Literature Citations (52)
Entry
“JuggerKnot™ Soft Anchor: Arthroscopic and Mini-Open Rotator Cuff Repair Using JuggerKnot™ Soft Anchor—2.9mm with ALLthread™ Knotless Anchor Surgical Technique” brochure, Biomet® Sports Medicine. (2013) 16 pages.
International Preliminary Report on Patentability and Written Opinion mailed Nov. 28, 2013 for PCT/US2012/037703, which claims benefit of U.S. Appl. No. 13/109,672, filed May 17, 2011,and U.S. Appl. No. 13/109,667, filed May 17, 2011.
“Arthroscopic Meniscal Repair using the Meniscal Cinch™”, Surgical Technique brochure. (2008) Arthrex® 6 sheets.
Pioneer® Sternal Cable System (2010).
Rapid Sternal Closure (2006) KLS Martin L.P. http://www.rapidstemalclosure.com/medical/demo.php Web accessed Sep. 8, 2008.
Saxena, Pankaj, MCh, DNB et al., “Use of Double Wires in Sternal Closure, a Useful Technique,” Texas Heart® Institute. Journal List>Tex Heart Inst J > v.33(4); (2006).
Zeitani, Jacob, M.D., “A New Sternal Reinforcement Device to Prevent and Treat Sternal Dehiscence,” CTSNet.org (Jun. 30, 2008).
International Search Report and Written Opinion mailed Mar. 6, 2014 for PCT/US2013/075989 which claims benefit of U.S. Appl. No. 13/720,648, filed Dec. 19, 2012.
International Preliminary Report on Patentability mailed Sep. 20, 2012 for PCT/US2011/026349 which claims benefit of U.S. Appl. No. 12/719,337, filed Mar. 8, 2010.
International Preliminary Report on Patentability mailed Dec. 6, 2012 for PCT/US2011/038188 claiming benefit of U.S. Appl. No. 12/788,966, filed May 27, 2010.
Invitation to Pay Additional Fees mailed Jul. 19, 2012, for PCT/US2012/037703 claiming benefit of U.S. Appl. No. 13/109,667, filed May 7, 2011.
“ToggleLoc™ Fixation Device with ZipLoop™ Technology: ACL Reconstruction Bone-Tendon-Bone,” by James R. Andrews, M.D., of Biomet Sports Medicine, a Biomet Company Brochure (2013), pp. 1-20.
International Preliminary Report on Patentability and Written Opinion mailed May 30, 2014 for PCT/US2012/064832 which claims benefit of U.S. Appl. No. 13/295,126, filed Nov. 14, 2011.
International Search Report and Written Opinion mailed Jun. 6, 2014 for PCT/US2014/026413 which claims benefit of U.S. Appl. No. 14/095,614, filed Dec. 3, 2013 and U.S. Appl. No. 14/095,639, filed Dec. 3, 2013.
ToggleLoc Fixation Device with ZipLoop Technology: Biceps Tendon Reattachment by Mark J. Albritton, M.D. and Daniel Worrel, M.D. of Biomet Sports Medicine, a Biomet Company Brochure (2099, 2011), pp. 1-12.
International Search Report and Written Opinion mailed Feb. 6, 2013 for PCT/US2012/064832 which claims benefit of U.S. Appl. No. 13/295,126, filed Nov. 14, 2011.
International Search Report and Written Opinion mailed Mar. 6, 2013 for PCT/US2012/062738 which claims benefit of U.S. Appl. No. 13/288,459, filed Nov. 3, 2011.
US 6,238,418, 5/2001, Schwartz et al. (withdrawn).
“AperFix® System Surgical Technique Guide. Single Tunnel Double Bundle.™” Cayenne Medical brochure. (Aug. 2008) 8 sheets.
“Bio-Intrafix (TCP/PLA & Intrafix, Tibial Soft Tissue Fasteners,” by DePuy Mitek, 6 sheets, (date unknown).
“Bio-Intrafix Tibial Soft Tissue Fasteners, Building on the Legacy of IntraFix,” brochure. DePuy Mitek,(Feb. 2007) 6 sheets.
“Biomechanical Evaluation of the Biomet Sports Medicine JurggerKnot™ Soft Anchor in Porcine Bone,” Study completed Jan. 2010. Biomet Sports Medicine Research and Development, Warsaw, Indiana. 2 pages.
“Do your next distal tendon repair with . . . The Lubbers Technique”, Teno Fix® brochure, 2003 (2 pages) Ortheon® Medical.
“EZ Loc Femoral Fixation Device,” copyright 2005 Arthrotek, Inc. (8 sheets).
“JuggerKnot™ Soft Anchor Midfoot Repair,” brochure. Biomet Sports Medicine (Jul. 2011) 12 sheets.
“JuggerKnot™ Soft Anchor. It's Small. It's strong. And it's all suture . . . ” Ordering Information brochure. Biomet Sports Medicine (Jun. 2011) 2 sheets.
“JuggerKnot™ Soft Anchor. Labral Repair,” brochure. Biomet Sports Medicine (Apr. 2011) 12 sheets.
“Make your next tendon repair an open-and-shut case. The Teno Fix® Tendon Repair System”, Teno Fix® brochure, 2003 (2 pages) Ortheon® Medical.
“Panalok Anchor with PDS II and ETHIBOND Suture”, Mitek Products ETHICON, 1997.
“SE Graft Tensioning System Surgical Technique,” Linvatec Corporation copyright 2003, 2004.
“Technique for ACL Reconstruction with Acufex Director Drill Guide and Endobutton CL,” by Thomas D. Roseberg, copyright 1999 Smith & Nephew.
A. Weiler, et al; Biodegradierbare Interferenzschrauben in der Kreuzbandchirurgie; OP-Journal 14 pp. 278-284; 1998.
Arthrotek, A Biomet Company; Knees; Sure fire Hybrid Meniscal Device. (2005).
Arthrotek, A Biomet Company; Sure fire Hybrid Meniscal Device; Launch Date: Fall AANA 2004.
F. Alan Barber, M.D., “Uses and Abuses of Sutures and Anchors,” Shoulder Scope, San Diego Shoulder Arthroscopy Library.
F. Alan Barber, M.D., “Using Sutures and Anchors,” San Diego Shoulder Arthroscopy Course, 17th Annual Meeting.
Flavia Namie Azato, et al. “Traction endurance biomechanical study of metallic suture anchors at different insertion angles,” Acta ortop. bras., vol. 11, No. 1, Sao Paulo, Jan./Mar. 2003.
Hecker AT, et al., “Pull-out strength of suture anchors for rotator cuff and Bankart lesion repairs,” Am J Sports Med. 1993.
International Search Report and Written Opinion mailed Jul. 28, 2011 for PCT/US2011/026349 claiming benefit of U.S. Appl. No. 12/938,902, filed Nov. 3, 2010; and U.S. Appl. No. 12/719,337, filed Mar. 8, 2010.
International Search Report and Written Opinion mailed Oct. 14, 2011 for PCT/US2011/038188 filed May 26, 2011 claiming benefit of U.S. Appl. No. 12/788,973, filed May 27, 2010 and U.S. Appl. No. 12/788,966, filed May 27, 2010.
Invitation to Pay Additional Fees mailed Jun. 9, 2011 for PCT/US2011/026349 claiming benefit of U.S. Appl. No. 12/938,902, filed Nov. 3, 2010; and U.S. Appl. No. 12/719,337, filed Mar. 8, 2010.
Lawhorn, M.D., Keith, MaxFire™ Meniscal Repair Device with Zip Loop™ Technology, Biomet Sports Medicine, Feb. 29, 2008.
Mark D. Miller et al.; “Pitfalls Associated with FasT-Fix Meniscal Repair,” Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 18, No. 8 Oct. 2002: pp. 939-943.
Opus Medical; The AutoCuff System; www.opusmedical.com; 2003.
Patrick Hunt, et al.; Development of a Perforated Biodegradable Interference Screw; Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 21, No. 3; pp. 258-265; Mar. 2005.
Roy Alan Majors, M.D.; “Meniscal repairs: proven techniques and current trends,” Lippincott Williams & Wilkins, Inc.; 2002.
Shoulder Arthroscopy; pp. H-2-H-22.
Smith & Nephew Endoscopy, “Endoscopic Meniscal Repair Using the T-Fix;” 1996.
Smith & Nephew, “Fast-Fix,” Meniscal Repair System; 2001.
Stuart E. Fromm, M.D., RapidLoc, Meniscal Repair System, Mitek Products, Ethicon, 2001.
ToggleLoc™ Femoral Fixation Device, Arthrotek, Mar. 31, 2006.
Ziptight™ Fixation System Featuring Zip Loop™ Technology. Ankle Syndesmosis. Surgical Protocol by Timothy Charlton, M.D. Biomet Sports® Medicine brochure. (Jun. 15, 2011) 8 pages.
Related Publications (1)
Number Date Country
20120059418 A1 Mar 2012 US
Divisions (1)
Number Date Country
Parent 12196398 Aug 2008 US
Child 13102182 US
Continuations (2)
Number Date Country
Parent 11541505 Sep 2006 US
Child 12702067 US
Parent 13295126 US
Child 12702067 US
Continuation in Parts (21)
Number Date Country
Parent 12938902 Nov 2010 US
Child 13295126 US
Parent 12915962 Oct 2010 US
Child 12938902 US
Parent 12719337 Mar 2010 US
Child 12915962 US
Parent 12489168 Jun 2009 US
Child 12719337 US
Parent 12474802 May 2009 US
Child 12489168 US
Parent 12196405 Aug 2008 US
Child 12474802 US
Parent 12196407 Aug 2008 US
Child 12196405 US
Parent 12196410 Aug 2008 US
Child 12196407 US
Parent 11541506 Sep 2006 US
Child 12196410 US
Parent 13295126 US
Child 12196410 US
Parent 12570854 Sep 2009 US
Child 13295126 US
Parent 12014399 Jan 2008 US
Child 12570854 US
Parent 11347661 Feb 2006 US
Child 12014399 US
Parent 13295126 US
Child 12014399 US
Parent 12029861 Feb 2008 US
Child 13295126 US
Parent 11504882 Aug 2006 US
Child 12029861 US
Parent 11408282 Apr 2006 US
Child 11504882 US
Parent 13295126 US
Child 11504882 US
Parent 12702067 Feb 2010 US
Child 13295126 US
Parent 13102182 May 2011 US
Child 13295126 US
Parent 11784821 Apr 2007 US
Child 12196398 US