1. Field of the Invention
The present invention relates to the field of network conditioning assembly having terminals and magnetic cores with winding wires, and more specifically to retaining end portions of the wires to the terminals.
2. Description of Related Art
U.S. Pat. No. 8,439,705, issued to Zhang on May 14, 2013, discloses an electrical connector having an insulative housing and a terminal module. The terminal module includes an insulative body, an internal printed circuit board (PCB), a plurality of signal conditioning components, e.g., transformers, common mode chokes, etc., and a plurality of terminals connected to both of the PCB and the signal conditioning components. The component includes a magnetic core and a plurality of wires wound around the core. End portions of the wires wind around top portions of the terminals and then the top portions are soldered to conductive apertures or via of the PCB. Winding operation of the wires to the terminals are not performed by an automatic machine but done by manual labor, which is time-consuming and prone to breakage.
An electrical connector having a simple structure is desired.
The present invention provides an electrical connector comprising a magnetic assembly. The magnetic assembly includes an insulative body, a plurality of contacts, a plurality of leads, a plurality of signal conditioning components, and a printed circuit board (PCB). The insulative body has a front wall, a rear wall, two oppositely facing side walls between the front wall and the rear wall, and a receiving slot surrounded by said walls. Each contact has a first connecting portion extending outwardly along the front wall. Each lead has a second connecting portion extending outwardly along the rear wall. Each signal conditioning component has a magnetic core and a plurality of conductive wires wound therearound to define a transformer or a common mode choke. The magnetic cores are received within the receiving slot. Each conductive wire has a first distal portion connecting to the first connecting portion and a second distal portion connecting to the second connecting portion. The PCB defines a plurality of conductive apertures for the first and second connecting portion inserted therethrough. Each of the first and second connecting portions defines a recess to receive one of the first and second distal portions of the conductive wires. The distal portions of the conductive wires extend across the conductive apertures, and the distal portions are retained to corresponding connecting portions through dipping into a solder pool for soldering. Therefore, the distal portions of the conductive wires need not to wind around the contacts and leads, and the distal portions can be guide to the recesses through an auto-machine. It needs only one soldering process that soldering the conductive wires to the contacts and soldering the contacts to the PCB.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to the preferred embodiment of the present invention.
Referring to
The insulative housing 2 is formed by injection molding and shaped substantially rectangular. The insulative housing 2 has a plug-receiving cavity 21 extending inwardly from a front face, a mounting port 22 extending forwardly from a rear face, a pair of mounting posts 23 projecting downwardly from a bottom face, a receiving passage 24 located above the plug receiving cavity 21, and a latching hole 25 recessed from a top face. The mounting port 22 communicates with the plug-receiving cavity 21 on the interior of the insulative housing 2. The plug-receiving cavity 21 is configured to receive a modular plug. The magnetic assembly 4 is mounted to the mounting port 22 along a back-to-front direction. The mounting posts 23 are inserted into through-holes of the exterior mother board. The light emitting devices 3 are inserted within the receiving passage 24. The latching hole 25 locks with the tail of the modular plug.
The magnetic assembly 4 includes an insulative body 41, a plurality of signal conditioning components 42, a plurality of contacts 43, a plurality of leads 44, and a printed circuit board (PCB) 46. The insulative body 41 includes a front wall 411, a rear wall 412, two oppositely facing side walls 413 between the front wall 411 and the rear wall 412, a bottom wall 414, and a receiving slot 415 surrounded by the walls. The contact 43 has a first retention portion (not shown) retained in the front wall 411, a first connecting portion 431 projecting upwardly from a top section of the front wall 411, and a mating portion 432 exposed in the plug-receiving cavity 21. The lead 44 has a second retention portion (not shown) retained in the rear wall 412, a second connecting portion 441 projecting upwardly along the rear wall 412, and a mounting portion 442 extending downwardly beyond the bottom wall 414. The mounting portions 442 are mounted onto the mother board. Each of the first and second connecting portion 431, 441 defines a receiving recess 434 recessed downwardly from a top distal thereof. The contacts 43 and leads 44 are insert molded with the insulative body 41. The contacts 43 have eight contacts arranged in a row, and the leads 44 have ten leads arranged in two rows. The leads 44 have eight leads corresponding to the eight contacts and two other leads including one grounding lead and one power connecting lead. The magnetic assembly 4 also includes four center tap pins 47 located behind the contacts 43. Moreover, four LED pins 48 are located behind the leads 44. The center tap pins 47 connect with corresponding center tap wire distals of the transformers. In the shown embodiment, the center tap pins 47 are retained to the front wall 411, alternatively they could also be retained to the side walls 413.
The insulative body 41 also has a set of middle walls 416 disposed within the receiving slot 413 to divide the receiving slot 415 into a plurality of container chambers. Each conditioning component 42 has a magnetic core 421 and a plurality of conductive wires 45 wound therearound to define a transformer or a common mode choke. Each container chamber receives two conditioning components 42 comprising one transformer and one common mode choke. Each conductive wire 45 has a first distal portion 451 connecting to the first connecting portion 431 and a second distal portion 452 connecting to the second connecting portion 441. The first distal portion 451 is received in the recess 434 of the first connecting portion 431. The second distal portion 452 is received in the recess 434 of the second connecting portion 441. Each of the center tap pin 47 has a similar receiving recess 471 as the contacts 43 to receive the first distal portion 451 of the conductive wire 45.
The PCB 46 defines a plurality of conductive apertures 461 extending through the PCB 46 along a top-to-bottom direction. The distal portions 451, 452 of the conductive wires 45 extend across the conductive apertures 461 and are received in the recesses 434 of the first and second connecting portion 431, 441. The distal portions 451, 452 are retained to corresponding connecting portions 431, 441 by dipping into a solder pool (not shown) for soldering.
The PCB 46 has a plurality of electronic component such as resistors and capacitors (not shown) mounted thereon. The PCB 46 are disposed above the insulative body 41 and disposed horizontally along a front-to-back direction. The first and second connecting portions 431, 441 extend upwardly beyond the PCB 46.
The front metallic shell 1 has a locking tab 11 projecting outwardly from a side face thereof, and a through-hole 12 extending vertically from a top face thereof. The rear metallic shell 5 has an engaging hole 51 extending transversely from a side face thereof to lock with the locking tab 11, and an engaging tap 52 projecting upwardly to inert in the through-hole 12.
The light emitting device 3 includes a lighting portion 31 and two conductive terminals 32 extending backwardly. The LED pins 48 electrically connect with corresponding conductive terminals 32 of the light emitting devices 3 through the PCB 46. In the shown embodiment, the pins 48 are retained to the rear wall 411, alternatively they could also be removed from the rear wall 412 and instead formed as a portion of the conductive terminals 32, which are not retained to the insulative body 41.
Referring to
The step of soldering the conductive wires 45 also forms conductive pads 462 onto the conductive apertures 461 for electrical connection the contacts 43 and the leads 44 with the PCB 46.
The method of manufacturing the electrical connector 100 further comprises: (f) cutting the excessive ends of the conductive wires to form the magnetic assembly 4; (g) assembling the magnetic assembly 4 to the mounting port 22 of the insulative housing 2; (h) assembling the front metallic shell 1 and the rear metallic shell to insulative housing 2 for forming the electrical connector 100.
The shown embodiment is an RJ45 connector. Understandably, the electrical connector 100 could be embodied in a LAN (local area network) transformer mounted on a mother board or on an inner PCB of an RJ45.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the members in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0673760 | Dec 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5736910 | Townsend | Apr 1998 | A |
5872492 | Boutros | Feb 1999 | A |
6102741 | Boutros et al. | Aug 2000 | A |
6328595 | Chang | Dec 2001 | B1 |
6390851 | Belopolsky et al. | May 2002 | B1 |
6547598 | Chen | Apr 2003 | B1 |
RE38519 | Doorhy | May 2004 | E |
6811442 | Lien | Nov 2004 | B1 |
6957982 | Hyland | Oct 2005 | B1 |
6986684 | Lien | Jan 2006 | B1 |
7040927 | Liu | May 2006 | B1 |
7153163 | Lewis | Dec 2006 | B2 |
7367851 | Machado | May 2008 | B2 |
7387538 | Engel | Jun 2008 | B2 |
7485004 | Liu | Feb 2009 | B2 |
7670183 | Huang | Mar 2010 | B2 |
7708594 | Xu | May 2010 | B2 |
8439705 | Zhang | May 2013 | B2 |
8449332 | Purkis | May 2013 | B2 |
8475213 | Wang | Jul 2013 | B2 |
8535100 | Ge | Sep 2013 | B2 |
8545274 | Purkis | Oct 2013 | B2 |
9101071 | Wu | Aug 2015 | B2 |
9130315 | O'Malley | Sep 2015 | B2 |
20030100225 | Aeschbacher et al. | May 2003 | A1 |
20100062645 | Chow | Mar 2010 | A1 |
20110059647 | Machado | Mar 2011 | A1 |
20120309233 | O'Malley | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
201355713 | Dec 2009 | CN |
20293067 | May 2013 | CN |
M446405 | Jul 2012 | TW |
M444682 | Jan 2013 | TW |
Number | Date | Country | |
---|---|---|---|
20150171564 A1 | Jun 2015 | US |