The present invention relates to electronically testing electrochemical cells and batteries including fuel cells and batteries. More specifically, it relates to accurately determining a dynamic parameter of a particular element, i.e., cell, battery, or interconnecting conductor, embedded in a cell/battery system as if it were isolated from the system. Such a determination is referred to as “de-embedding” the subject element.
Electrochemical cells and batteries, such as primary cells/batteries, secondary (i.e., storage) cells/batteries, and fuel cells/batteries are important sources of electrical energy. Connecting such units together in series causes their voltages to add. Connecting them together in parallel causes their currents to add. Accordingly, series-connected cells/batteries, parallel-connected cells/batteries, and series/parallel combinations of cells/batteries are routinely found in many applications including automotive, traction, heavy equipment, standby, and telecommunication applications.
Precisely determining a dynamic electrical parameter (i.e., complex impedance, complex admittance, real resistance, or real conductance) of an individual cell/battery or interconnecting conductor embedded in a larger system without disconnecting the subject element from the system has traditionally posed an important challenge. Burkum, et al., in U.S. Pat. No. 4,697,134, described one approach to this challenge. This patent teaches passing a known ac current through the parallel combination of a string of series-connected cells, a battery charger, and a load. It then determines the “impedance” of an individual cell or inter-cell connector by measuring the ac voltage developed across the cell or connector and taking the ratio of this measured ac voltage to the known ac current. However, this procedure determines only the magnitude of the complex impedance. Furthermore, the disclosed technique is subject to significant errors due to current-shunting by the charger and the load. The method of Burkum, et al., also ignores the influence of series strings that are in parallel with the desired string in multi-string installations—an arrangement commonly found in telephone central offices.
Methods and apparatus for measuring complex impedance and complex admittance of electrochemical cells and batteries as well as general electrical elements have recently been disclosed by Champlin in U.S. Pat. Nos. 6,002,238, 6,172,483, 6,262,563, and 6,294,896. However, the techniques disclosed therein apply generally to measuring isolated elements. If the subject element is embedded in a larger battery/electrical system, the loading imposed by the remainder of the system may influence the results of the measurement.
The inventions disclosed herein remove this system influence by mathematically “de-embedding” a subject element, i.e., cell, battery or interconnecting conductor, from the remainder of the battery/electrical system. The disclosed method and apparatus permit accurately determining a dynamic parameter, i.e., impedance, admittance, resistance, or conductance, of an embedded element without actually disconnecting that element from the system.
The present invention employs a “three-point” measurement technique to determine a dynamic parameter of an individual element (i.e., cell/battery or interconnecting conductor) embedded in a series, or series-parallel, electrochemical cell, battery, or fuel cell system. Three electrical contact points are defined. Two of these points bound the subject cell/battery or interconnecting conductor. The third point is separated from the other two by a conducting path that may include one or more cells or batteries. By measuring dynamic parameters between alternate pairs of contact points, three dynamic parameter measurements are acquired. A mathematical computation combines the measurements and determines the dynamic parameter of a subject element as if it were alone—thus effectively “de-embedding” the subject element from the remainder of the system. A “four-point” extension of this technique permits measuring a dynamic parameter of a cell, battery, or interconnecting conductor disposed in a multiple-unit string of parallel-connected cells or batteries.
a is a schematic representation of two cells/batteries connected in parallel and depicts the determination of a first cell/battery impedance and a first interconnecting conductor impedance in accordance with a particular aspect of the present invention.
b is a schematic representation of two cells/batteries connected in parallel and depicts the determination of a second cell/battery impedance and a second interconnecting conductor impedance in accordance with a particular aspect of the present invention.
a is a schematic representation of a parallel string of multiple cells/batteries and depicts the determination of the impedances of a cell/battery and interconnecting conductor on a first end of the string in accordance with a particular aspect of the present invention.
b is a schematic representation of a parallel string of multiple cells/batteries and depicts the determination of the impedances of a cell/battery and interconnecting conductor on a second end of the string in accordance with a particular aspect of the present invention.
a is a schematic representation of a parallel string of multiple cells/batteries and depicts conditions of a first set of three-point measurements used in the determination of the impedances of an interior cell/battery and interconnecting conductor in accordance with a particular aspect of the present invention.
b is a schematic representation of a parallel string of multiple cells/batteries and depicts conditions of a second set of three-point measurements used in the determination of the impedances of an interior cell/battery and interconnecting conductor in accordance with a particular aspect of the present invention.
Consider FIG. 1. This figure illustrates measuring the impedance of a cell/battery 10 embedded in a very simple system comprising cell/battery 10 connected to load 20 through interconnecting conductors 30 and 40. Impedances Z1, ZL, ZC1, and ZC2 represent the impedances of cell/battery 10, load 20, interconnecting conductor 30, and interconnecting conductor 40, respectively. Impedance meter 50, which may be of the type disclosed by Champlin in the four patents referenced above, couples to the two terminals of cell/battery 10 with Kelvin input probe 60 and Kelvin input probe 70. As is well known, Kelvin probes comprise two separate electrical connections to each contact point—one for current and one for voltage. Their purpose is to negate the effects of contact and lead-wire resistance. Although Kelvin probes are usually required to obtain accurate measurements with the very small impedance values encountered in most battery systems, the “three-point” measurement technique disclosed herein does not rely upon Kelvin probes. Single-conductor connections to each contact point will also suffice if impedance values are sufficiently large.
The influence of impedances ZC1, ZC2, and ZL upon the measured impedance Zm is clearly observed in equation (1).
Now consider performing three impedance measurements as shown in
One can easily show from
These three equations can be inverted mathematically to yield explicit expressions for Z1, Z2, and Z3, in terms of the measured quantities Zab, Zbc, and Zca. The results are
Equation (5) effectively “de-embeds” cell/battery 10 since Z1 would be its measured impedance if it were, in fact, completely disconnected from the system.
The three-point measurement technique disclosed above can be readily extended to the very important case depicted in FIG. 7.
However, consider performing the three impedance measurements shown in
The experimental arrangements depicted in
The equivalent circuit of
In the example depicted above, the particular choice of contact point c places both a cell/battery and an interconnecting conductor into impedance Z2. The measured value of Z2 is thus an arbitrary quantity that may be of little interest. However, one could just as well have chosen point c so that impedance Z2 contains only the impedance of the adjacent interconnecting conductor. In that case, impedance Z2 could be of considerable interest. Its value would be explicitly given by equation (6):
Impedance Z3 describes the impedance of all of the rest of the battery system—not including impedances Z1 and Z2. Its value is explicitly given by equation (7):
In principle, the three measurements could be performed in sequence using conventional impedance measuring circuitry such as the circuitry disclosed by Champlin in the U.S. patents referenced above. The complete measuring apparatus could comprise such circuitry along with a pencil and pad to record the readings and an external hand calculator or computer to evaluate the appropriate equation or equations that “de-embed” the subject element or elements. Alternatively, the apparatus could contain onboard memory circuitry to store the measurements and onboard computation circuitry to perform the “de-embedding” calculations after the required measurements have been made.
In addition, one could employ a special three-point impedance meter 100 connected as shown in FIG. 11. One sees in
Under programmed control of microprocessor/controller 150, switching/multiplexing circuitry 140 alternately couples each pair of system-contacting probes to input probes 60 and 70, and impedance meter 50 measures the impedance between its input probes 60 and 70. The resulting three measured impedances are temporarily stored in storage memory 160 and then processed by computation circuitry 170—which may, in fact, also comprise microprocessor/controller 150—to determine the subject embedded impedance or impedances using one or more of equations (5), (6), and (7). Three-point impedance meter 100 therefore “de-embeds” the subject impedances directly, without operator intervention.
One could also construct measuring apparatus 180 (
One sees from the discussion regarding
The general rules to be followed in choosing electrical contact points can be understood with reference to FIG. 15. Contact points a and b must “bound” the subject element whose impedance Z1 is desired to be measured. Furthermore, at least one of those two points must have no more than one conducting path proceeding from it. That single-path point is chosen as contact point b. Contact point c can then be any point along this single conducting path that can be reached without encountering an intervening branching path. There can be additional paths branching from point c itself; as there can also be from point a. These two possibilities are illustrated in FIG. 12. However no paths can branch from point b or from any intermediate junction point between b and c.
If only the value of Z1 is desired, the number of cells/batteries and conductors disposed between contact point b and contact point c is unrestricted. However, as a result of the “no-branch” rule, an element on the end of a series string in a multi-string parallel array must have its point c on the side of the element that is farthest from the parallel connection. An interior element of a series string, however, can have its contact point c on either side.
An extension of this three-point measurement technique can be used to “de-embed” elements of parallel strings of batteries—such as are frequently employed in trucks and heavy equipment.
First, consider a simple system of two cells/batteries connected in parallel.
Parallel strings of cells/batteries present a special challenge. Both terminals of a cell/battery in the interior of a parallel string have more than one conducting path leading from them. Accordingly, neither terminal satisfies the “no-branch rule” that must be satisfied by a contacting point b. However, the standard three-point measurement technique can still be applied to the interconnecting conductors and to the two cell/batteries on the ends of the string; and an extended form of the technique, a four-point, five-measurement, technique, can be applied to the cells/batteries in the interior.
First consider
Now consider
Equation (6) unambiguously yields the interconnecting conductor impedances Z2 and Z2′ in the two experiments. However, because contact point b does not satisfy the “no-branch rule”, equation (5) does not yield Z1 directly in either experiment. Instead, equation (5) yields Z1 in parallel with Z4 in the first experiment and yields Z1 in parallel with Z4′ in the second experiment. However, Z4=Z2′+Z3′ is known from equations (6) and (7) of the second experiment, and Z4′=Z2+Z3 is known from equations (6) and (7) of the first experiment. Accordingly, by combining results of the two experiments, one can write the subject unknown cell/battery impedance Z1 as either
where M1, Z2, and Z3 are the results of evaluating equations (5), (6), and (7), respectively, in the first experiment, and M1′, Z2′, and Z3′ are the results of evaluating equations (5), (6), and (7), respectively, in the second experiment.
A special four-point impedance meter similar to three-point impedance meter 100 disclosed in
For purposes of clarity, the above discussions have only considered complex impedance Z. However, it will be apparent to workers skilled in the art that the disclosed techniques apply equally well to measuring the reciprocal of complex impedance, complex admittance Y. Equations comparable to equation (5), (6), and (7) that give the unknown admittances Y1, Y2, and Y3 in terms of measured admittances Yab, Ybc, and Yac can be written
Furthermore, if reactive and susceptive effects can be ignored, the disclosed techniques can likewise be applied to measuring real dynamic resistance R and real dynamic conductance G. Equations comparable to equation (5), (6), and (7) that give unknown dynamic resistances R1, R2, and R3 in terms of measured dynamic resistances Rab, Rbc, and Rca are
Similarly, equations comparable to equations (5), (6), and (7) that give unknown dynamic conductances G1, G2, and G3 in terms of measured dynamic conductances, Gab, Gbc and Gca are
Since all four quantities, Z, Y, R, and G are measured with time-varying signals, they are referred to collectively as “dynamic parameters”.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes can be made in form and detail without departing from the true spirit and scope of the invention. For example, single conductor probes rather than Kelvin probes could be employed if element impedances are sufficiently large. The required measurements could be simply performed using conventional measuring apparatus, results written down after each measurement and a hand calculator or computer subsequently employed to evaluate the appropriate equations. Alternatively, the measuring apparatus could itself contain onboard memory circuitry to store the measurements and onboard computation circuitry to perform the “de-embedding” calculations. Furthermore, the system-contacting probes could be multiplexed or switched, thus permitting the measuring apparatus to couple to the system at all of the desired contact points simultaneously. Although specific “de-embedding” examples employing three and five measurements have been disclosed, any number of measurements could actually be employed. The measurement steps could occur in any order or occur substantially simultaneously. “De-embedding” could be implemented with hand-held equipment carried to a site. It could also be implemented with permanently integrated measuring apparatus distributed throughout the entire system and adapted to automatically “de-embed” and monitor various elements of the system. These and other variations are believed to be well within the scope of the present invention and are intended to be covered by the appended claims.
The present application is a Continuation-In-Part of U.S. patent application Ser. No. 09/862,783, filed May 21, 2001 now abandoned, which is a Continuation-In-Part of U.S. patent application Ser. No. 09/662,092, filed Sep. 14, 2000 now abandoned, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2000665 | Neal | May 1935 | A |
2514745 | Dalzell | Jul 1950 | A |
3356936 | Smith | Dec 1967 | A |
3562634 | Latner | Feb 1971 | A |
3593099 | Scholl | Jul 1971 | A |
3607673 | Seyl | Sep 1971 | A |
3652341 | Halsall et al. | Mar 1972 | A |
3676770 | Sharaf et al. | Jul 1972 | A |
3729989 | Little | May 1973 | A |
3750011 | Kreps | Jul 1973 | A |
3753094 | Furuishi et al. | Aug 1973 | A |
3796124 | Crosa | Mar 1974 | A |
3808522 | Sharaf | Apr 1974 | A |
3811089 | Strezelewicz | May 1974 | A |
3873911 | Champlin | Mar 1975 | A |
3876931 | Godshalk | Apr 1975 | A |
3886443 | Miyakawa et al. | May 1975 | A |
3889248 | Ritter | Jun 1975 | A |
3906329 | Bader | Sep 1975 | A |
3909708 | Champlin | Sep 1975 | A |
3936744 | Perlmutter | Feb 1976 | A |
3946299 | Christianson et al. | Mar 1976 | A |
3947757 | Grube et al. | Mar 1976 | A |
3969667 | McWilliams | Jul 1976 | A |
3979664 | Harris | Sep 1976 | A |
3984762 | Dowgiallo, Jr. | Oct 1976 | A |
3984768 | Staples | Oct 1976 | A |
3989544 | Santo | Nov 1976 | A |
4008619 | Alcaide et al. | Feb 1977 | A |
4023882 | Pettersson | May 1977 | A |
4024953 | Nailor, III | May 1977 | A |
4047091 | Hutchines et al. | Sep 1977 | A |
4053824 | Dupuis et al. | Oct 1977 | A |
4056764 | Endo et al. | Nov 1977 | A |
4070624 | Taylor | Jan 1978 | A |
4086531 | Bernier | Apr 1978 | A |
4112351 | Back et al. | Sep 1978 | A |
4114083 | Benham et al. | Sep 1978 | A |
4126874 | Suzuki et al. | Nov 1978 | A |
4160916 | Papsideris | Jul 1979 | A |
4178546 | Hulls et al. | Dec 1979 | A |
4193025 | Frailing et al. | Mar 1980 | A |
4207611 | Gordon | Jun 1980 | A |
4217645 | Barry et al. | Aug 1980 | A |
4280457 | Bloxham | Jul 1981 | A |
4297639 | Branham | Oct 1981 | A |
4315204 | Sievers et al. | Feb 1982 | A |
4316185 | Watrous et al. | Feb 1982 | A |
4322685 | Frailing et al. | Mar 1982 | A |
4351405 | Fields et al. | Sep 1982 | A |
4361809 | Bil et al. | Nov 1982 | A |
4363407 | Barkler et al. | Dec 1982 | A |
4369407 | Korbell | Jan 1983 | A |
4379989 | Kurz et al. | Apr 1983 | A |
4379990 | Sievers et al. | Apr 1983 | A |
4390828 | Converse et al. | Jun 1983 | A |
4392101 | Saar et al. | Jul 1983 | A |
4396880 | Windebank | Aug 1983 | A |
4408157 | Beaubien | Oct 1983 | A |
4412169 | Dell′Orto | Oct 1983 | A |
4423378 | Marino et al. | Dec 1983 | A |
4423379 | Jacobs et al. | Dec 1983 | A |
4424491 | Bobbett et al. | Jan 1984 | A |
4459548 | Lentz et al. | Jul 1984 | A |
4514694 | Finger | Apr 1985 | A |
4520353 | McAuliffe | May 1985 | A |
4620767 | Woolf | Nov 1986 | A |
4633418 | Bishop | Dec 1986 | A |
4659977 | Kissel et al. | Apr 1987 | A |
4663580 | Wortman | May 1987 | A |
4665370 | Holland | May 1987 | A |
4667143 | Cooper et al. | May 1987 | A |
4667279 | Maier | May 1987 | A |
4678998 | Muramatsu | Jul 1987 | A |
4679000 | Clark | Jul 1987 | A |
4680528 | Mikami et al. | Jul 1987 | A |
4697134 | Burkum et al. | Sep 1987 | A |
4707795 | Alber et al. | Nov 1987 | A |
4709202 | Koenck et al. | Nov 1987 | A |
4710861 | Kanner | Dec 1987 | A |
4719428 | Liebermann | Jan 1988 | A |
4743855 | Randin et al. | May 1988 | A |
4745349 | Palanisamy et al. | May 1988 | A |
4816768 | Champlin | Mar 1989 | A |
4820966 | Fridman | Apr 1989 | A |
4825170 | Champlin | Apr 1989 | A |
4847547 | Eng, Jr. | Jul 1989 | A |
4849700 | Morioka et al. | Jul 1989 | A |
4876495 | Palanisamy et al. | Oct 1989 | A |
4881038 | Champlin | Nov 1989 | A |
4912416 | Champlin | Mar 1990 | A |
4913116 | Katogi et al. | Apr 1990 | A |
4929931 | McCuen | May 1990 | A |
4931738 | MacIntyre et al. | Jun 1990 | A |
4933845 | Hayes | Jun 1990 | A |
4934957 | Bellusci | Jun 1990 | A |
4937528 | Palanisamy | Jun 1990 | A |
4947124 | Hauser | Aug 1990 | A |
4949046 | Seyfang | Aug 1990 | A |
4956597 | Heavey et al. | Sep 1990 | A |
4968941 | Rogers | Nov 1990 | A |
4968942 | Palanisamy | Nov 1990 | A |
5004979 | Marino et al. | Apr 1991 | A |
5032825 | Kuznicki | Jul 1991 | A |
5037778 | Stark et al. | Aug 1991 | A |
5047722 | Wurst et al. | Sep 1991 | A |
5087881 | Peacock | Feb 1992 | A |
5095223 | Thomas | Mar 1992 | A |
5108320 | Kimber | Apr 1992 | A |
5126675 | Yang | Jun 1992 | A |
5140269 | Champlin | Aug 1992 | A |
5144219 | Conzelmann et al. | Sep 1992 | A |
5144248 | Alexandres et al. | Sep 1992 | A |
5159272 | Rao et al. | Oct 1992 | A |
5160881 | Schramm et al. | Nov 1992 | A |
5170124 | Blair et al. | Dec 1992 | A |
5179335 | Nor | Jan 1993 | A |
5194799 | Tomantschger | Mar 1993 | A |
5204611 | Nor et al. | Apr 1993 | A |
5214370 | Harm et al. | May 1993 | A |
5214385 | Gabriel et al. | May 1993 | A |
5241275 | Fang | Aug 1993 | A |
5254952 | Salley et al. | Oct 1993 | A |
5266880 | Newland | Nov 1993 | A |
5281919 | Palanisamy | Jan 1994 | A |
5281920 | Wurst | Jan 1994 | A |
5295078 | Stich et al. | Mar 1994 | A |
5298797 | Redl | Mar 1994 | A |
5300874 | Shimamoto et al. | Apr 1994 | A |
5302902 | Groehl | Apr 1994 | A |
5313152 | Wozniak et al. | May 1994 | A |
5315287 | Sol | May 1994 | A |
5321626 | Palladino | Jun 1994 | A |
5321627 | Reher | Jun 1994 | A |
5323337 | Wilson et al. | Jun 1994 | A |
5325041 | Briggs | Jun 1994 | A |
5331268 | Patino et al. | Jul 1994 | A |
5336993 | Thomas et al. | Aug 1994 | A |
5338515 | Dalla Betta et al. | Aug 1994 | A |
5339018 | Brokaw | Aug 1994 | A |
5343380 | Champlin | Aug 1994 | A |
5347163 | Yoshimura | Sep 1994 | A |
5352968 | Reni et al. | Oct 1994 | A |
5365160 | Leppo et al. | Nov 1994 | A |
5365453 | Startup et al. | Nov 1994 | A |
5381096 | Hirzel | Jan 1995 | A |
5412308 | Brown | May 1995 | A |
5412323 | Kato et al. | May 1995 | A |
5426371 | Salley et al. | Jun 1995 | A |
5426416 | Jefferies et al. | Jun 1995 | A |
5432426 | Yoshida | Jul 1995 | A |
5434495 | Toko | Jul 1995 | A |
5435185 | Eagan | Jul 1995 | A |
5442274 | Tamai | Aug 1995 | A |
5445026 | Eagan | Aug 1995 | A |
5449996 | Matsumoto et al. | Sep 1995 | A |
5449997 | Gilmore et al. | Sep 1995 | A |
5451881 | Finger | Sep 1995 | A |
5453027 | Buell et al. | Sep 1995 | A |
5457377 | Jonsson | Oct 1995 | A |
5469043 | Cherng et al. | Nov 1995 | A |
5485090 | Stephens | Jan 1996 | A |
5488300 | Jamieson | Jan 1996 | A |
5519383 | De La Rosa | May 1996 | A |
5528148 | Rogers | Jun 1996 | A |
5537967 | Tashiro et al. | Jul 1996 | A |
5546317 | Andrieu | Aug 1996 | A |
5548273 | Nicol et al. | Aug 1996 | A |
5550485 | Falk | Aug 1996 | A |
5561380 | Sway-Tin et al. | Oct 1996 | A |
5562501 | Kinoshita et al. | Oct 1996 | A |
5572136 | Champlin | Nov 1996 | A |
5574355 | McShane et al. | Nov 1996 | A |
5583416 | Klang | Dec 1996 | A |
5585728 | Champlin | Dec 1996 | A |
5589757 | Klang | Dec 1996 | A |
5592093 | Klingbiel | Jan 1997 | A |
5592094 | Ichikawa | Jan 1997 | A |
5596260 | Moravec et al. | Jan 1997 | A |
5598098 | Champlin | Jan 1997 | A |
5602462 | Stich et al. | Feb 1997 | A |
5606242 | Hull et al. | Feb 1997 | A |
5621298 | Harvey | Apr 1997 | A |
5633985 | Severson et al. | May 1997 | A |
5637978 | Kellett et al. | Jun 1997 | A |
5642031 | Brotto | Jun 1997 | A |
5650937 | Bounaga | Jul 1997 | A |
5652501 | McClure et al. | Jul 1997 | A |
5653659 | Kunibe et al. | Aug 1997 | A |
5656920 | Cherng et al. | Aug 1997 | A |
5675234 | Greene | Oct 1997 | A |
5677077 | Faulk | Oct 1997 | A |
5699050 | Kanazawa | Dec 1997 | A |
5701089 | Perkins | Dec 1997 | A |
5705929 | Caravello et al. | Jan 1998 | A |
5710503 | Sideris et al. | Jan 1998 | A |
5711648 | Hammerslag | Jan 1998 | A |
5717336 | Basell et al. | Feb 1998 | A |
5717937 | Fritz | Feb 1998 | A |
5739667 | Matsuda et al. | Apr 1998 | A |
5745044 | Hyatt, Jr. et al. | Apr 1998 | A |
5747909 | Syverson et al. | May 1998 | A |
5747967 | Muljadi et al. | May 1998 | A |
5754417 | Nicollini | May 1998 | A |
5757192 | McShane et al. | May 1998 | A |
5760587 | Harvey | Jun 1998 | A |
5772468 | Kowalski et al. | Jun 1998 | A |
5773978 | Becker | Jun 1998 | A |
5780980 | Naito | Jul 1998 | A |
5789899 | van Phuoc et al. | Aug 1998 | A |
5793359 | Ushikubo | Aug 1998 | A |
5808469 | Kopera | Sep 1998 | A |
5818234 | McKinnon | Oct 1998 | A |
5821756 | McShane et al. | Oct 1998 | A |
5821757 | Alvarez et al. | Oct 1998 | A |
5825174 | Parker | Oct 1998 | A |
5831435 | Troy | Nov 1998 | A |
5850113 | Weimer et al. | Dec 1998 | A |
5862515 | Kobayashi et al. | Jan 1999 | A |
5865638 | Trafton | Feb 1999 | A |
5872443 | Williamson | Feb 1999 | A |
5872453 | Shimoyama et al. | Feb 1999 | A |
5895440 | Proctor et al. | Apr 1999 | A |
5914605 | Bertness | Jun 1999 | A |
5927938 | Hammerslag | Jul 1999 | A |
5929609 | Joy et al. | Jul 1999 | A |
5939855 | Proctor et al. | Aug 1999 | A |
5939861 | Joko et al. | Aug 1999 | A |
5945829 | Bertness | Aug 1999 | A |
5951229 | Hammerslag | Sep 1999 | A |
5961561 | Wakefield, II | Oct 1999 | A |
5961604 | Anderson et al. | Oct 1999 | A |
5969625 | Russo | Oct 1999 | A |
5978805 | Carson | Nov 1999 | A |
5982138 | Krieger | Nov 1999 | A |
6002238 | Champlin | Dec 1999 | A |
6005759 | Hart et al. | Dec 1999 | A |
6008652 | Theofanopoulos et al. | Dec 1999 | A |
6009369 | Boisvert et al. | Dec 1999 | A |
6031354 | Wiley et al. | Feb 2000 | A |
6031368 | Klippel et al. | Feb 2000 | A |
6037751 | Klang | Mar 2000 | A |
6037777 | Champlin | Mar 2000 | A |
6046514 | Rouillard et al. | Apr 2000 | A |
6051976 | Bertness | Apr 2000 | A |
6064372 | Kahkoska | May 2000 | A |
6072299 | Kurle et al. | Jun 2000 | A |
6072300 | Tsuji | Jun 2000 | A |
6081098 | Bertness et al. | Jun 2000 | A |
6081109 | Seymour et al. | Jun 2000 | A |
6091245 | Bertness | Jul 2000 | A |
6094033 | Ding et al. | Jul 2000 | A |
6104167 | Bertness et al. | Aug 2000 | A |
6114834 | Parise | Sep 2000 | A |
6137269 | Champlin | Oct 2000 | A |
6140797 | Dunn | Oct 2000 | A |
6144185 | Dougherty et al. | Nov 2000 | A |
6150793 | Lesesky et al. | Nov 2000 | A |
6158000 | Collins | Dec 2000 | A |
6161640 | Yamaguchi | Dec 2000 | A |
6163156 | Bertness | Dec 2000 | A |
6167349 | Alvarez | Dec 2000 | A |
6172483 | Champlin | Jan 2001 | B1 |
6172505 | Bertness | Jan 2001 | B1 |
6181545 | Amatucci et al. | Jan 2001 | B1 |
6211651 | Nemoto | Apr 2001 | B1 |
6222342 | Eggert et al. | Apr 2001 | B1 |
6222369 | Champlin | Apr 2001 | B1 |
6225808 | Varghese et al. | May 2001 | B1 |
6236332 | Conkright et al. | May 2001 | B1 |
6238253 | Qualls | May 2001 | B1 |
6242887 | Burke | Jun 2001 | B1 |
6249124 | Bertness | Jun 2001 | B1 |
6250973 | Lowery et al. | Jun 2001 | B1 |
6254438 | Gaunt | Jul 2001 | B1 |
6259170 | Limoge et al. | Jul 2001 | B1 |
6259254 | Klang | Jul 2001 | B1 |
6262563 | Champlin | Jul 2001 | B1 |
6275008 | Arai et al. | Aug 2001 | B1 |
6294896 | Champlin | Sep 2001 | B1 |
6294897 | Champlin | Sep 2001 | B1 |
6304087 | Bertness | Oct 2001 | B1 |
6307349 | Koenck et al. | Oct 2001 | B1 |
6310481 | Bertness | Oct 2001 | B2 |
6313607 | Champlin | Nov 2001 | B1 |
6313608 | Varghese et al. | Nov 2001 | B1 |
6316914 | Bertness | Nov 2001 | B1 |
6323650 | Bertness et al. | Nov 2001 | B1 |
6329793 | Bertness et al. | Dec 2001 | B1 |
6331762 | Bertness | Dec 2001 | B1 |
6332113 | Bertness | Dec 2001 | B1 |
6346795 | Haraguchi et al. | Feb 2002 | B2 |
6347958 | Tsai | Feb 2002 | B1 |
6351102 | Troy | Feb 2002 | B1 |
6356042 | Kahlon et al. | Mar 2002 | B1 |
6359441 | Bertness | Mar 2002 | B1 |
6363303 | Bertness | Mar 2002 | B1 |
6384608 | Namaky | May 2002 | B1 |
6388448 | Cervas | May 2002 | B1 |
6392414 | Bertness | May 2002 | B2 |
6411098 | Laletin | Jun 2002 | B1 |
6417669 | Champlin | Jul 2002 | B1 |
6424158 | Klang | Jul 2002 | B2 |
6441585 | Bertness | Aug 2002 | B1 |
6445158 | Bertness et al. | Sep 2002 | B1 |
6456045 | Troy et al. | Sep 2002 | B1 |
6466025 | Klang | Oct 2002 | B1 |
6466026 | Champlin | Oct 2002 | B1 |
6526361 | Jones et al. | Feb 2003 | B1 |
6531848 | Chitsazan et al. | Mar 2003 | B1 |
6600815 | Walding | Jul 2003 | B1 |
6618644 | Bean | Sep 2003 | B2 |
6628011 | Droppo et al. | Sep 2003 | B2 |
6667624 | Raichle et al. | Dec 2003 | B1 |
6679212 | Kelling | Jan 2004 | B2 |
20020010558 | Bertness et al. | Jan 2002 | A1 |
20020176010 | Wallach et al. | Nov 2002 | A1 |
20030025481 | Bertness | Feb 2003 | A1 |
20030184306 | Bertness et al. | Oct 2003 | A1 |
20040000891 | Raichle et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
2 246 916 | Oct 1990 | GB |
11103503 | Apr 1999 | JP |
WO 0159443 | Feb 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020180445 A1 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09862783 | May 2001 | US |
Child | 10119297 | US | |
Parent | 09662092 | Sep 2000 | US |
Child | 09862783 | US |