Method and apparatus for text selection

Information

  • Patent Grant
  • 9442651
  • Patent Number
    9,442,651
  • Date Filed
    Thursday, August 15, 2013
    11 years ago
  • Date Issued
    Tuesday, September 13, 2016
    8 years ago
Abstract
A method includes, displaying a content selection icon on a touch-sensitive display of an electronic device, detecting touch input at a touch location on the display operable to select a content selection function associated with the content selection icon, and, modifying the displayed content selection icon to display a touch portion at a location on the display corresponding to said detected touch location and a content selection portion operatively coupled to, but spatially separated from, the touch portion.
Description
FIELD OF THE TECHNOLOGY

The present disclosure relates to electronic devices, including but not limited to, portable electronic devices having touch-sensitive displays and their control.


BACKGROUND

Electronic devices, including portable electronic devices, have gained widespread use and may provide a variety of functions including, for example, telephonic, electronic messaging and other personal information manager (PIM) application functions. Portable electronic devices include, for example, several types of mobile stations such as simple cellular telephones (feature phones), smart phones, wireless personal digital assistants (PDAs), tablet computers, and laptop computers with wireless 802.11 or Bluetooth® capabilities.


Portable electronic devices such as PDAs or smart telephones are generally intended for handheld use and ease of portability. Smaller devices are generally desirable for portability. A touch-sensitive display, also known as a touchscreen display, is particularly useful on handheld devices, which are small and have limited space for user input and output. The information displayed on the touch-sensitive displays, such as text, may be modified based on the functions and operations being performed.


Improvements in devices with touch-sensitive displays, including the selection of content on those devices, are desirable.





BRIEF DESCRIPTION OF DRAWINGS

Examples of the present proposed approach will now be described in detail with reference to the accompanying drawings, in which:



FIG. 1 is a block diagram of a portable electronic device in accordance with the disclosure;



FIG. 2 is a front view of a smartphone in accordance with example embodiments of the present disclosure;



FIG. 3 is a front view of a tablet computer is accordance with example embodiments of the present disclosure;



FIGS. 4A to 4C illustrate an electronic device in accordance with an embodiment showing the initiation of a paragraph selection mode;



FIGS. 5A and 5B illustrate an electronic device in accordance with an embodiment showing example touch inputs;



FIGS. 6A to 6C illustrate a method of switching between row and letter selection in accordance with the disclosure;



FIGS. 7A to 7C illustrate an electronic device in accordance with an embodiment showing the movement of content in response to a touch input;



FIGS. 8A to 8C show a selection handle in accordance with the disclosure;



FIGS. 9A and 9B illustrate an electronic device in accordance with an embodiment showing the extension of a selection handle in response to user input;



FIG. 10 is a flowchart illustrating a method of modifying a selection icon in accordance with the disclosure;



FIG. 11 is a flowchart illustrating a method of row-by-row selection in accordance with the disclosure; and,



FIG. 12 is a flowchart illustrating a method of paragraph selection in accordance with the disclosure.





DETAILED DESCRIPTION

The following describes an apparatus for and method of determining a selection of a selection option based on received user input.


For simplicity and clarity of illustration, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. Numerous details are set forth to provide an understanding of the examples described herein. The examples may be practiced without these details. In other instances, well-known methods, procedures, and components are not described in detail to avoid obscuring the examples described. The description is not to be considered as limited to the scope of the examples described herein.


The disclosure generally relates to an electronic device, such as a portable electronic device or non-portable electronic device. Examples of portable electronic devices include mobile, or handheld, wireless communication devices such as pagers, feature phones, cellular smart-phones, wireless organizers, personal digital assistants, wirelessly enabled notebook computers, tablet computers, mobile internet devices, electronic navigation devices, and so forth. The portable electronic device may be a portable electronic device without wireless communication capabilities, such as handheld electronic games, digital photograph albums, digital cameras, media players, e-book readers, and so forth. Examples of non portable electronic devices include desktop computers, electronic white boards, smart boards utilized for collaboration, built-in monitors or displays in furniture or appliances, and so forth.


Example Electronic Device


A block diagram of an example of an electronic device 100 is shown in FIG. 1. The electronic device 100 includes multiple components, such as a processor 102 that controls the overall operation of the electronic device 100. Communication functions, including data and voice communications, are performed through a communication subsystem 104. Data received by the electronic device 100 is decompressed and decrypted by a decoder 106. The communication subsystem 104 receives messages from and sends messages to a wireless network 150. The wireless network 150 may be any type of wireless network, including, but not limited to, data wireless networks, voice wireless networks, and networks that support both voice and data communications. A power source 142, such as one or more rechargeable batteries or a port to an external power supply, powers the electronic device 100.


The processor 102 interacts with other components, such as a Random Access Memory (RAM) 108, memory 110, a touch-sensitive display 118, one or more actuators 120, one or more force sensors 122, an auxiliary input/output (I/O) subsystem 124, a data port 126, a speaker 128, a microphone 130, short-range communications 132 and other device subsystems 134. The touch-sensitive display 118 includes a display 112 and touch sensors 114 that are coupled to at least one controller 116 that is utilized to interact with the processor 102. Input via a graphical user interface is provided via the touch-sensitive display 118. Information, such as text, characters, symbols, images, icons, and other items that may be displayed or rendered on a electronic device, is displayed on the touch-sensitive display 118 via the processor 102. The processor 102 may also interact with an accelerometer 136 that may be utilized to detect direction of gravitational forces or gravity-induced reaction forces.


To identify a subscriber for network access, the electronic device 100 may utilize a Subscriber Identity Module or a Removable User Identity Module (SIM/RUIM) card 138 for communication with a network, such as the wireless network 150. Alternatively, user identification information may be programmed into memory 110.


The electronic device 100 includes an operating system 146 and software programs, applications, or components 148 that are executed by the processor 102 and are typically stored in a persistent, updatable store such as the memory 110. Additional applications or programs may be loaded onto the electronic device 100 through the wireless network 150, the auxiliary I/O subsystem 124, the data port 126, the short-range communications subsystem 132, or any other suitable subsystem 134.


A received signal such as a text message, an e-mail message, or web page download is processed by the communication subsystem 104 and input to the processor 102. The processor 102 processes the received signal for output to the display 112 and/or to the auxiliary I/O subsystem 124. A subscriber may generate data items, for example e-mail messages, which may be transmitted over the wireless network 150 through the communication subsystem 104. For voice communications, the overall operation of the electronic device 100 is similar. The speaker 128 outputs audible information converted from electrical signals, and the microphone 130 converts audible information into electrical signals for processing.


The touch-sensitive display 118 may be any suitable touch-sensitive display, such as a capacitive, resistive, infrared, surface acoustic wave (SAW) touch-sensitive display, strain gauge, optical imaging, dispersive signal technology, acoustic pulse recognition, and so forth. A capacitive touch-sensitive display includes one or more capacitive touch sensors 114. The capacitive touch sensors may comprise any suitable material, such as indium tin oxide (ITO).


One or more touches, also known as touch contacts or touch events, may be detected by the touch-sensitive display 118. The processor 102 may determine attributes of the touch, including a location of the touch. Touch location data may include data for an area of contact or data for a single point of contact, such as a point at or near a center of the area of contact. The location of a detected touch may include x and y components, e.g., horizontal and vertical components, respectively, with respect to one's view of the touch-sensitive display 118. For example, the x location component may be determined by a signal generated from one touch sensor, and the y location component may be determined by a signal generated from another touch sensor. A touch may be detected from any suitable input member, such as a finger, thumb, appendage, or other objects, for example, a stylus (active or passive), pen, or other pointer, based on the nature of the touch-sensitive display 118. Multiple simultaneous touches may be detected.


One or more gestures may also be detected by the touch-sensitive display 118. A gesture, such as a swipe, also known as a flick, is a particular type of touch on a touch-sensitive display 118 and may begin at an origin point and continue to an end point, for example, a concluding end of the gesture. A gesture may be identified by attributes of the gesture, including the origin point, the end point, the distance travelled, the duration, the velocity, and the direction, for example. A gesture may be long or short in distance and/or duration. Two points of the gesture may be utilized to determine a direction of the gesture. A gesture may also include a hover. A hover may be a touch at a location that is generally unchanged over a period of time or is associated with the same selection item for a period of time.


The optional actuator(s) 120 may be depressed or activated by applying sufficient force to the touch-sensitive display 118 to overcome the actuation force of the actuator 120. The actuator(s) 120 may be actuated by pressing anywhere on the touch-sensitive display 118. The actuator(s) 120 may provide input to the processor 102 when actuated. Actuation of the actuator(s) 120 may result in provision of tactile feedback.


Optional force sensors 122 may be disposed in conjunction with the touch-sensitive display 118 to determine or react to forces applied to the touch-sensitive display 118. The force sensor 122 may be disposed in line with a piezo actuator 120. The force sensors 122 may be force-sensitive resistors, strain gauges, piezoelectric or piezoresistive devices, pressure sensors, quantum tunneling composites, force-sensitive switches, or other suitable devices


The touch-sensitive display 118 includes a display area in which information may be displayed, and a non-display area extending around the periphery of the display area. The display area generally corresponds to the area of the display 112. Information is not displayed in the non-display area by the display, which non-display area is utilized to accommodate, for example, electronic traces or electrical connections, adhesives or other sealants, and/or protective coatings around the edges of the display area. The non-display area may be referred to as an inactive area and is not part of the physical housing or frame of the electronic device. Typically, no pixels of the display are in the non-display area, thus no image can be displayed by the display 112 in the non-display area. Optionally, a secondary display, not part of the primary display 112, may be disposed under the non-display area. Touch sensors may be disposed in the non-display area, which touch sensors may be extended from the touch sensors in the display area or distinct or separate touch sensors from the touch sensors in the display area. A touch, including a gesture, may be associated with the display area, the non-display area, or both areas. The touch sensors may extend across substantially the entire non-display area or may be disposed in only part of the non-display area.


Example Smartphone Electronic Device


Referring now to FIG. 2, a front view of an example electronic device 100 which is a smartphone 201 is illustrated. The smartphone 201 is a mobile phone which offers more advanced computing capability than a basic non-smartphone cellular phone. For example, the smartphone 201 may have the ability to run third party applications which are stored on the smartphone.


The smartphone 201 may include the components discussed above with reference to FIG. 1 or a subset of those components. The smartphone 201 includes a housing which houses at least some of the components discussed above with reference to FIG. 1.


The example smartphone 201 also includes other input interfaces such as one or more buttons, keys or navigational input mechanisms. In the example illustrated, at least some of these additional input interfaces are disposed for actuation at a front side of the smartphone.


Example Tablet Electronic Device


Referring now to FIG. 3, a front view of an example electronic device 100 which is a tablet computer 301 is illustrated. The tablet computer 301 may include many of the same features and components of the smartphone 201 of FIG. 2. However, the tablet computer 301 of FIG. 3 is generally larger than the smartphone 201. The tablet computer 301 may include the components discussed above with reference to FIG. 1 or a subset of those components. The tablet computer 301 includes a housing which houses at least some of the components discussed above with reference to FIG. 1.


Content Selection


The display 112 of an electronic device 100 is primarily used for displaying content. Through the use of user input means on the electronic device 100, such as touch sensors 114, the user can select content to perform actions on. User interfaces should provide a user with a way of efficiently and intuitively selecting which content they wish to select.


In the following description, text-based content type will be used for illustrating improved methods of selecting content. However, it should be clear that the proposed solutions can be implemented with content types other than text. Text is used to illustrate the methods as it is a good example of a content type that would benefit from such methods, particularly because there are a number of ways it can be grouped. Textual content may be treated as individual letters, or it may be considered as grouping of letters in the form of words, or groupings of words in the form of sentences, or other groupings such as by row, paragraph, column and page.


Given how many different ways there are of grouping text, there may also be different ways a user may wish to select it, as a user may be more interested in selecting a certain paragraph than a certain word. Finer tuned selections (such as selection by letter) allow for greater accuracy of the selection, but would take longer to perform for larger selections (such as selection by paragraph). A user interface may enable a user to perform both fine tuned and larger selections, allowing the user intuitively to switch between the different granularities for text selection.


Paragraph Selection



FIGS. 4A to 4C illustrate a method of switching between granularities of selection. In these examples, the method provides a way of performing letter-by-letter selection as well as paragraph selection.



FIG. 4A shows an electronic device 100 with a touch-sensitive-display 118, the touch-sensitive display 118 displaying four paragraphs of text 405, 410, 420 and 430, a selected portion of text 450 and selection handles at the start 440 and end 460 of the selected text 450. The selected portion of text 450 may have been selected in response to a touch input representing a selection of text.


If the device receives a user input indicating that the end selection handle 460 should be moved (for example a touch and drag of the selection handle 460), the end of the text selection 450 may move with it. A small movement of the end selection handle 460 to the right may cause the end of the text selection 450 to move onto the next letter, snapping to the nearest letter to the moved end selection handle 460. Similarly, small movements of the start selection handle 440 may cause the start of the text selection 450 to snap to the letter nearest to the start selection handle 440. This described modification of the text selection 450 by snapping to whatever letter is closest to a selection handle will be referred to as a letter-by-letter selection.


If a user wished to select large portions of the text, for example the fourth 430 paragraph, they may encounter difficulties with selecting the whole of the fourth paragraph 430 as the end of the paragraph is not displayed on the display 112 due to it being below the visible region of the display 112 in this example. Therefore, to include the fourth paragraph 430 in the selection, the user may have to drag the end selection handle 460 down to the bottom of the display 112, then scroll the screen (either by initiating a scrolling gesture or by allowing the screen to ‘creep’ up in response to the selection handle's 460 close proximity to the bottom), and, once the end of the fourth paragraph 430 comes into view, continue moving the end selection handle 460 to the end of the fourth paragraph 430. This results in a cumbersome, time consuming user interaction.


The method reduces the burden on the user by providing a paragraph selection mode and determining when to make it available. It may do so by determining whether the selected portion of text 450 has been modified such that either the first or last row of the selection 450 is a complete row of text. If the top or bottom ends of the selected text 450 contains a complete row, then either the end selection handle 460 has been moved to the end of a row, or the start selection handle 440 has been moved to the start of a row, or both events have occurred. In such an instance, as a selection handle has been moved to an outer edge of a row, there may be a possibility that the user intends to start selecting whole paragraphs. Therefore, in response to detecting a selection handle selecting a complete a row, a paragraph selection handle is displayed so that a user can then perform paragraph selection.



FIG. 4B illustrates a paragraph selection handle 470 being displayed in response to a user input. In this example, the selected text 450 of FIG. 4A has been expanded to the selected text 451. This expansion is the result of a movement of the end selection handle 460 to the end of the row, thereby selecting the whole end row of the selected portion of text 451 and thus providing the device 100 with an indication that a paragraph selection mode may be required. The paragraph selection handle 470 may be positioned on the same row as the complete row just selected. In this example, the paragraph selection handle 470 appears on the bottom row, as that is the complete row just selected by movement of the end selection handle 460. The paragraph selection handle 470 may also be positioned this way because the most likely direction of further paragraph selection may be downwards if the end selection handle 460 has been moved to the end of the row.


Similarly, if the start selection handle 440 is moved to completely select a row, as shown in FIG. 4C, then a paragraph selection handle 480 may be displayed on a first row of the newly expanded selected text 452. In FIG. 4C, paragraph selection handles are displayed both on the top 480 and bottom 470 of the selected text 452, as both start 440 and end 460 handles have been moved to completely select a row. If only one of the start 440 or end 460 handles have moved to completely select a row, then the paragraph selection handle may appear only on the completed row and not the other (as shown previously in FIG. 4B).


In addition to, or instead of the criteria that a start or end row of a selected portion of text 450 must be completely selected before paragraph selection handles can be displayed, there may be a requirement that the selected portion of text 450 is above a certain size. For example, there may be a requirement that the selected portion of text 450 spans at least three rows before the paragraph selection handles can be displayed. This may be to avoid the instance where only one or two rows have been selected, leading to the possibility of the paragraph selection handles and start or end selection handles being too close together to individually control by touch input. Having a minimum row requirement may also be beneficial as that way the device may only display the paragraph selection handles once the selected text 450 is larger than a threshold value, thereby indicating a higher likelihood that the user may wish to perform paragraph selections.


The paragraph selection handles themselves may allow the user to select text in a paragraph aware manner. For example, if the paragraph selection handle 470 shown in FIG. 4B were dragged down a small amount, the selected portion of text 451 may expand so as to extend to the end of the current paragraph. This may be displayed by showing the bottom of the selection area move down to the end of the current paragraph, along with the handles 470 and 460. However, this may result in the paragraph selection handle 470 moving away from the original location of the user's touch that was dragging the paragraph selection handle 470. Therefore, if the user wished to continue with paragraph selection, the user would have to reselect the now moved paragraph selection handle. This would be especially problematic if the end of the selected paragraph was not visible on the display.


To address the above problem, the method may instead ensure that the paragraph selection handle 470 being moved is always coupled to the location of the touch input moving it. Thus, as the paragraph selection handle is dragged 470, the underlying content itself moves in the display so that the end of the current paragraph lies under the touch input position. In other words, the display may automatically scroll to the end of the paragraph being selected. In this manner, the user will be able to see how the end point of the selection changes because the display scrolls so as to always show the end point. Similarly, dragging the top paragraph selection handle 480 upwards results in the selection extending to the starts of the paragraphs above, the size of the drag determining how many paragraphs above the current one to extend to. As long as the user drags the paragraph selection handle 470, the device will remain in paragraph selection mode.


If a user drags a bottom paragraph selection handle 470 downwards, the selection area may expand downwards to the end of the paragraph. Further dragging the bottom paragraph selection handle 470 downwards may cause the selection area 452 to expand to the end of a lower paragraph (such as paragraph 430). Similarly, the extent of the drag upwards of a top paragraph selection handle 480 may determine how many paragraphs up the selection area 452 is extended to.


Dragging the selection handles in the opposite direction, however, may result in different behaviour. For example, dragging a bottom selection handle 470 upwards may cause the selection area 452 to return to what it was prior to being modified by the bottom paragraph selection handle 470. Optionally, dragging the bottom selection handle 470 upwards may cause the selection area 452 to contract in discrete amounts such that for each drag upwards, the selection area 452 contracts so that it covers one less full paragraph. Once the selection area 452 only covers one whole or paragraph, a further movement upward of the bottom selection handle 470 upwards may have no effect on the selection area 452.


A flowchart illustrating a method of performing paragraph selection is shown in FIG. 10. The method may be carried out by software executed, for example, by the processor 102. Coding of software for carrying out such a method is within the scope of a person of ordinary skill in the art given the present description. The method may contain additional or fewer processes than shown and/or described, and may be performed in a different order. Computer-readable code executable by at least one processor of the portable electronic device to perform the method may be stored in a computer-readable medium, which may be a non-transitory or tangible storage medium.


In the method shown in FIG. 10, a first touch input representing a selection of multiple rows of text displayed on a touch-sensitive display of an electronic device is detected 1210. A determination is made as to whether a complete row of text has been selected from a start point or to an end point of the selected text 1220. A paragraph selection handle proximal to the row is displayed, the paragraph selection handle being responsive to a second touch input to place the electronic device in a paragraph selection mode for the selection of text 1230.


Row Selection


In the previous section, a method for enabling and performing paragraph selection was disclosed. In addition to, or independently of this method, a method for enabling row-by-row selection is provided below.


In letter-by-letter selection mode, as a selection handle is moved, the corresponding part of the selection area (selected portion of text) snaps to the letter nearest to the selection handle. Therefore, in letter-by-letter mode, as a selection handle is moved across a row, letters are individually added or removed from the selection. However, as a selection handle is moved up or down to a different row, the nearest letter to the selection handle is on a different row and so, when the selection area snaps to that area, it snaps to include all the other letters in the row up to the selection handle. Therefore, moving a selection handle to the very right or left of a row, and subsequently moving the selection handle up or down, results in the entire rows being added or removed from the selection at a time. In this way, it is possible to perform row-by-row selection simply by using the mechanics provided by existing letter-by-letter selection.


However, performing the above type of row-by-row selection has some drawbacks. To perform row-by-row selection in this manner requires that a selection handle moves straight up or down along the side of the text. Moving the selection handle into the text and away from the edge may result in individual letters being selected instead of rows. Therefore, using a letter-by-letter selection mechanism for row-by-row selection may be too sensitive to small deviations in the horizontal movement of the selection handle.



FIGS. 5A and 5B illustrate possible sources of deviations. FIG. 5A shows an electronic device 100 with a touch-sensitive display 118, displaying on the touch-sensitive display some text 510 and a selection of the text 520. When a user attempts to perform row-by-row selection with the thumb 550 of the left hand, they may start the gesture at point 530 and begin to drag a selection handle straight down. this drag movement 540 begins to curve into the text and away from the edge because of the natural curvature of a thumb's movement. This may lead to text selection by letter rather than by row. Similarly, in FIG. 5B, the natural curvature of movement of a user's right thumb may result in a gesture 570 starting at point 560 to deviate from a straight line path and a curve into the text. This curvature may be further exaggerated by performing the gesture quickly.


One way to solve the above problem is to incorporate a dedicated row-by-row selection mode, such as is illustrated in FIGS. 6A to 6C. FIG. 6A shows a portion of a display 114 containing text 610, a selection area 620, and a selection handle 630. In this example, the selection handle 630 has been dragged to the side of the text, and in doing so has enabled a row-by-row selection mode. Upon entering this mode, moving the selection handle 630 up and down 660 results in the same behavior as the letter-by-letter based row-by-row implementation. This is because moving the selection handle 630 up and down 660 snaps the corresponding end of the selection area 620 to the row closest to the selection handle 630. In this row selection mode, there may be a threshold area 640 provided, such that when a selection handle 630 is moved outside of this threshold area 640, the selection mode returns to letter-by-letter selection mode. For example, moving the selection handle 630 into the text region (or ‘letter-by-letter selection mode’ region) 650 may cause row-by-row mode to end. This is illustrated in FIG. 6B, which shows the resulting selection area 621 from such a movement 665 of the selection handle 630 into the text region. Continuing to move the selection handle 630 within the threshold area may result in row-by-row selection mode to be maintained, as shown in FIG. 6C, where the selection area 622 has been extended by row.


The threshold area 640 may vary in width to compensate for the aforementioned curvature of thumb movement. By causing the threshold area to increase with area 640 at regions further from the start point of the selection handle 630, it may allow for more horizontal variation in the movement of the selection handle. The width of the threshold area 640 at various points along its length may be controlled dynamically, such that it varies according to various factors. One such factor may be the number of rows already selected, since there is a higher chance that the user will continue to remain in row-by-row selection mode if a large number of rows have already been selected. Moreover, the width of the threshold area 640 may be increased so as to require a larger, more deliberate movement of the selection handle 630 into the text area 650 before letter-by-letter mode is activated instead of row-by-row selection. The threshold area 640 may increase as more rows are selected. Similarly, if the selection area 620 is reduced, the likelihood of returning to letter-by-letter mode increases, and so the threshold area 640 may decrease as a result. Another possible factor may be the speed of the movement of the selection handle 630. For example, if it is moved quickly, there is a higher chance of deviation from a straight line, and so the width of the threshold area 640 may be increased to compensate for this.


This method may be applied to column-by-column selection rather than row-by-row selection, depending on the orientation of the text. For example, in certain language systems, the text may be arranged in vertical lines rather than horizontal lines.


A flowchart illustrating a method of performing row-by-row selection is shown in FIG. 11. The method may be carried out by software executed, for example, by the processor 102. Coding of software for carrying out such a method is within the scope of a person of ordinary skill in the art given the present description. The method may contain additional or fewer processes than shown and/or described, and may be performed in a different order. Computer-readable code executable by at least one processor of the portable electronic device to perform the method may be stored in a computer-readable medium, which may be a non-transitory or tangible storage medium.


In the method shown in FIG. 11, the location of a text selection icon on a display of an electronic device is detected 1110. Detect touch input representing a selection of text displayed on the display using the text selection icon 1130. If the detected location of the text selection icon is maintained within a zone adjacent an edge of the display, the displayed text is selected on a row-by-row basis 1130. If the detected location of the text selection icon moves outside this zone, the displayed text is selected on a letter-by-letter basis 1140.


Selection Handle


Selection handles may be used for controlling selection areas on a display. Methods are now described which improve on existing selection handle technology, and may be used in any combination with the methods previously described or may be implemented independently.



FIG. 7A shows an electronic device with a touch-sensitive screen, and displayed on that screen is a first paragraph of text 710, a second paragraph of text 711, and a picture 712. In an example, a selection 720 has already been made and a start selection handle 730 and end selection handle 740 are displayed in connection with the start and end points of the selection 720. This selection 720 may have been made by an earlier touch input.



FIG. 7B shows a user 760 touching the selection handle 730, and in doing so obscuring the selection handle 730 and also letters near to the touch area 750. A problem therefore arises, in that the user is unable to see the current location of the selection handle 730 will not be able to accurately determine what is currently selected, when adjusting the selection area 720.


One proposed solution is illustrated in FIG. 7C. On performing a touch interaction with the selection handle 730, the contents of the display may move 780 such that the text in close proximity to the touched selection handle 730 is not obscured by the touch input object 760. In this way, the user may be able to view the content just selected. Also, or instead of this movement 780, an extended selection handle 777 may appear. This extended selection handle 777 may provide a graphical link between the point of touch on the touch-sensitive display 118 and the corresponding end of a selection area 720. The touch point may not only be graphically coupled to the end of the selection area 720 by the extended selection handle 777, but may also be operatively coupled to it. Therefore, if the touch point moves (for example, because the user 760 performs a drag while still touching on the selection handle 777), the corresponding end of the selection area 720 may move as well.



FIG. 8A shows a more detailed view of the extended selection handle 777. On this extended selection handle 777 there may be a touch portion 830 (also referred to as a ‘handle’), a neck portion 820 (also referred to as a ‘cursor neck’) and a content selection portion 810 (also referred to as a ‘content selection portion’). The touch portion 830 may be the portion of the selection handle 777 that responds to user input and can be touched and dragged to cause the rest of the selection handle 777 to be moved. If a touch input is used to drag the selection handle 777, the touch portion may remain coupled to the location on the display corresponding to the detected touch location such that it always remains under the user's finger as the selection handle 777 is moved.


The content selection portion 810 may be coupled to a selection area 720. For example, as shown in FIG. 8B, the content selection portion 810 is coupled to a start end of the selection area 720 such that as the selection handle 777 moves, as does the start of the selection area 720. This may be represented graphically in a different way, such as shown in FIG. 8C, where the content selection portion 810 is also coupled to the start end of the selection area 720, but is displayed to reach the top left portion of the selection area 720. Functionally, there may be no difference between the two selection handles 777 shown in FIGS. 8B and 8C.


The neck portion 820 graphically connects the touch portion 830 to the content selection portion 810. While the touch portion 830 may be obscured by a user's touch, the user may be able to see the neck portion 820 extending from the touch portion 830 (under the user's finger) to the content selection portion 810. This may indicate to the user that the touch portion 830 and content selection portion 810 are connected, and that by dragging the touch portion 830, the content selection portion 810 will also be moved. Referring back to FIG. 7C, although the part of the selection area 720 that the user touched has moved away, because the extended selection handle 777 has been displayed the user will see a connection between where they originally pressed and where the corresponding selection area 720 has now moved to. The extended selection handle 777 may be displayed as an animation, showing a transformation of the original selection handle 730 to the extended selection handle 777. Such an animation may be a neck portion extending out of the original selection handle 730 at the same rate as the underlying content moves up 780.



FIG. 9A shows an electronic device 100 with a touch-sensitive display 118 displaying a first and second paragraph 910 and 911, a selection area 930 and an extended selection handle 777 coupled to the start of the selection area 930. If a user touches 940 the touch portion of the extended selection handle 777 and drags 950 it to a different location, the user's finger (or other touch object) may not obscure the start area of the selection area 930, because the start of the selection area 930 is spatially separated from the touch portion of the extended selection handle 777. Therefore, the user may adjust the selection area 930 while still being able to see where the start of the selection area 930 is being moved. Similarly, the end of the selection area 930 may be moved through use of an extended selection handle coupled to the end of the selection area 930.


However, as the user performs a drag to move the extended selection handle 777, there may be a delay between the receipt of the touch input indicating a drag and the updating of the display to show the new position of the extended selection handle 777 and selection area 930. A result of such a delay may be that the user's finger (or other touch object) does obscure a part of the selection area 930 or nearby text as the drag is performed. In other words the selection area 930 may not be able to move as fast as the drag motion and may become obscured as a result. Also, as a user's finger changes position on the touch-sensitive display 118, the angle the finger makes to the display may change and there may be a difference between location where the touch is registered and the location the user thinks they are touching.



FIG. 9B provides a possible solution to this problem. As the extended selection handle is moved, the neck portion may extend 977 to increase the distance between the touch portion and the content selection portion. In other words, to prevent the physical location of the touch object ‘catching up’ with the coupled part of the selection area 935, the neck portion extends faster than the finger moves. This extension may also cater for a changed angle of the user's finger. The length of the neck portion may change dynamically depending on factors including the speed of the drag, position of the selection area with respect to the edges of the screen, the detected angle of the user's finger and the size of the font of the content being selected. The neck portion may have a maximum length and it may have a minimum length.


A flowchart illustrating a method of modifying a selection handle is shown in FIG. 10. The method may be carried out by software executed, for example, by the processor 102. Coding of software for carrying out such a method is within the scope of a person of ordinary skill in the art given the present description. The method may contain additional or fewer processes than shown and/or described, and may be performed in a different order. Computer-readable code executable by at least one processor of the portable electronic device to perform the method may be stored in a computer-readable medium, which may be a non-transitory or tangible storage medium.


In the method shown in FIG. 10, a content selection icon is displayed on a touch-sensitive display of an electronic device 1010. A touch input is detected at a location operable to select a content selection function associated with the content selection icon 1020. On detecting the touch, the content selection icon is modified to display a touch portion at a location on the display corresponding to the detected touch location, and a content selection portion operatively coupled to, but spatially separated from the touch portion 1030.


The present disclosure may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A method for an electronic device, the method comprising: detecting a location of a text selection icon on a touch-screen display of the electronic device;detecting touch input reflecting a selection of text displayed on the display using the text selection icon, wherein the touch input comprises a continuous movement of the text selection icon;wherein the detected location of the text selection icon is outside an area adjacent an edge of the display, enabling a row selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location outside the area adjacent the edge of the display to a location within the area adjacent the edge of the display, wherein in the row selection mode, the selection of text comprises a selection of an entire row of the text nearest to the text selection icon; orwherein the detected location of the text selection icon is within the area adjacent the edge of the display, enabling a letter selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location within the area adjacent the edge of the display to a location outside the area adjacent the edge of the display, wherein in the letter selection mode, the selection text comprises a selection of a letter of the text nearest to the text selection icon; andwherein a width of the area adjacent the edge of the display varies based on speed of the continuous movement of the text selection icon.
  • 2. The method of claim 1, further comprising maintaining the row selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location within the area adjacent the edge of the display to another location within the area adjacent the edge of the display.
  • 3. The method of claim 1, further comprising maintaining the letter selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location outside the area adjacent the edge of the display to another location outside the area adjacent the edge of the display.
  • 4. The method of claim 1, wherein the width of the area adjacent the edge of the display increases when the speed of the continuous movement of the text selection icon is beyond a threshold.
  • 5. An electronic device comprising: a touch-screen display configured to receive touch input;at least one processor configured to: detect a location of a text selection icon on the display,detect a touch input reflecting a selection of text displayed on the display using the text selection icon, wherein the touch input comprises a continuous movement of the text selection icon;wherein the detected location of the text selection icon is outside an area adjacent an edge of the display, enable a row selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location outside the area adjacent the edge of the display to a location within the area adjacent the edge of the display, wherein in the row selection mode, the selection of text comprises a selection of an entire row of the text nearest to the text selection icon; orwherein the detected location of the text selection icon is within the area adjacent the edge of the display, enabling a letter selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location within the area adjacent the edge of the display to a location outside the area adjacent the edge of the display, wherein in the letter selection mode, the selection text comprises a selection of a letter of the text nearest to the text selection icon; andwherein a width of the area adjacent the edge of the display varies based on speed of the continuous movement of the text selection icon.
  • 6. The electronic device of claim 5, the at least one processor further configured to maintain the row selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location within the area adjacent the edge of the display to another location within the area adjacent the edge of the display.
  • 7. The electronic device of claim 5, the at least one processor further configured to maintain the letter selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location outside the area adjacent the edge of the display to another location outside the area adjacent the edge of the display.
  • 8. The electronic device of claim 5, wherein the width of the area adjacent the edge of the display increases when the speed of the continuous movement of the text selection icon is beyond a threshold.
  • 9. A method for an electronic device, the method comprising: detecting a location of a text selection icon on a touch-screen display of the electronic device;detecting touch input reflecting a selection of text displayed on the display using the text selection icon, wherein the touch input comprises a continuous movement of the text selection icon;wherein the detected location of the text selection icon is outside an area adjacent an edge of the display, enabling a row selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location outside the area adjacent the edge of the display to a location within the area adjacent the edge of the display; orwherein the detected location of the text selection icon is within the area adjacent the edge of the display, enabling a letter selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location within the area adjacent the edge of the display to a location outside the area adjacent the edge of the display, wherein in the letter selection mode, the selection text comprises a selection of a letter of the text nearest to the text selection icon; andwherein a width of the area adjacent the edge of the display is determined based on prior selections being in the row selection mode or the letter selection mode.
  • 10. The method of claim 9, further comprising maintaining the row selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location within the area adjacent the edge of the display to another location within the area adjacent the edge of the display.
  • 11. The method of claim 9, further comprising maintaining the letter selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location outside the area adjacent the edge of the display to another location outside the area adjacent the edge of the display.
  • 12. The method of claim 9, wherein the prior selections being in the row selection mode or the letter selection mode comprise a number of rows already selected being in the row selection mode or the letter selection mode.
  • 13. The method of claim 9, wherein the width of the area adjacent the edge of the display increases when more rows are selected in the row selection mode or the letter selection mode as the text selection icon moves.
  • 14. An electronic device comprising: a touch-screen display configured to receive touch input;at least one processor configured to: detect a location of a text selection icon on the display,detect a touch input reflecting a selection of text displayed on the display using the text selection icon, wherein the touch input comprises a continuous movement of the text selection icon;wherein the detected location of the text selection icon is outside an area adjacent an edge of the display, enable a row selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location outside the area adjacent the edge of the display to a location within the area adjacent the edge of the display, wherein in the row selection mode, the selection of text comprises a selection of an entire row of the text nearest to the text selection icon; orwherein the detected location of the text selection icon is within the area adjacent the edge of the display, enabling a letter selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location within the area adjacent the edge of the display to a location outside the area adjacent the edge of the display, wherein in the letter selection mode, the selection text comprises a selection of a letter of the text nearest to the text selection icon; andwherein a width of the area is determined based on prior selections being in the row selection mode or the letter selection mode.
  • 15. The electronic device of claim 14, the at least one processor further configured to maintain the row selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location within the area adjacent the edge of the display to another location within the area adjacent the edge of the display.
  • 16. The electronic device of claim 14, the at least one processor further configured to maintain the letter selection mode responsive to a determination that the continuous movement causes the text selection icon to move from the location outside the area adjacent the edge of the display to another location outside the area adjacent the edge of the display.
  • 17. The electronic device of claim 14, wherein the prior selections being in the row selection mode or the letter selection mode comprise a number of rows already selected being in the row selection mode or the letter selection mode.
  • 18. The electronic device of claim 14, wherein the width of the area adjacent the edge of the display increases when more rows are selected in the row selection mode or the letter selection mode as the text selection icon moves.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/564,687, entitled “Method and Apparatus for Text Selection,” filed Aug. 1, 2012, which is a continuation of U.S. patent application Ser. No. 13/459,980, filed Apr. 30, 2012, both of which are incorporated herein by reference.

US Referenced Citations (245)
Number Name Date Kind
3872433 Holmes et al. Mar 1975 A
4408302 Fessel et al. Oct 1983 A
5119079 Hube Jun 1992 A
5261009 Bokser Nov 1993 A
5523775 Capps Jun 1996 A
5664127 Anderson et al. Sep 1997 A
5832528 Kwatinetz et al. Nov 1998 A
5953735 Forcier Sep 1999 A
5963671 Comerford et al. Oct 1999 A
6002390 Masui Dec 1999 A
6064340 Croft et al. May 2000 A
6094197 Buxton et al. Jul 2000 A
6223059 Haestrup Apr 2001 B1
6226299 Henson May 2001 B1
6351634 Shin Feb 2002 B1
6421453 Kanevsky et al. Jul 2002 B1
6519584 Tognazzini et al. Feb 2003 B1
6646572 Brand Nov 2003 B1
7098896 Kushler et al. Aug 2006 B2
7107204 Liu et al. Sep 2006 B1
7216588 Suess May 2007 B2
7277088 Robinson et al. Oct 2007 B2
7292226 Matsuura et al. Nov 2007 B2
7382358 Kushler et al. Jun 2008 B2
7394346 Bodin Jul 2008 B2
7443316 Lim Oct 2008 B2
7479949 Jobs et al. Jan 2009 B2
7487461 Zhai et al. Feb 2009 B2
7530031 Iwamura et al. May 2009 B2
7661068 Lund Feb 2010 B2
7698127 Trower, II et al. Apr 2010 B2
7886233 Rainisto et al. Feb 2011 B2
7934156 Forstall et al. Apr 2011 B2
8023930 Won Sep 2011 B2
8065624 Morin et al. Nov 2011 B2
8201087 Kay et al. Jun 2012 B2
8276099 Yost Sep 2012 B2
8294680 Karlsson Oct 2012 B2
8326358 Runstedler et al. Dec 2012 B2
8490008 Griffin et al. Jul 2013 B2
8661339 Weeldreyer et al. Feb 2014 B2
8677232 Weeldreyer et al. Mar 2014 B2
8704783 Davis et al. Apr 2014 B2
8719695 Weeldreyer et al. May 2014 B2
20020010707 Chang Jan 2002 A1
20020080186 Frederiksen Jun 2002 A1
20020097270 Keely et al. Jul 2002 A1
20020122029 Murphy Sep 2002 A1
20020154037 Houston Oct 2002 A1
20020180797 Bachmann Dec 2002 A1
20040111475 Schultz Jun 2004 A1
20040135818 Thomson et al. Jul 2004 A1
20040140956 Kushler et al. Jul 2004 A1
20040153963 Simpson et al. Aug 2004 A1
20040201576 Shimada et al. Oct 2004 A1
20050017954 Kay et al. Jan 2005 A1
20050024341 Gillespie et al. Feb 2005 A1
20050039137 Bellwood et al. Feb 2005 A1
20050052425 Zadesky et al. Mar 2005 A1
20050093826 Huh May 2005 A1
20050162407 Sakurai et al. Jul 2005 A1
20050195173 McKay Sep 2005 A1
20050262442 Soin et al. Nov 2005 A1
20060022947 Griffin et al. Feb 2006 A1
20060026521 Hotelling et al. Feb 2006 A1
20060033724 Chaudhri et al. Feb 2006 A1
20060053387 Ording Mar 2006 A1
20060176283 Suraqui Aug 2006 A1
20060209040 Garside et al. Sep 2006 A1
20060239562 Bhattacharyay et al. Oct 2006 A1
20060253793 Zhai et al. Nov 2006 A1
20060265648 Rainisto et al. Nov 2006 A1
20060265668 Rainisto Nov 2006 A1
20060279548 Geaghan Dec 2006 A1
20070040813 Kushler et al. Feb 2007 A1
20070046641 Lim Mar 2007 A1
20070061753 Ng et al. Mar 2007 A1
20070150842 Chaudhri et al. Jun 2007 A1
20070156394 Banerjee et al. Jul 2007 A1
20070157085 Peters Jul 2007 A1
20070256029 Maxwell Nov 2007 A1
20070263932 Bernardin et al. Nov 2007 A1
20080033713 Brostrom Feb 2008 A1
20080100581 Fux May 2008 A1
20080122796 Jobs et al. May 2008 A1
20080126387 Blinnikka May 2008 A1
20080136587 Orr Jun 2008 A1
20080141125 Ghassabian Jun 2008 A1
20080158020 Griffin Jul 2008 A1
20080184360 Kornilovsky et al. Jul 2008 A1
20080189605 Kay et al. Aug 2008 A1
20080231610 Hotelling et al. Sep 2008 A1
20080259040 Ording et al. Oct 2008 A1
20080273013 Levine et al. Nov 2008 A1
20080281583 Slothouber et al. Nov 2008 A1
20080304890 Shin et al. Dec 2008 A1
20080309644 Arimoto Dec 2008 A1
20080316183 Westerman et al. Dec 2008 A1
20080318635 Yoon et al. Dec 2008 A1
20090002326 Pihlaja Jan 2009 A1
20090006991 Lindberg et al. Jan 2009 A1
20090025089 Martin et al. Jan 2009 A1
20090058823 Kocienda Mar 2009 A1
20090058830 Herz et al. Mar 2009 A1
20090066668 Kim et al. Mar 2009 A1
20090077464 Goldsmith et al. Mar 2009 A1
20090085881 Keam Apr 2009 A1
20090094562 Jeong et al. Apr 2009 A1
20090125848 Keohane et al. May 2009 A1
20090132576 Miller et al. May 2009 A1
20090144667 Christoffersson et al. Jun 2009 A1
20090160800 Liu et al. Jun 2009 A1
20090167700 Westerman et al. Jul 2009 A1
20090174667 Kocienda et al. Jul 2009 A1
20090193334 Assadollahi Jul 2009 A1
20090213081 Case, Jr. Aug 2009 A1
20090228792 Van Os et al. Sep 2009 A1
20090228842 Westerman et al. Sep 2009 A1
20090237361 Mosby et al. Sep 2009 A1
20090247112 Lundy et al. Oct 2009 A1
20090251410 Mori et al. Oct 2009 A1
20090254818 Jania et al. Oct 2009 A1
20090259962 Beale Oct 2009 A1
20090265669 Kida et al. Oct 2009 A1
20090284471 Longe et al. Nov 2009 A1
20090295737 Goldsmith et al. Dec 2009 A1
20090307768 Zhang et al. Dec 2009 A1
20090313693 Rogers Dec 2009 A1
20100020033 Nwosu Jan 2010 A1
20100020036 Hui et al. Jan 2010 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100052880 Laitinen Mar 2010 A1
20100070908 Mori et al. Mar 2010 A1
20100079413 Kawashima et al. Apr 2010 A1
20100095238 Baudet Apr 2010 A1
20100115402 Knaven et al. May 2010 A1
20100127991 Yee May 2010 A1
20100131900 Spetalnick May 2010 A1
20100141590 Markiewicz et al. Jun 2010 A1
20100156813 Duarte et al. Jun 2010 A1
20100156818 Burrough et al. Jun 2010 A1
20100161538 Kennedy, Jr. et al. Jun 2010 A1
20100171713 Kwok et al. Jul 2010 A1
20100197352 Runstedler et al. Aug 2010 A1
20100199176 Chronqvist Aug 2010 A1
20100199224 Doerring Aug 2010 A1
20100225599 Danielsson et al. Sep 2010 A1
20100235726 Ording et al. Sep 2010 A1
20100235729 Kocienda et al. Sep 2010 A1
20100253620 Singhal Oct 2010 A1
20100257478 Longe et al. Oct 2010 A1
20100257490 Lyon et al. Oct 2010 A1
20100259482 Ball Oct 2010 A1
20100259561 Forutanpour et al. Oct 2010 A1
20100277424 Chang et al. Nov 2010 A1
20100287486 Coddington Nov 2010 A1
20100289757 Budelli Nov 2010 A1
20100292984 Huang et al. Nov 2010 A1
20100293460 Budelli Nov 2010 A1
20100295801 Bestle et al. Nov 2010 A1
20100313127 Gosper et al. Dec 2010 A1
20100313158 Lee et al. Dec 2010 A1
20100315266 Gunawardana et al. Dec 2010 A1
20100325721 Bandyopadhyay et al. Dec 2010 A1
20100333027 Martensson et al. Dec 2010 A1
20110010655 Dostie et al. Jan 2011 A1
20110015919 Rosart et al. Jan 2011 A1
20110018812 Baird Jan 2011 A1
20110029862 Scott et al. Feb 2011 A1
20110035696 Elazari et al. Feb 2011 A1
20110041056 Griffin et al. Feb 2011 A1
20110043455 Roth et al. Feb 2011 A1
20110060984 Lee Mar 2011 A1
20110061029 Yeh et al. Mar 2011 A1
20110063231 Jakobs et al. Mar 2011 A1
20110078613 Bangalore Mar 2011 A1
20110086674 Rider et al. Apr 2011 A1
20110090151 Huang et al. Apr 2011 A1
20110099505 Dahl Apr 2011 A1
20110099506 Gargi et al. Apr 2011 A1
20110119623 Kim May 2011 A1
20110145138 Bradley Jun 2011 A1
20110148572 Ku Jun 2011 A1
20110171617 Yeh et al. Jul 2011 A1
20110179355 Karlsson Jul 2011 A1
20110193797 Unruh Aug 2011 A1
20110202835 Jakobsson et al. Aug 2011 A1
20110202876 Badger et al. Aug 2011 A1
20110209087 Guyot-Sionnest Aug 2011 A1
20110233407 Wu et al. Sep 2011 A1
20110239153 Carter et al. Sep 2011 A1
20110242138 Tribble Oct 2011 A1
20110248945 Higashitani Oct 2011 A1
20110249076 Zhou et al. Oct 2011 A1
20110256848 Bok et al. Oct 2011 A1
20110285656 Yaksick et al. Nov 2011 A1
20110302518 Zhang Dec 2011 A1
20110305494 Kang Dec 2011 A1
20120005576 Assadollahi Jan 2012 A1
20120023447 Hoshino et al. Jan 2012 A1
20120029910 Medlock et al. Feb 2012 A1
20120030566 Victor Feb 2012 A1
20120030623 Hoellwarth Feb 2012 A1
20120036469 Suraqui Feb 2012 A1
20120053887 Nurmi Mar 2012 A1
20120062465 Spetalnick Mar 2012 A1
20120062494 Hsieh et al. Mar 2012 A1
20120068937 Backlund et al. Mar 2012 A1
20120079373 Kocienda et al. Mar 2012 A1
20120092278 Yamano Apr 2012 A1
20120102401 Ijas et al. Apr 2012 A1
20120110518 Chan et al. May 2012 A1
20120119997 Gutowitz May 2012 A1
20120149477 Park et al. Jun 2012 A1
20120159317 Di Cocco et al. Jun 2012 A1
20120166696 Kallio et al. Jun 2012 A1
20120167009 Davidson et al. Jun 2012 A1
20120185787 Lisse et al. Jul 2012 A1
20120223959 Lengeling Sep 2012 A1
20120227009 Fiedler Sep 2012 A1
20120249595 Feinstein Oct 2012 A1
20120268388 Razzaghi Oct 2012 A1
20120306772 Tan et al. Dec 2012 A1
20120306778 Weeldreyer et al. Dec 2012 A1
20120306779 Weeldreyer et al. Dec 2012 A1
20120311422 Weeldreyer et al. Dec 2012 A1
20120311435 Weeldreyer et al. Dec 2012 A1
20120311437 Weeldreyer et al. Dec 2012 A1
20130007606 Dolenc Jan 2013 A1
20130061317 Runstedler et al. Mar 2013 A1
20130067373 Weir et al. Mar 2013 A1
20130067411 Kataoka et al. Mar 2013 A1
20130120266 Griffin et al. May 2013 A1
20130120267 Pasquero et al. May 2013 A1
20130120268 Griffin et al. May 2013 A1
20130125036 Griffin et al. May 2013 A1
20130125037 Pasquero et al. May 2013 A1
20130147718 Dent et al. Jun 2013 A1
20130176228 Griffin et al. Jul 2013 A1
20130187858 Griffin et al. Jul 2013 A1
20130187868 Griffin et al. Jul 2013 A1
20130222255 Pasquero et al. Aug 2013 A1
20130222256 Pasquero et al. Aug 2013 A1
20140192004 Andersson Jul 2014 A1
20150067559 Missig Mar 2015 A1
Foreign Referenced Citations (50)
Number Date Country
2688204 Jul 2010 CA
101021762 Aug 2007 CN
0844571 May 1998 EP
0880090 Nov 1998 EP
0880090 Nov 1998 EP
1847917 Oct 2007 EP
1847917 Oct 2007 EP
1850217 Oct 2007 EP
1909161 Apr 2008 EP
1939715 Jul 2008 EP
1942398 Jul 2008 EP
2077491 Jul 2009 EP
2109046 Oct 2009 EP
2128750 Dec 2009 EP
2146271 Jan 2010 EP
2184686 May 2010 EP
2214118 Aug 2010 EP
2256614 Dec 2010 EP
2282252 Feb 2011 EP
2293168 Mar 2011 EP
2320312 May 2011 EP
2336851 Jun 2011 EP
2381384 Oct 2011 EP
2402846 Jan 2012 EP
2420925 Feb 2012 EP
2431842 Mar 2012 EP
2400426 Mar 2013 EP
2618248 Jul 2013 EP
2011-197782 Oct 2011 JP
2012-068963 Apr 2012 JP
20120030652 Mar 2012 KP
WO03029950 Apr 2003 WO
WO03054681 Jul 2003 WO
WO2004001560 Dec 2003 WO
WO2005064587 Jul 2005 WO
WO2006100509 Sep 2006 WO
WO2007068505 Jun 2007 WO
WO2007076210 Jul 2007 WO
WO2007134433 Nov 2007 WO
WO2008030974 Mar 2008 WO
WO2008057785 May 2008 WO
WO2008085741 Jul 2008 WO
WO2009019546 Feb 2009 WO
WO2010035574 Apr 2010 WO
WO2010099835 Sep 2010 WO
WO2010112841 Oct 2010 WO
WO2011073992 Jun 2011 WO
WO2011098925 Aug 2011 WO
WO2011113057 Sep 2011 WO
WO2012043932 Apr 2012 WO
Non-Patent Literature Citations (137)
Entry
Canadian Office Action in Canadian Application No. 2,821,784, dated Jul. 9, 2014, 3 pages.
International Preliminary Report of Patenability in International Application No. PCT/CA2012/050274, dated Nov. 4, 2014, 6 pages.
International Preliminary Report of Patenability in International Application No. PCT/CA2012/050362, dated Aug. 26, 2014, 6 pages.
International Preliminary Report of Patenability in International Application No. PCT/CA2012/050405, dated Aug. 26, 2014, 8 pages.
International Preliminary Report of Patenability in International Application No. PCTEP2012/057946, dated Nov. 4, 2014, 5 pages.
International Search Report and Written Opinion in International Application NO. PCTEP2012/057946, dated Aug. 31, 2012, 9 pages.
United States Office Action in U.S. Appl. No. 13/459,301, dated May 2, 2014, 19 pages.
United States Office Action in U.S. Appl. No. 13/459,301, dated Oct. 17, 2014, 18 pages.
United States Office Action in U.S. Appl. No. 13/482,705, dated May 15, 2014 12 pages.
United States Office Action in U.S. Appl. No. 13/482,705, dated Sep. 29, 2014 14 pages.
United States Office Action in U.S. Appl. No. 13/524,678, dated Apr. 18, 2014, 12 pages.
United States Office Action in U.S. Appl. No. 13/524,678, dated Sep. 18, 2014, 10 pages.
United States Office Action in U.S. Appl. No. 13/563,182, dated Jun. 11, 2014, 8 pages.
United States Office Action in U.S. Appl. No. 13/564,697, dated Dec. 6, 2013, 11 pages.
United States Office Action in U.S. Appl. No. 13/564,697, dated Mar. 26, 2014, 9 pages.
United States Office Action in U.S. Appl. No. 13/564,697, dated Sep. 25, 2014, 6 pages.
United States Office Action in U.S. Appl. No. 13/572,232, dated Dec. 13, 2013, 23 pages.
United States Office Action in U.S. Appl. No. 13/572,232, dated Apr. 11, 2014, 38 pages.
United States Office Action in U.S. Appl. No. 13/572,232, dated Oct. 14, 2014, 32 pages.
“Features Included in the T-Mobile G1”, http://www.t-mobileg1.com/T-Mobile-G1-Features.pdf, 2009.
“Windows Mobile Café—Software (Freeware): Touchpal, Let's Try Tabbing Up to 300 Chars/Min”, Nov. 4, 2007, retrieved from URL:http://windows-mobile-cafe.blogspot.nl/2007/11/software-freeware-touchpal-lets-try.html, accessed online Jan. 18, 2013 (2 pages).
BlackBerry Seeker—Freeware—Pattern Lock v1.0.7, http://www.blackberryseeker.com/applications/preview/Pattern-Lock-v107.aspx, Jul. 28, 2009.
Canadian Office Action dated Aug. 8, 2012, issued in Canadian Application No. 2,688,204 (3 pages).
Canadian Office Action dated Mar. 27, 2013, issued in Canadian Application No. 2,737,314 (3 pages).
Chong et al., Exploring the Use of Discrete Gestures for Authentication, IFIP International Federation for Information Processing, 2009.
Conveniently select text, images, annotations, etc. in a PDF or any other text format on a touch based mobile/tablet device, IP.com Journal, Mar. 1, 2011, XP013142665, (10 pages).
Distinctive Touch: Gesture-based lightweight identification for touchscreen displays, Electronic Max, Dec. 7, 2004, http://courses.media.mit.edu/2004fall/mas622j/04.projects/students/VanKleek/; accessed online Apr. 27, 2009, pp. 1-11.
Droid X by Motorola © 2010 Screen shots.
Droid X by Motorola © 2010 User Manual (72 pages).
Enable or Disable SureType with a RIM BlackBerry Pearl Using Handheld Software, version 4.x, “http://www.wireless.att.com/support—static—files/KB/KB72601.html”, at least as early as Feb. 8, 2008 (3 pages).
European Examination Report dated Apr. 5, 2013, issued in European Application No. 12180190.6 (7 pages).
European Examination Report dated Aug. 22, 2013, issued in European Application No. 12166520.2, (4 pages).
European Examination Report dated Aug. 22, 2013, issued in European Application No. 12173818.1, (6 pages).
European Partial Search Report dated Jan. 16, 2013, issued in European Application No. 12182612.7 (5 pages).
European Partial Search Report dated Mar. 7, 2013, issued in European Application No. 12184574.7 (5 pages).
European Partial Search Report dated Sep. 16, 2010, issued in European Application No. 10160590.5 (5 pages).
Extended European Search Report dated Aug. 24, 2012, issued in European Application No. 12166115.1 (5 pages).
Extended European Search Report dated Aug. 24, 2012, issued in European Application No. 12172458.7 (6 pages).
Extended European Search Report dated Aug. 27, 2012, issued in European Application No. 12169649.6 (7 pages).
Extended European Search Report dated Aug. 31, 2012, issued in European Application No. 12166170.6 (7 pages).
Extended European Search Report dated Dec. 21, 2012, issued in European Application No. 12173818.1, (8 pages).
Extended European Search Report dated Feb. 28, 2011, issued in European Application No. 10160590.5 (10 pages).
Extended European Search Report dated Feb. 28, 2013, issued in European Application No. 12182610.1 (7 pages).
Extended European Search Report dated Jan. 25, 2013, issued in European Application No. 12166520.2 (8 pages).
Extended European Search Report dated Jun. 26, 2013, issued in European Application No. 12184574.7 (10 pages).
Extended European Search Report dated Mar. 8, 2013, issued in European Application No. 12182611.9 (8 pages).
Extended European Search Report dated May 6, 2009, issued in European Application No. 09151723.5 (7 pages).
Extended European Search Report dated Nov. 22, 2012, issued in European Application No. 12172892.7 (7 pages).
Extended European Search Report dated Nov. 28, 2011, issued in European Application No. 11180985.1 (4 pages).
Extended European Search Report dated Oct. 9, 2012, issued in European Application No. 12166244.9 (6 pages).
Extended European Search Report dated Sep. 10, 2012, issued in European Application No. 12166246.4 (6 pages).
Extended European Search Report dated Sep. 10, 2012, issued in European Application No. 12166247.2 (8 pages).
Extended European Search Report dated Sep. 21, 2012, issued in European Application No. 12164240.9 (6 pages).
Extended European Search Report dated Sep. 25, 2012, issued in European Application No. 11192713.3 (7 pages).
Extended European Search Report dated Sep. 25, 2012, issued in European Application No. 12176453.4 (7 pages).
Extended European Search Report dated Sep. 25, 2012, issued in European Application No. 12180190.6 (8 pages).
Extended European Search Report dated Sep. 3, 2012, issued in European Application No. 12164300.1 (7 pages).
Final Office Action dated Apr. 25, 2013, issued in U.S. Appl. No. 13/564,697 (11 pages).
Final Office Action dated Apr. 4, 2013, issued in U.S. Appl. No. 13/447,835 (20 pages).
Final Office Action dated Feb. 1, 2013, issued in U.S. Appl. No. 13/563,943 (17 pages).
Final Office Action dated Feb. 28, 2013, issued in U.S. Appl. No. 13/524,678 (21 pages).
Final Office Action dated Jan. 18, 2013, issued in U.S. Appl. No. 13/482,705 (18 pages).
Final Office Action dated Jul. 25, 2013, issued in U.S. Appl. No. 13/560,796, (19 pages).
Final Office Action dated Jul. 30, 2013, issued in U.S. Appl. No. 13/459,301 (27 pages).
Final Office Action dated Jul. 9, 2013, issued in U.S. Appl. No. 13/564,070 (26 pages).
Final Office Action dated Mar. 15, 2013, issued in U.S. Appl. No. 13/572,232 (36 pages).
Final Office Action dated May 10, 2013, issued in U.S. Appl. No. 13/459,301 (16 pages).
Final Office Action dated May 15, 2013, issued in U.S. Appl. No. 13/563,182 (21 pages).
Final Office Action dated May 2, 2013, issued in U.S. Appl. No. 13/564,687 (17 pages).
Final Office Action dated May 29, 2012, issued in U.S. Appl. No. 12/362,536 (16 pages).
Final Office Action dated Oct. 26, 2011, issued in U.S. Appl. No. 12/362,536 (21 pages).
Google Mobile Help—Editing text, http://supportgoogle.com/mobile/bin/answer.py?hl=en&answer=168926, date of access: Jun. 6, 2012 (2 pages).
GSMArena—Samsung announce s5600 & s5230 full touch midrange phones, http://www.gsmarena.com/samsung—announce—s5600—and—s5230—full—touch—midrange—phones-news-825.php, Mar. 10, 2009.
Hardware Sphere—Samsung s5600 & s5230 Touchscreen phones, http://hardwaresphere.com/2009/03/09/samsung-s5600-s5230-touchscreen-phones/, Mar. 9, 2009.
iPhone J.D. Typing Letters or Symbols That Are Not on the iPhone Keyboard dated Mar. 19, 2010, accessed “http://www.iphonejd.com/iphone—jd2010/03/typing-letters-or-symbols-that-are-not-on-the-iphone-keyboard.html” on Feb. 26, 2013 (3 pages).
iPhone User Guide—For iPhone OS 3.1 Software, 2009 (217 pages).
Madhvanath, Sriganesh, HP-Gesture based computing interfaces, Mar. 2008.
Manual del usuario Samsung Moment™ with Google™, dated May 20, 2012 (224 pages).
Merrett, Andy, “iPhone OS 3.0: How to cut, copy and paste text and images”, http://www.iphonic.tv/2009/06/iphone—os—30—how—to—cut—copy—a.html, Jun. 18, 2009, XP002684215, (8 pages).
Mobile Tech News—Samsung launches new Gesture Lock touchscreen handsets, http://www.mobiletechnews.com/info/2009/03/11/124559.html, Mar. 11, 2009.
Notice of Allowance dated Aug. 12, 2013, issued in U.S. Appl. No. 13/564,687, (10 pages).
Notice of Allowance dated Mar. 15, 2013, issued in U.S. Appl. No. 13/373,356 (25 pages).
Office Action dated Aug. 7, 2012, issued in U.S. Appl. No. 13/482,705 (10 pages).
Office Action dated Dec. 28, 2012, issued in U.S. Appl. No. 13/459,301 (22 pages).
Office Action dated Jan. 22, 2013, issued in U.S. Appl. No. 13/564,687 (19 pages).
Office Action dated Jan. 29, 2013, issued in U.S. Appl. No. 13/563,182 (19 pages).
Office Action dated Jan. 7, 2013, issued in U.S. Appl. No. 13/564,070 (21 pages).
Office Action dated Jan. 7, 2013, issued in U.S. Appl. No. 13/564,697 (19 pages).
Office Action dated Jul. 20, 2012, issued in U.S. Appl. No. 12/764,298 (38 pages).
Office Action dated Jun. 8, 2011, issued in U.S. Appl. No. 12/362,536 (19 pages).
Office Action dated Mar. 12, 2013, issued in U.S. Appl. No. 13/560,796 (22 pages).
Office Action dated May 30, 2013, issued in U.S. Appl. No. 13/572,232 (49 pages).
Office Action dated Nov. 14, 2012, issued in U.S. Appl. No. 13/572,232 (24 pages).
Office Action dated Nov. 16, 2012, issued in U.S. Appl. No. 13/554,583 (21 pages).
Office Action dated Nov. 8, 2012, issued in U.S. Appl. No. 13/373,356 (18 pages).
Office Action dated Oct. 15, 2012, issued in U.S. Appl. No. 13/560,270 (15 pages).
Office Action dated Oct. 17, 2012, issued in U.S. Appl. No. 13/563,943 (17 pages).
Office Action dated Oct. 18, 2012, issued in U.S. Appl. No. 13/563,182 (12 pages).
Office Action dated Oct. 23, 2012, issued in U.S. Appl. No. 12/764,298 (41 pages).
Office Action dated Oct. 25, 2012, issued in U.S. Appl. No. 13/459,732 (15 pages).
Office Action dated Oct. 26, 2012, issued in U.S. Appl. No. 13/554,436 (22 pages).
Office Action dated Oct. 5, 2012, issued in U.S. Appl. No. 13/447,835 (20 pages).
Office Action dated Sep. 10, 2012, issued in U.S. Appl. No. 13/524,678 (12 pages).
Office Action dated Sep. 28, 2012, issued in U.S. Appl. No. 13/494,794 (14 pages).
PCT International Search Report and Written Opinion dated Jan. 24, 2013, issued in International Application No. PCT/CA2012/050274 (9 pages).
PCT International Search Report and Written Opinion dated Jun. 14, 2012, issued in International Application No. PCT/IB2011/003273 (8 pages).
PCT International Search Report and Written Opinion dated Nov. 7, 2012, issued in International Application No. PCT/CA2012/050362 (9 pages).
PCT International Search Report and Written Opinion dated Nov. 8, 2012, issued in International Application No. PCT/CA2012/050405 (12 pages).
PCT International Search Report and Written Opinion dated Oct. 12, 2012, issued in International Application No. PCT/EP2012/057944 (10 pages).
PCT International Search Report and Written Opinion dated Sep. 10, 2012, issued in International Application No. PCT/EP2012/057945 (11 pages).
Sprint Support Tutorial Set the Screen Lock Pattern—Samsung Moment, http://support.sprint.com/support/tutorial/Set—the—Screen—Lock—Pattern—Samsung—Moment/10887-171, date of access: May 31, 2012 (9 pages).
Sprint Support Tutorial Unlock a Forgotten Lock Pattern—Samsung Moment, http://support.sprint.com/support/tutorial/Unlock—a—Forgotten—Lock—Pattern—Samsung—Moment/10887-339, date of access: May 31, 2012 (7 pages).
Support—Sprint Cell Phones SPH-M900—Samsung Cell Phones, http://www.samsung.com/us/support/owners/product/SPH-M900?tabContent-content2, date of access: May 31, 2012 (1 page).
Swype Product Features, accessed online at http://www.swype.com/about/specifications/ on Feb. 25, 2013 (2 pages).
Through the Magic Window—Magic Window word processor for the Apple II, Artsci Publishing, 1980, http://www.artscipub.com/history/magicwindow, accessed May 21, 2013 (5 pages).
T-Mobile Forum—Help & How to—Hidden Pattern, http://forums.t-mobile.com/tmbl/board/message?board.id=Android3&message.id=3511&query.id=52231#M3511, Oct. 23, 2008.
T-Mobile Forum—Help & How to—Screen Unlock Pattern, http://forums.t-mobile.com/tmbl/board/message?board.id=Android3&message.id=6015&query.id=50827#M6015, Oct. 22, 2008.
T-Mobile launches the highly anticipated T-Mobile G1, Oct. 22, 2008.
U.S. Appl. No. 13/447,704, filed Apr. 16, 2012, (93 pages).
U.S. Appl. No. 13/459,301, filed Apr. 30, 2012, (87 pages).
U.S. Appl. No. 13/459,716, filed Apr. 30, 2012, (63 pages).
U.S. Appl. No. 13/459,761, filed Apr. 30, 2012, (35 pages).
U.S. Appl. No. 13/459,872, filed Apr. 30, 2012, (35 pages).
U.S. Appl. No. 13/459,980, filed Apr. 30, 2012, (35 pages).
U.S. Appl. No. 13/481,171, filed May 25, 2012, (24 pages).
U.S. Appl. No. 13/525,576, filed Jun. 18, 2012, (87 pages).
U.S. Appl. No. 13/529,182, filed Jun. 21, 2012, (24 pages).
U.S. Appl. No. 13/534,101, filed Jun. 27, 2012, (85 pages).
U.S. Appl. No. 13/601,736, filed Aug. 31, 2012, (44 pages).
U.S. Appl. No. 13/601,864, filed Aug. 31, 2012, (23 pages).
U.S. Appl. No. 13/601,898, filed Aug. 31, 2012, (28 pages).
U.S. Appl. No. 13/616,423, filed Sep. 14, 2012, (30 pages).
U.S. Appl. No. 13/773,812, filed Feb. 22, 2013, (94 pages).
User Guide Samsung Moment(TM) with Google(TM), dated Dec. 4, 2009 (122 pages).
User Guide Samsung Moment(TM) with Google(TM), dated Mar. 2, 2010 (218 pages).
Wang, Feng, et al., “Detecting and Leveraging Finger Orientation for Interaction with Direct-Touch Surfaces”, UIST '09, Oct. 4-7, 2009, Victoria, British Columbia, Canada (10 pages).
Communication Pursuant to Article 94(3) EPC issued in related European Application No. 12166247.2 on Apr. 29, 2016.
Related Publications (1)
Number Date Country
20140062923 A1 Mar 2014 US
Continuations (2)
Number Date Country
Parent 13564687 Aug 2012 US
Child 13968307 US
Parent 13459980 Apr 2012 US
Child 13564687 US