This application is related to application Ser. No. 11/119,016 entitled, “Method and Apparatus for the Creation of Image Post-Processing Parameter Curves,” filed on the same date as the present application, and hereby incorporated herein by reference. application Ser. No. 11/119,016 discloses and claims a method for the automatic generation of image post-processing parameter curves.
The present invention relates generally to the field of image capture, and more particularly to the field of accurate and easy curve generation for the control of image capture devices.
In the field of image capture devices, particular in digital video cameras, a user often will desire to vary a parameter of the device with respect to time during an image capture session. For example, a user may wish to vary the zoom parameter of the lens of a digital video camera during image capture. Currently, the user must manually control the zoom parameter, typically through the use of one or more control buttons on the image capture device. Since this is done manually, the possibility of a smooth zoom is reduced. Also, the user is typically limited to zoom at a single rate of zoom. Experienced users may wish to control the zoom parameter with respect to time much more closely than is currently allowed by most image capture devices.
Zoom is but one image capture device parameter that may be varied throughout an image capture session. For example, more complicated image capture devices may include the capability of panning the device either by horizontal (or vertical) motion or by rotation. Many users are physically incapable of smoothly and accurately panning an image capture device. Other image capture device parameters may include time-lapse image capture, video editing (such as fades and wipes), and audio capture.
A user provides a graphical representation of a desired image capture device control parameter curve with respect to time. A digital image of the graphical representation of a desired image capture device control parameter curve is captured. The digital image is analyzed by a processor that generates necessary control parameters as defined by the desired image capture device control parameter curve. The processor uses the resulting control parameters to control an image capture device during an image capture session.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
This description of the preferred embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description of this invention. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “up,” “down,” “top,” “bottom,” “left,” and “right” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms concerning attachments, coupling and the like, such as “connected,” “coupled,” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
The word “curve” as used in this description of the present invention includes any single parameter function. For example, in some embodiments of the present invention, the “curve” may be a straight line. In other embodiments of the present invention, the “curve” may not be contiguous, but include sudden step functions. Those of skill in the art will recognize that any function where each possible value of a first parameter results in a single value of a second parameter may be described as a “curve” within the scope of the present invention.
As used within this description, “image capture device control function parameters” are those mathematical parameters used to describe the function generated from the desired image capture device control parameter curve. For example a linear “curve” may be represented by a function of the form y=f(x)=mx+b, where m is the slope of the line and b is the point where the line crosses the y-axis. Thus, parameters m and b are the “image capture device control function parameters” for this particular “curve.” Those of skill in the art will recognize that many more complex functions with their corresponding “image capture device control function parameters” may be used within the scope of the present invention.
Those of skill in the art will recognize that while this example embodiment of the present invention concerns a zoom amount control parameter, many other control parameter curves may be captured using the method of the present invention. For example, curves related to time-lapse image capture, video editing (such as fades and wipes), audio capture, and many other control parameters may be captured using the method of the present invention.
Those of skill in the art will recognize that while some image capture devices include optical viewfinders, other image capture devices may use, for example, an LCD viewfinder display in place of a viewfinder or in addition to an optical viewfinder, and that either or both may be used within the scope of the present invention.
Those of skill in the art will recognize that once users have captured a first digital image of a particular desired image capture device control parameter curve, these first digital images may be stored for later use during a plurality of image capture session. Thus, the user need capture a control parameter curve only once, and may use that control parameter curve later on a wide variety of image capture device, during a plurality of image capture sessions. Also, users may build up a library of first digital images of control parameter curves for later use, or for sharing with others.
The foregoing description of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and other modifications and variations may be possible in light of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and various modifications as are suited to the particular use contemplated. It is intended that the appended claims be construed to include other alternative embodiments of the invention except insofar as limited by the prior art.
Number | Name | Date | Kind |
---|---|---|---|
5218445 | van Roessel | Jun 1993 | A |
5457370 | Edwards | Oct 1995 | A |
5815645 | Fredlund | Sep 1998 | A |
6011536 | Hertzmann | Jan 2000 | A |
6101293 | McKenzie | Aug 2000 | A |
6154577 | Warnick | Nov 2000 | A |
6285468 | Cok | Sep 2001 | B1 |
6317192 | Silverbrook | Nov 2001 | B1 |
6570623 | Li et al. | May 2003 | B1 |
6573932 | Adams et al. | Jun 2003 | B1 |
6665015 | Watanabe et al. | Dec 2003 | B1 |
6671387 | Chen | Dec 2003 | B1 |
6724913 | Chen | Apr 2004 | B1 |
6775407 | Gindele | Aug 2004 | B1 |
6795585 | Parada | Sep 2004 | B1 |
7391462 | Ike | Jun 2008 | B2 |
7545996 | Cazier et al. | Jun 2009 | B2 |
20020012398 | Zhou et al. | Jan 2002 | A1 |
20040258308 | Sadovsky | Dec 2004 | A1 |
20040263640 | Silverbrook | Dec 2004 | A1 |
20050162542 | Nakayama | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060244834 A1 | Nov 2006 | US |