The present invention relates to a system for preparation of wood fibres for feeding fibres from a fibre separation step at a first pressure to a drying step at a second, lower pressure, whereby the system comprises a sluice feeder provided between the fibre separation step and the drying step and a method for production of wood fibres for feeding fibres.
When preparing wood fibres a separation of fibres from steam takes place in a fibre separation step where a cyclone or a centrifugal separator is used for this purpose. Preferably, the steam is recycled also from this step. The pressure in the system before the fibre separation is in most cases about 3–12 bar. The following process step is the drying of the fibre. This takes place at a lower pressure, sometimes as low as atmospheric pressure. In order to prevent the steam from escaping to the drying step at lower pressure a pressure tight feeding of the fibre from the separation step is required.
When treating mechanical pulp for paper manufacturing, this can easily be solved by a plug screw where the fed fibres are compressed and form a steam tight plug in the plug screw at the same time as it is further fed and subsequently may be fed to further treatment at a lower pressure.
On the contrary, when treating mechanical pulp for manufacturing of, for example, fibre board or MDF-technology, it is not possible to compress the fibres since lumps thus are formed, which cause problems at the drying of the fibre and at following manufacturing of end products. Instead a sluice feeder may be used in which the separated fibre fall down into a pocket in its rotor provided in the sluice feeder, which rotor is rotated and the fibre falls out in the lower portion of the sluice feeder where a lower pressure prevails without being compressed. The rotor and its pockets are sealed against the periphery of the sluice feeder.
A problem however is that steam escapes from the sluice feeder despite efforts to seal sluice feeders. Due to the design of the rotor with pockets it is complicated to achieve desired tightness and thus expensive. The annual costs for energy losses are great.
To solve the problems associated with the prior art, the present invention is directed to a system and method for feeding fibers from a fiber separation step at a first pressure to a drying step at a second, lower pressure essentially without energy losses. Specifically, the present system provides a sluice feeder placed between a steam separator and a drying duct. The sluice feeder includes an inlet for receiving fibers from the steam separator and at least one outlet that is enclosed by a housing. The sluice feeder further includes means for pressurizing the housing a control valve that regulates the pressure in the housing. Accordingly, the present system allows fibers to be fed from the steam separator through the sluice feeder and then to the dryer by adjusting the pressure regulating valve to create a third pressure in the housing of the sluice feeder. As a result, allows fibers to move through the sluice feeder without steam escaping from the feeder.
Thanks to the housing arranged at least partly around the sluice feeder, at its outlet, a pressure may be provided around the sluice feeder or at least around its outlet that counteracts the pressure of the steam, whereby the steam will not escape into the housing. The transition between the first pressure and the second, lower pressure has been moved from a position between the inlet and the outlet of the sluice feeder to a position between the housing of the sluice feeder and the outlet from the housing. Preferably, the housing encloses the sluice feeder totally. This also results in the advantage that the housing only needs to be sealed against the surrounding atmospheric pressure at the shaft driving the rotor of the sluice feeder. Such pressure tight circular seals are available for a reasonable price having av very high tightness.
Preferably a compressor is comprised in the system, which compress a pressure medium, for example air, and conveys the compressed pressure medium into the housing. At the compression of the pressure medium the temperature rises of the pressure medium, which temperature rise is utilized at the following drying step, i.e. the energy consumed for compressing the pressure medium is transferred to heat energy in the pressure medium, which in turn is utilized for drying the fibres. In this way the costs for energy do not increase. The drying device uses preferably hot air for the drying of the fibres.
The fibres are separated from steam at the previous process step and this is preferably done by means of a centrifugal separator, which also ought to be equipped in such a way that it can utilize the steam and be followed by process step for recycling the energy content of the steam.
In order to easily regulate the pressure in the housing by means of a control valve a first sensor is arranged to sense the pressure before and in the sluice feeder, for example at the inlet to the sluice feeder, and a second sensor is arranged to sense the pressure in the housing. If automatic regulating is desired control means may be provided in the system which compare the pressure before and in the sluice feeder with the pressure in the housing and which controls the control valve depending on the result of the comparison.
The invention will now be described in an exemplifying manner and referring to enclosed drawings, in which:
In
In order to avoid unnecessary repitition the system and the method will be described simultaneously.
Steam and fibres are fed through an inlet 6 in the centrifugal separator 1, whereafter steam is recycled through a steam outlet 7 and the fibres fall out at a fibre outlet 8 and through a duct 9 to an inlet 10 of the sluice feeder 3.
As shown in
The sluice feeder 3 is attached at the housing 4 by means of attachment portions 17, for example at the inlet 10 and preferably also at the outlet 14. In the housing an inlet 18 for compressed pressure medium, for example air, and an outlet 19 for fibres and the compressed pressure medium are present. In the outlet 19 form the housing 4 a control valve 20 is arranged by which the pressure in the housing 4 may be regulated.
The fibres fall out from the sluice feeder 3 at the sluice feeder outlet 14 to the lower portion of the housing 4 and are brought by means of the pressure medium throught the outlet 19 of the housing 4 via the control valve 20 and further to a drying duct 2. In the drying duct 2 hot air flows which simultaneously both dries and transports the fibres.
At the compression of the pressure medium in the compressor 5 the temperature of the pressure medium rises and instead of cooling the heat off, which is customary, the temperature rise is utilized in the following drying step, i.e. the energy used for compressing the pressure medium is transferred into heat energy in the pressure medium which subsequently is utilized for drying the fibres.
A first sensor 21 is provided for sensing the pressure before and in the sluice feeder 3, for example in the duct 9 or at the inlet 10 to the sluice feeder, and a second sensor 22 is provided to sense the pressure in the housing 4. A control means 23 is provided in the system which compare the pressure in and before the sluice feeder 3 and the pressure in the housing 4 and which subsequently controls the control valve 20 depending on the result of the comparison.
Number | Date | Country | Kind |
---|---|---|---|
0101349 | Apr 2001 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE02/00711 | 4/10/2002 | WO | 00 | 10/6/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/084019 | 10/24/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3681192 | Reinhall | Aug 1972 | A |
4072274 | Syrjanen | Feb 1978 | A |
4129263 | Sjobom | Dec 1978 | A |
5207870 | Aho et al. | May 1993 | A |
5672245 | Andtbacka et al. | Sep 1997 | A |
6024837 | Laakso et al. | Feb 2000 | A |
6109450 | Grunenwald et al. | Aug 2000 | A |
6214171 | Snekkenes | Apr 2001 | B1 |
6361649 | Snekkenes | Mar 2002 | B1 |
20010000588 | Snekkenes | May 2001 | A1 |
20040104002 | Obitz | Jun 2004 | A1 |
20050189082 | Obitz | Sep 2005 | A1 |
20060037723 | Gustavsson et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
19910530 | Sep 2000 | DE |
420226 | Sep 1981 | SE |
437680 | Mar 1985 | SE |
WO 200284019 | Oct 2002 | WO |
WO 2003074779 | Sep 2003 | WO |
WO 2004079086 | Sep 2004 | WO |
WO 2005064078 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20040104002 A1 | Jun 2004 | US |