1. Field of the Invention
This invention relates generally to methods and apparatus for monitoring the hemodynamic parameters of a living subject, and specifically to the non-invasive monitoring of arterial blood pressure using acoustic techniques.
2. Description of the Related Art
Three well known techniques have been used to non-invasively monitor a subject's arterial blood pressure waveform, namely, auscultation, oscillometry, and tonometry. Both the auscultation and oscillometry techniques use a standard inflatable arm cuff that occludes the subject's brachial artery. The auscultatory technique determines the subject's systolic and diastolic pressures by monitoring certain Korotkoff sounds that occur as the cuff is slowly deflated. The oscillometric technique, on the other hand, determines these pressures, as well as the subject's mean pressure, by measuring actual pressure changes that occur in the cuff as the cuff is deflated. Both techniques determine pressure values only intermittently, because of the need to alternately inflate and deflate the cuff, and they cannot replicate the subject's actual blood pressure waveform. Thus, true continuous, beat-to-beat blood pressure monitoring cannot be achieved using these techniques.
Occlusive cuff instruments of the kind described briefly above generally have been effective in sensing long-term trends in a subject's blood pressure. However, such instruments generally have been ineffective in sensing short-term blood pressure variations, which are of critical importance in many medical applications, including surgery.
The technique of arterial tonometry is also well known in the medical arts. According to the theory of arterial tonometry, the pressure in a superficial artery with sufficient bony support, such as the radial artery, may be accurately recorded during an applanation sweep when the transmural pressure equals zero. The term “applanation” refers to the process of varying the pressure applied to the artery. An applanation sweep refers to a time period during which pressure over the artery is varied from overcompression to undercompression or vice versa. At the onset of a decreasing applanation sweep, the artery is overcompressed into a “dog bone” shape, so that pressure pulses are not recorded. At the end of the sweep, the artery is undercompressed, so that minimum amplitude pressure pulses are recorded. Within the sweep, it is assumed that an applanation occurs during which the arterial wall tension is parallel to the tonometer surface. Here, the arterial pressure is perpendicular to the surface and is the only stress detected by the tonometer sensor. At this pressure, it is assumed that the maximum peak-to-peak amplitude (the “maximum pulsatile”) pressure obtained corresponds to zero transmural pressure. This theory is illustrated graphically in
One prior art device for implementing the tonometry technique includes a rigid array of miniature pressure transducers that is applied against the tissue overlying a peripheral artery, e.g., the radial artery. The transducers each directly sense the mechanical forces in the underlying subject tissue, and each is sized to cover only a fraction of the underlying artery. The array is urged against the tissue, to applanate the underlying artery and thereby cause beat-to-beat pressure variations within the artery to be coupled through the tissue to at least some of the transducers. An array of different transducers is used to ensure that at least one transducer is always over the artery, regardless of array position on the subject. This type of tonometer, however, is subject to several drawbacks. First, the array of discrete transducers generally is not anatomically compatible with the continuous contours of the subject's tissue overlying the artery being sensed. This has historically led to inaccuracies in the resulting transducer signals. In addition, in some cases, this incompatibility can cause tissue injury and nerve damage and can restrict blood flow to distal tissue.
Prior art tonometry systems are also quite sensitive to the orientation of the pressure transducer on the subject being monitored. Specifically, such systems show a degradation in accuracy when the angular relationship between the transducer and the artery is varied from an “optimal” incidence angle. This is an important consideration, since no two measurements are likely to have the device placed or maintained at precisely the same angle with respect to the artery.
Perhaps the most significant drawback to arterial tonometry systems in general is their inability to continuously monitor and adjust the level of arterial wall compression to an optimum level of zero transmural pressure. Generally, optimization of arterial wall compression has been achieved only by periodic recalibration. This has required an interruption of the subject monitoring function, which sometimes can occur during critical periods. This disability severely limits acceptance of tonometers in the clinical environment.
It is also noted that the maximum pulsatile theory described above has only been demonstrated to date in excised canine arteries, and not in vivo. See, for example, Drzewiecki, G. M, et al, “Generalization of the transmural pressure-area relation for the femoral artery”, 7th Annual IEEE EMBS Conference, 1985, pp. 507-510. Accordingly, the maximum peak-to-peak amplitude in vivo may not occur at the arterial pressure at which the transmural pressure equals zero. In fact, during anecdotal studies performed by the applicant herein using two prior art tonometry systems (with which several hundred applanation sweeps were recorded under numerous test conditions), the maximum pulsatile theory described above never yielded measured mean arterial pressure (MAP) that was consistently similar to the average of two cuff pressure measurements taken immediately before and after the sweep. These factors suggest that prior art maximum pulsatile theory devices may produce significant errors in measured MAP.
Yet another disability with prior art tonometry systems is the inability to achieve imprecise placement of the tonometric sensors over the artery being measured. Similarly, even if properly placed at the outset of a measurement, the movement of the subject during the measurement process may require that the sensors be repositioned periodically with respect to the artery, a capability that prior art tonometric systems do not possess. Proper sensor placement helps assure that representative data is obtained from the subject during measurement, and that accurate results are obtained.
Based on the foregoing, there is a clear need for an apparatus, and related method, for non-invasively and continually monitoring a subject's arterial blood pressure, with reduced susceptibility to noise and subject movement, and relative insensitivity to placement of the apparatus on the subject. Such an improved apparatus and method would also obviate the need for frequent recalibration of the system while in use on the subject. Furthermore, it would be desirable to make certain components of the apparatus in contact with the subject disposable, thereby allowing for the cost effective replacement of these components at regular intervals.
The invention disclosed herein addresses the foregoing needs by providing an improved apparatus and method for non-invasively monitoring the arterial blood pressure of a subject.
In a first aspect of the invention, an improved method for measuring the mean arterial blood pressure in a subject is disclosed. In one embodiment, the method comprises placing both a pressure transducer and ultrasonic transducer over an artery of the subject; varying the pressure applied to the artery to compress (applanate) the artery from a state of overcompression to a state of undercompression; measuring the arterial pressure via the aforementioned pressure transducer as a function of time; generating acoustic pulses via the ultrasonic transducer; measuring at least one parameter (such as the blood velocity and time-frequency distribution as a function of time using the frequency shifts produced by the pulses); and correlating the at least one parameter to the mean arterial pressure (MAP).
In a second aspect of the invention, the foregoing acoustic pulses are used to assist in placement of the transducers on the subject's wrist so as to maximize the signal-to-noise ratio associated with the blood pressure measurement. In one embodiment, the amplitude of echoes received by the ultrasonic transducer is measured by an ultrasound receiver circuit as the transducer is moved transversely across the artery of interest; the transducer is positioned using a fuzzy logic control circuit such that the amplitude of the echoes is minimized.
In a third aspect of the invention, an improved tonometric apparatus useful for non-invasively and continuously measuring the mean arterial pressure (MAP) in a subject is disclosed. In one embodiment, the apparatus includes both a pressure transducer and an ultrasonic transducer which, in conjunction with supporting signal processing circuitry, measure both the arterial applanation and arterial blood velocity, respectively. These transducers are mated to the interior surface of the subject's wrist. The transducers and their associated processing circuitry track the blood velocity in the radial artery during applanation sweeps; i.e., the time period beginning when the artery is overcompressed, and ending when the artery is undercompressed, by emitting acoustic pulses and measuring the Doppler shift in the returns or reflections of the acoustic energy from cells present in the blood. The time-frequency distribution is determined from the velocity data, as calculated by an algorithm running on a digital signal processor (DSP). The time at which the time-frequency distribution is maximized corresponds to the time at which the transmural pressure equals zero, and the mean pressure read by the pressure transducer equals the MAP. The measurements of applanation and blood velocity using the apparatus are largely unaffected by the orientation of the transducers on the subject's wrist.
In a fourth aspect of the invention, an improved applanation and transverse positioning motor assembly is disclosed for use with the above described tonometric apparatus. In one embodiment, the assembly includes a first motor for applanation (compression) of the artery in response to fuzzy logic signals from a control circuit, as well as a second motor operatively connected to an ultrasonic receiver (and associated fuzzy logic control circuit) for transverse positioning of the transducer(s) over the artery. The motor assembly is coupled to the transducers and rigidly received within a wrist brace described below such that the applanation motor exerts compressive force against the subject's artery via reaction force against the wrist brace.
In a fifth aspect of the invention, an improved method and apparatus are disclosed for estimating catheter diastolic blood pressure intermittently, and estimating catheter systolic and diastolic pressure continuously. In one embodiment, the method comprises estimating the catheter diastolic blood pressure intermittently; comparing the estimated catheter diastolic pressure to the sensed diastolic pressure to determine a scaling factor; applying the scaling factor to the sensor waveform; and catheter systolic and diastolic blood pressures estimated continuously.
In a sixth aspect of the invention, an improved method for the location of a blood vessel within the tissue of a living subject is disclosed. The method generally comprises generating acoustic energy; transmitting the acoustic energy into the tissue of the subject in the vicinity of a blood vessel; receiving at least a portion of the energy backscattered by the blood vessel; detecting at least one artifact associated with the blood vessel based on the backscattered energy; and determining the location of the blood vessel based at least in part on the detected artifact. In one exemplary embodiment, the blood vessel comprises the radial artery of a human being, and the acoustic energy comprises ultrasonic energy transmitted into the artery via the interior region of the subject's wrist/forearm. Energy backscattered from the artery walls and lumen is received by an ultrasonic transducer and analyzed using an integrated power metric to identify the location of, and/or optimal position of, the transducer with respect to the artery.
In another embodiment, integrated power and/or signal level is analyzed as a function of depth within the tissue to detect the location of the lumen. The location of the artery walls is then determined relative to the lumen, thereby allowing measurement of the diameter of the artery. The position of transducer relative to the artery is adjusted so as to maximize the wall separation (diameter), thereby effectively maintaining the transducer (and any associated applanation device) directly atop the artery. The algorithm may also be adjusted to maintain the transducer in any other desired orientation with respect to the blood vessel; e.g., with a fixed offset, with an offset which varies as a function of the diameter of the blood vessel, etc., or to control the position of the transducer based on other parameters such as signal quality, the presence of cystic components or clutter, and the like.
These and other features of the invention will become apparent from the following description of the invention, taken in conjunction with the accompanying drawings.
a is a block diagram illustrating one embodiment of the method of measuring arterial blood pressure according to the present invention.
b is a block diagram illustrating a first embodiment of the method of estimating the time-frequency distribution used in conjunction with the method of
c is a block diagram illustrating a second embodiment of the method of estimating the time-frequency distribution.
a-4c are exemplary plots illustrating the relationship between pressure and time, blood velocity and time, and time-frequency distribution and time, respectively, based on typical data obtained using the method of
a-5b are functional block diagrams of two embodiments of ultrasound filter circuits useful for measurement of Doppler shift frequencies and stationary echoes.
a-d are graphs representing the estimated arterial blood pressure, blood velocity, time-frequency distribution, and wavelet transform/derivative, respectively, of a typical test subject.
a is a logical block diagram illustrating one exemplary embodiment of the method of processing A-mode signals per the method of
a is a logical flow diagram illustrating the “plateau” method of lumen detection according to the invention.
b is a plot illustrating measured backscattered power as a function of depth for a single A-mode line.
c is a graphical representation of the normalized integrated power function according to the plateau method of
d is a graphical representation of the plateau detection metric used in conjunction with the method of
e is a graphical representation of the normalized plateau detection metric for a single A-mode line.
a is a graphical representation of the power profile (1 mm interval) along the TGC-corrected A-mode line of
b is a logical flow chart illustrating the “interval” methodology of lumen detection using A-mode signals according to the invention.
c is a functional block diagram illustrating one exemplary embodiment of the methodology of
a is a logical flow chart illustrating a first exemplary methodology of front and back wall detection based on integrated power calculation.
b is a logical flow chart illustrating a second exemplary methodology of front and back wall detection based on envelope-squared signal level determination.
Reference is now made to the drawings wherein like numerals refer to like parts throughout.
It is noted that while the invention is described herein in terms of a method and apparatus for monitoring arterial blood pressure suitable for use on the radial artery (i.e., wrist) of a human subject, the invention may also conceivably be embodied or adapted to monitor arterial blood pressure at other locations on the human body, as well as monitoring blood pressure on other warm-blooded species. All such adaptations and alternate embodiments are considered to fall within the scope of the claims appended hereto.
Referring now to
In the invention disclosed herein, however, the optimum applanation is found by evaluating one or more other parameters rather than detecting the maximum pulsatile pressure as in the prior art; i.e., in one embodiment, the invention estimates the maximum time-frequency distribution during an applanation sweep. The maximum time-frequency distribution may be indicative of, inter alia, the maximum arterial diameter. As used herein, the term “diameter” includes the actual diameter of a blood vessel measured in a particular dimension or direction and at a particular point in time, as well as any related parameters calculated based on the actual diameter to include, without limitation, mean diameter calculated over a particular time interval, mean diameter as a function of position on the blood vessel, and maximum diastolic diameter (Appendix A). In the maximum time-frequency method of the present invention, it is hypothesized that the optimum applanation occurs at that point in time 201 during the applanation sweep when the external applied pressure has decreased sufficiently so that internal pressure may oppose it, allowing the sagittal arterial diameter to transiently increase to its maximum as a consequence of reactive hyperemia. This phenomenon may occur at the true mean arterial pressure, during which the transmural pressure equals zero, as shown in
Method of Measuring Mean Arterial Pressure (MAP)
Referring now to
Next, in step 306, a decreasing applanation sweep of the selected artery is commenced. The applanation sweep begins by overcompressing the artery against the underlying bone (or other rigid member) using the aforementioned pressure transducer such that a cross section similar to that shown in
Referring now to
where fo is the transmitted signal frequency, θ is the transmission angle of the acoustic energy referenced to a vector normal to the longitudinal axis of the artery, and c is the speed of sound in soft tissue.
In the embodiment of
where dθ and dτ are dummy integration variables, λ(θ, τ) is a two-dimensional function known as a “kernel”, and u(t) is the input signal. The simplest distribution is the Wigner or Wigner-Ville distribution, which uses a kernel of λ(θ, τ)=1. Note that Eqn. 2 uses continuous time, t, while an actual implementation of the distribution requires discrete time, n. Next, using discrete frequency, k, the discrete time description of the Wigner distribution (also known as a Pseudo Wigner distribution) is formed per sub-step 318 of
where
and its complex conjugate are sample-limited to {−K/2,+K/2}, K is even, and N=K+1. Next, in sub-step 320, a rectangular window is specified, so that L=K/2−|n|. See, e.g., Boashash, B., et al, “An efficient real-time implementation of the Wigner-Ville distribution”, IEEE Trans ASSP, 35:1611-1618, 1987, which is incorporated herein by reference in its entirety.
In sub-step 322, a frequency of k=0 Hz is selected, and the Pseudo Wigner calculation simplified to the form of Eqn. 4:
Eqn. 4 is equivalent to direct integration of the autocorrelation of a signal, scaled by a factor of 2. Autocorrelation is well known in the signal processing arts. In sub-step 326, Eqn. 4 is divided by a factor of 2. Lastly, in sub-step 330, the mean distribution value is calculated for each heartbeat or pressure waveform time interval.
It is noted that various features in the time-frequency distribution calculated using the method 300 of
a-4c are exemplary plots illustrating the relationship between measured radial arterial blood pressure and time (
While the radial artery is not compressed by a cuff at the beginning of a decreasing applanation sweep, its flow is completely occluded by the pressure/ultrasound sensor. As the compression decreases during the course of a sweep, reactive hyperemia and its signature peak trend in end-diastolic velocity are induced. The accompanying transient increase in arterial diameter occurs transversely across the artery, but is probably initially prevented sagitally (top to bottom) by the external pressure exerted by the sensor. However, as this external pressure decreases during the sweep to the true mean arterial pressure, the opposing pressure within the artery becomes sufficient that the sagittal arterial diameter may also now increase. The increase in sagital arterial diameter would occur when the transmural pressure equals zero.
The peak in the Pseudo Wigner distribution at a frequency of 0 Hz may indicate when this sudden arterial diameter increase occurs. From Eqn. 1, it is known that the mean blood velocity is proportional to the Doppler shift frequency. The angular frequency of the received wave, ωd, is found using Eqn. 5:
ωd=2πfd. (Eqn. 5)
The angular frequency ωd is integrated; this integration results in the phase of the detected signal echo, φ, as illustrated in Eqn. 6:
φ=∫ωddt. (Eqn. 6)
As is well known in the art, the low frequencies in the phase echo are proportional to the relative arterial diameter of the artery, d. See, e.g., Hoeks, A. P. G., et al, “Transcutaneous detection of relative changes in artery diameter” Ultrasound Med & Biol, 11:51-59, 1985. The phase φ of the detected echo is a function of the time delay between reflection from the near and far arterial walls. Because the time delay depends only on the time difference between reflections from the two arterial walls, the measurement is insensitive to transmission angle. Note that only the relative arterial diameter changes from an initial diameter value during overcompression can be estimated. The relative arterial diameter d is therefore related to the phase using Eqn. 7:
Referring back to the Pseudo Wigner distribution calculation at 0 Hz in Eqn. 4, this discrete summation is equivalent to the continuous integral in Eqn 7. As the constant 2 in Eqn. 4 and cos θ in Eqn. 7 are only scale factors and u(n)≡|
Based on this maximum arterial diameter hypothesis, a second embodiment of the method of calculating blood velocity and arterial diameter in conjunction with step 312 of
It is noted that many variations of the methods described above with reference to
The application of the method of
It should also be noted that the “maximum mean time-frequency” method disclosed herein is substantially insensitive to the orientation of the ultrasonic transducer with respect to the artery. As further detailed in Appendix A, numerous anecdotal measurements obtained by the applicant herein showed little variation under a broad range of angular pitch (i.e., rotation around an axis transverse to the longitudinal axis of the artery being measured) and roll (i.e., rotation around the longitudinal axis of the artery) values. It will be readily appreciated that such insensitivity affords great advantages to the user, since consistent results may be obtained with essentially no consideration to the angular position of the tonometric sensor(s).
Referring now to
In the embodiment of
Arterial Blood Pressure Measuring Apparatus
Referring now to
Pressure applied to the face of the transducer is converted to an electrical signal bearing a known relationship thereto. The pressure transducer 602 is connected to a first analog-to-digital converter (ADC) 608, which converts the analog signal generated by the pressure transducer 602 to a digital representation. In the present embodiment, a 12-bit ADC is used, although it will be appreciated that other types may be substituted. The digitized pressure signal is then supplied to a digital signal processor (DSP) 610. Within the processor, each pressure waveform is detected using wavelet transforms 612. Wavelet transforms are known to those skilled in the art to easily detect edges, or in this case the onset of new waveforms, while noise is present. Each isolated waveform is then integrated to determine its mean arterial pressure value 614.
The ultrasonic transducer 604 generates and transmits an acoustic wave based on a first electrical signal applied thereto, and subsequently generates a second electrical signal upon receiving pressure waves in the form of echoes resulting from the transmitted acoustic waves. The first electrical signal is generated via an ultrasonic driving and receiving circuit 616, which is described in greater detail with reference to
The output of the ultrasonic receiver circuit 616 is an analog echo signal proportional to absorption of the transmitted frequencies by blood or tissue. This analog signal is converted to a digital representation by a third ADC 640 and supplied to the DSP 610. Within the DSP, each group of echoes, generated for a different transversal position, is integrated to determine a mean value 642. The mean echo values are compared to determine the minimum value, which is caused by direct positioning over the artery.
The use of such algorithms running on digital signal processing devices (such as the DSP 610) to perform mathematical calculations is well known in the signal processing arts, and accordingly will not be described further herein. The DSP's output signal is then converted to a form useful to the user such as a digital or analog display, computer data file, or audible indicator.
Referring now to
In use, the transmitted bursts of sonic energy are scattered by red blood cells flowing through the subject's radial artery 680, and a portion of the scattered energy is directed back toward the ultrasonic transducer 604. The time required for the return energy to reach the ultrasonic transducer varies according to the speed of sound in the tissue and according to the depth of the artery. Typical transit times are in the range of 6 to 7 microseconds.
The ultrasonic transducer 604 is used to receive the reflected ultrasound energy during the dead times between the successive transmitted bursts. For the applanation application, the ultrasonic transducer therefore produces a received signal, of relatively low magnitude, and this received signal is coupled to an RF amplifier 681 for amplification. The amplified signal is then supplied to an RF switch 682, which gates the signal to the RF mixer 683 only during the dead times between successive transmitted bursts. The RF mixer 683 mixes these gated bursts with the original 8 MHz signal received from the oscillator.
The frequency of the ultrasonic transducer's transmit signal will differ from that of the return signal, because the scattering red blood cells within the radial artery are moving. Thus, the return signal, effectively, is frequency modulated by the blood flow velocity. The signal output by the RF mixer 683, therefore, will incorporate the 8 MHz fundamental frequency, as well as sum and difference frequencies of the transmit and return signals. This output signal is supplied to a lowpass filter 684 with cutoff frequency of 1 MHz, for removal of the 8 MHz fundamental frequency, as well as any higher-order harmonics from the difference frequencies. A bandpass filter 685 that ranges from 300 Hz to 4 KHz then removes all signal components other than those components representing the actual blood velocity.
The signal output from the bandpass filter 685 is supplied to a zero-axis crossing detector 687, which functions to produce a pulse each time the signal crosses a zero axis. These pulses are supplied to a frequency-to-voltage converter circuit 688, which produces a DC output signal indicative of the mean Doppler frequencies. The signal output by the bandpass filter 685 is also supplied to an audio amplifier 690, and in turn to a speaker 691, to enable an operator to hear a representation of the Doppler signals and thereby to determine when the transducer is located approximately over the radial artery.
The output of the gate logic circuit is also amplified via an amplifier 694, and when transverse positioning is desired, switched to the ultrasonic transducer 604. The received echoes are coupled to an RF amplifier 696 and output for further processing to determine minimum echo value as a function of position.
It is noted that while the embodiment of
Referring now to
The transverse positioning motor 844 of the assembly 800 is used to position the transducers 602, 604 directly over the artery of interest. Specifically, the ultrasonic emissions of the ultrasonic transducer 604 are substantially normal to the surface of the subject's skin and are used to generate echoes, which are reflected from the blood and tissues. These echoes are received by the transducer 604 and analyzed so as to determine their amplitude as a function of transverse position of the transducer over the artery. As with the applanation motor 842 described above, the transverse positioning motor 844 is controlled via a fuzzy logic control circuit 849 which signals the motor 844 to adjust the transverse position of the transducer such that the amplitude of the echoes (and SNR) is optimized. Alternatively, the user may manually position the transducer 604 using manual control circuitry based on an indication of the relative strength of the blood velocity echoes, such as may be provided to the user by an audible or visual representation thereof. For example, the audio output of the speaker 691 (
Referring now to
The upper and lower brace elements 1002, 1004 are advantageously formed using a partially flexible polymer material, thereby allowing for low manufacturing cost, excellent ruggedness, and some degree of compliance with the shape of the subject's tissue. Note, however, that sufficient rigidity of these components is required to accommodate the reaction forces generated by the applanation and transverse positioning assembly 800 shown in
The electrical cabling 841 associated with the assembly 800 is also optionally received within a routing clip 1040 mounted on the exterior of the upper brace element 1002, thereby reducing the mechanical stress on the rigid mount 846 from the cabling 841 to some degree.
The lower brace element 1004 of the present embodiment also optionally includes an inflatable bladder 1020, which is received within and fastened to the interior surface 1022 of the lower brace element 1004. The bladder 1020 is formed of a flexible material (such as a plastic or rubber) so that it can comply with the shape of the subject's wrist, and accommodate varying degrees of inflation. As used herein, the term “inflation” is meant to include inflation of the bladder 1020 by gaseous and/or liquid substances. The bladder 1020 includes a stopcock 1024 and tube 1025, which allow the user to adjust the inflation of the bladder 1020 when required. The bladder may also be connected to an automatic inflation regulating system (not shown), which dynamically adjusts the inflation of the bladder 1020 to maintain optimal positioning and/or comfort for the subject. Alternatively, the bladder 1020 may be replaced by a substantially compliant pad (not shown), such as one made of foam rubber, which will at least partially adapt its shape to that of the subject's wrist, yet maintain the wrist firmly within the brace. It can be appreciated that many such alternative embodiments are possible.
Referring again to
Estimation of Catheter Systolic and Diastolic Pressures Using a Scaling Factor
Referring now to
As illustrated in
Mechanical Impulse Response
A mechanical impulse response exists between the true invasive or “catheter” arterial pressure and the tonometric pressure sensed at the radial artery as previously described; i.e., when the artery has been sufficiently compressed or applanated such that the sensed mean arterial pressure (MAP) equals the true MAP. To analyze the nature of this mechanical impulse response (step 1202 of
where:
The results of Applicant's anecdotal testing as described in Appendix B hereto indicate that the pressure sensed at the radial artery may be attenuated by a significant fraction in comparison to catheter pressure. However, while energy is lost due to the aforementioned mechanical impulse response, the catheter frequency characteristics are preserved. Therefore, the catheter systolic and diastolic pressures may advantageously be estimated using a single derived scaling factor (step 1206 of
Estimate of Diastolic Pressure
Referring now to
In general, the process of mathematically isolating this settling point in the time domain is complex, yet can be simplified through processing in the time-scale domain. The generalized method of isolating the settling point according to the invention is illustrated in
where x(n) is the blood velocity signal, L is the length of the signal (i.e., the total number of samples in the blood velocity signal), and φh(n) is the Haar scaling function as is well known in the mathematical arts. The Haar scaling function is defined as
Note that the length of the wavelet transform is ½6= 1/64 the length L of the input signal. Hence, in essence, the transform functions as a low pass filter as illustrated in
Next, to isolate the settling point, the derivative of the wavelet transform, d(n), is calculated and processed in step 1604 of
d illustrates the relationship of the wavelet transform WT(n,6) and derivative thereof, d(n), as related to the arterial pressure (
While the embodiment illustrated in
Derivation of Scaling Factors
Based on the foregoing information, a first scaling factor, F1, may be derived using the following equation:
where n′ is the sample identified by the time-frequency algorithm during which the measured MAP corresponds to the catheter MAP, and n* is the sample identified by the wavelet algorithm during which the measured MAP corresponds to the catheter diastole. For the waveforms associated with the zeroeth order model previously described (see Appendix B),
In one embodiment, this scaling factor is only calculated intermittently during a calibration sweep.
While the catheter pressure is not changing significantly, the applanation may be fixed at a low, constant externally applied pressure. During this “steady state” condition, the measured MAP, MAPss, and measured diastolic pressure, Diastoless, will not change significantly. A second, “steady state” scaling factor, F2, can therefore be derived using the following equation:
Fuzzy Logic Controller and MAP Servo
As previously discussed with respect to
To calculate this time-frequency signal, the blood velocity is first acquired at a first sampling frequency f1, thereby resulting in a digitized signal. In the illustrated embodiment, the blood velocity is sampled at a frequency of 400 Hz using a National Instruments ADC, Model No. DaQCard-AI-16E-4, resulting in digitized data with 12 bit resolution. It will be recognized, however, that other sampling frequencies, data conversion devices, and digital data resolution values may be substituted with equal success. The digitized data is then decimated by a factor of 20 to obtain 20 Hz data. The Pseudo-Wigner distribution at 0 Hz is calculated using Eqn. 4 above, with L=window length=5. The mean time-frequency signal is then calculated for each waveform.
The embodiment of the controller described herein seeks to maximize the mean time-frequency signal on a per-waveform (beat) basis, although other criteria may conceivably be used. The mean time-frequency signal is proportional to the end-diastolic blood velocity. The mean time-frequency signal for each waveform is passed to the fuzzy logic controller 847 as the first input. A second input to the controller 847 is derived as the difference between the current and last mean time-frequency inputs. The fuzzy logic controller 847 calculates the number of applanation steps to output as a multiple of 50 steps, ranging from −400 to +400 steps (38,400 nominal steps=1 inch). If the difference input is positive (+), the output signal directs the applanation motor to continue in the same direction for a calculated number of steps. If the difference input is negative (−), the output signal directs the applanation motor to change direction for a calculated number of steps. The input and output membership functions of the controller are typical functions of the type well known in the controller arts with 5 overlapping trapezoids, although it will be recognized that other types of membership functions may be used. Fuzzification of the illustrated embodiment uses the standard AND rule; defuzzification uses the standard centroid method.
The shift in end-diastolic velocity that is the basis of the mean time-frequency signal previously described has been anecdotally observed by the Applicant herein to be continuously present in anesthetized operating room subjects during two hour studies. Appendix C describes these observations in greater detail.
Scaling During MAP Servo
Between intermittent calibration sweeps, the applanation pressure is varied as previously described herein to continuously “servo” to the catheter MAP as the latter varies in time. A typical result obtained using the servo algorithm of the present invention is illustrated in
By estimating the mean and diastolic pressures accurately using the foregoing method on an intermittent basis, the scaling factor, F1, may be derived and applied for continuous estimation of systole and diastole, as well as the entire blood pressure waveform, yscaled(n):
yscaled(n)=F1(yservo(n)−MAPservo)+MAPservo. (13)
Scaling During Steady State Pressure
During periods of steady state pressures (i.e., when the catheter pressure does not vary significantly), a low constant applanation is applied externally to minimize trauma to the wrist of the subject. By estimating the catheter mean and diastolic pressures accurately, the scaling factor, F2, may be derived and applied for continuous estimation of systole and diastole, as well as the entire blood pressure waveform:
yscaled(n)=F2(yss(n)−MAPss)+MAP(n′). (14)
During continuous blood pressure estimation, the system will alternate between periods of servoing to the catheter MAP while blood pressure is in flux, and periods of applying a low constant applanation pressure while blood pressure is in steady state.
Blood Vessel Location and Positioning
As previously discussed, proper transverse positioning of the ultrasonic and pressure transducers of the apparatus is beneficial in terms of enhanced accuracy of measurement of hemodynamic parameters including arterial blood pressure. Such transverse positioning is generally predicated upon initial placement of the apparatus in the locale of the blood vessel of interest, and subsequently “fine tuning” the position of the transducer(s) such that optimal coupling is achieved. In the case of the human radial artery, the approximate location of the artery is known by the caregiver; i.e., running longitudinally down the inside surface of the wrist/forearm of the subject, within a narrow band corresponding to something less than the width of the wrist. However, for other blood vessels and/or species, the location and orientation of the blood vessel of interest may not be as easily identified. Even in the context of the human radial artery, where the approximate location and orientation of which is well known, improper placement of the apparatus by the caregiver can affect the consistency and “robustness” of blood pressure measurements obtained from that location. Movement by the patient (and other factors) may also affect the accuracy of the reading, and require periodic relocation/repositioning of the measurement apparatus.
Furthermore, there are other types of procedures, including for example carotid artery surgery (mapping of the vessel along the human neck), femoral artery catheterization, and temporal artery localization, wherein it is highly desirable to be able to either (i) readily and reliably locate a blood vessel within the tissue of the subject in a non-invasive manner, or (ii) maintain a monitoring or treatment device in a predetermined position and orientation with respect to the blood vessel once located.
Accordingly, the present invention advantageously provides such a non-invasive technique (and apparatus) for both locating the blood vessel of interest, and maintaining one or more selected apparatus in a predetermined relationship thereto. Specifically, in one exemplary application, backscattered acoustic energy is analyzed to initially locate the blood vessel which is embedded within the surrounding tissue of the subject. In another application, the backscattered energy is used to maintain a sensing or treatment apparatus (e.g., the pressure and/ultrasonic transducers assembly 800 of the NIBP device previously described herein, or that described in Assignee's U.S. Pat. No. 7,048,691 entitled “Method and Apparatus for Assessing Hemodynamic Parameters Within the Circulatory System of a Living Subject” filed Mar. 22, 2001, and incorporated by reference herein in its entirety) in optimal position with respect to the blood vessel.
In one embodiment, the method of detecting and locating the blood vessel of interest is accomplished by directly detecting the lumen associated with the blood vessel based on reduced levels of backscattered ultrasonic energy present in “A-mode” line scans; ultrasonic energy is more readily absorbed within the lumen (such as by the red blood cells and plasma present within the blood) than by the surrounding vessel walls and tissue. Hence, the vessel is located, and/or the monitoring device positioned, by identifying regions of reduced backscattered energy. Such regions may be found in one dimension (e.g., only in terms of depth within the tissue), or multiple dimensions, such as where it is desired to precisely locate the vessel both in terms of lateral or transverse position and depth.
Another embodiment of the invention detects the relative locations of both the front and rear walls of the blood vessel based on analysis of backscattered A-mode energy. This wall information is used to indirectly determine the effective diameter of the blood vessel; the variation in blood vessel diameter as a function of lateral or transverse position is then used to identify the optimal lateral position of the measurement or treatment device. Note that the act of “lateral” positioning as described herein may also include some component of longitudinal positioning (i.e., along the longitudinal axis of the blood vessel), since placement of the apparatus on the wrist/forearm of the subject is governed more by the physical attributes of the wrist, as opposed to the orientation of the blood vessel within the wrist/forearm. Specifically, in the cases where the point of measurement for the transducer(s) occurs at a location where the radial artery runs in a direction not perfectly parallel to the axis of the wrist bone, such “lateral” positioning inherently includes a longitudinal component as well. Furthermore, certain points along the blood vessel may be better suited to hemodynamic analysis (due, for example, to the existence of veins, cysts, or other components which potentially may interfere with the transmission/reflection of ultrasonic energy).
It is also noted that the term “A-mode” as used herein encompasses both traditional A-mode (i.e., display of amplitude versus depth (time) via repeatedly scanned lines) and other related modalities such as M-mode (i.e., grayscale image distributed over temporal dimension) and B-mode (i.e., “steered” grayscale image representative of depth (time) versus width), such alternate modalities being well known to those of ordinary skill in the ultrasound arts. Hence, it will be recognized that while the following discussion is cast in terms of traditional A-mode, the other associated modalities may be employed as well.
The A-mode ultrasonic energy of the present embodiment may also be used to complement the Doppler spectral modalities previously described herein, thereby providing both the system designer and ultimate end users of the apparatus with greatly enhanced flexibility in both design and operation. Specifically, in terms of modality space, at least three different operating schemes are contemplated by the present invention, including: (i) A-mode detection alone; (ii) Doppler-based detection alone; and (iii) a combination of the A-mode and Doppler modalities together. While not required, such use of complementary modalities as in (iii) may enhance the reliability and robustness of results obtained with the instrument.
Lumen Detection
Referring now to
The tissue under examination may also be applanated as previously described to “pre-load” the tissue. Such pre-loading may be beneficial in the case where veins or other smaller blood vessels are interposed between the ultrasonic transducer and the blood vessel of interest, or generally in the vicinity thereof, such as in the case of the human radial artery. Specifically, controlled pre-loading preferentially collapses the smaller vein due to its smaller hoop stress and lower lumen (blood) pressure as compared to the artery, thereby effectively removing it from view of the lumen detection techniques described below. The Assignee hereof has determined that a pre-load applanation on the order of 30 mmHg is suitable in most cases to sufficiently collapse any veins interposed between the transducer and the radial bone, although it will be recognized that other values may be used depending on the specific application.
It will be recognized, however, that it may also be desirable to detect and locate other blood vessels such as the veins referred to above contemporaneously with the detection/location of the primary blood vessel of interest. Hence, the foregoing applanation may be used selectively as desired in order to “filter” what is viewed by the lumen detection apparatus. For example, if there is a high degree of clutter and other noise present in the A-mode signal for a given individual, it may be desirable to applanate the region under evaluation to remove the effects of energy backscatter from the vein(s) around the artery. Alternatively, if the noise level is sufficiently low, it may be desirable to detect the presence of the vein(s), such detection being potentially useful for determination of the tissue scaling or transfer function used in conjunction with non-invasive blood pressure measurements. Specifically, the presence of an interposed vein may affect the value of the transfer function somewhat, so it may be desirable to detect its presence and compensate for its effects.
Returning again to
As shown in
One important feature demonstrated in
In addition, the 16 MHz center frequency used for this example is clearly depicted in
Quadrature demodulation as used in the present embodiment generally comprises multiplication of the A-mode signal by the sine and cosine functions, and lowpass filtering. The purpose of quadrature demodulation is to baseband the A-mode signal, through the removal of the transmit carrier frequency. This method is generally illustrated in
In the illustrated embodiment, the frequency of the sinusoids is 16 MHz, corresponding to the center frequency, fc, of the A-mode signal. The sampling interval of the sinusoids is equal to that of the digitized A-mode signal that is sampled at an effective rate of 64 MHz. Multiplication by the sine and cosine produces the following:
Ysin(nT)=a(nT)sin(2πfcnT) (Eqn. 15)
Ycos(nT)=a(nT)cos(2πfcnT) (Eqn. 16)
Where a(nT) denote the ‘raw’ A-mode signal with sampling interval T=1/Fs, and Fs denotes the sample rate (e.g., 64 MHz). This multiplication is performed for the entire duration of the A-mode line. The in-phase and quadrature components, XI(nTD) and XQ(nTD) respectively, are produced by lowpass filtering Ycos(nT) and Ysin(nT). Here, TD denotes the decimated sampling interval.
Lowpass filtering (step 2306 of
Note that for the illustrated case, the filter output advantageously need only be sampled at a rate of approximately 16 MHz in comparison with the original “raw” A-mode signal that is sampled at an effective rate of 64 MHz.
In the present embodiment of the invention, the magnitude of the complex envelope previously described is the only component required for subsequent processing, although other components of the processed or unprocessed A-mode signal may be used for other purposes if desired. Note that obtaining the magnitude of the complex envelope requires taking the square root of the sum of the squares of the lowpass filtered results. That is, since the result is complex, the magnitude equals the square root of the sum of the in-phase component squared and the quadrature component squared, as shown in Eqn. 17:
|Esq(nTD)|=√{square root over (XI2(nTD)+XQ2(nTD))}{square root over (XI2(nTD)+XQ2(nTD))} (Eqn. 17)
However, rather than calculate the magnitude of the envelope, the subsequent signal processing may be applied to the non-square-rooted signal, referred to herein as the “envelope-squared.” This latter approach alleviates the need to perform the square root operation, thereby simplifying the resulting algorithmic implementation somewhat. The envelope-squared waveform is depicted in
The envelope-squared, Esq(nTD), is derived from the in-phase and quadrature components. This is computed as set forth in Eqn. 18:
Esq(nTD)=XI2(nTD)+XQ2(nTD) (Eqn. 18)
In order to better assess the level of the signal associated with the lumen within the confines of the arterial walls, the logarithm (base 10) of the envelope-squared signal is obtained as shown in
It will be recognized, however, that in certain applications, “false” lumen detection might occur if the lumen detection methodology were based solely on the absolute value of the A-mode signal level. For example, lumen detection criterion based on the absolute signal level alone might erroneously detect lumen where there is none, or conversely miss lumen where it is actually present. Such false detections can arise from a variety of factors including, for example, backscatter and reflections from tissue (veins, musculature, etc) interposed between the transducer element and the blood vessel, movement of the subject during measurement, and the like. Hence, as described in greater detail below, the methodology of the present invention may be optionally modified to also examine signal artifacts proximate to those produced by the lumen in order to confirm the veracity of any given lumen detection, and positively locate both the lumen and contiguous vessel walls if desired.
A non-linear depth-dependent gain (step 2046 of
gain=depth (Eqn. 19)
Here the depth is assumed to be in millimeters, and the gain is applied to the envelope-squared. It will be recognized, however, that other gain functions may readily be applied either in place or in concert with that of Eqn. 19 above. Such gain functions may be empirically determined, such as through clinical testing, or determined via other means such as mathematical derivation or anecdotal or historical sampling of the A-mode signal or other parameters related thereto.
The application of the gain function to the envelope-squared of the A-mode signal is depicted in
It will further be recognized that while the foregoing discussion is cast in terms of signal processing including quadrature demodulation, envelope-squared calculation, and filtering, other types of signal processing and conditioning techniques may be employed consistent with the invention.
After completion of the signal processing, the next step 2010 of the method 2000 of
Next, the power metric is integrated according to Eqn. 20 below:
Pint(k)=Pint(k−1)+P(k) (Eqn. 20)
where Pint(k) denotes the power integrated up to the kth sample of the envelope-squared sequence, and P(k) denotes the kth sample of the envelope-squared sequence. The second step 3004 of the plateau method 3000 consists of identifying the best estimate of the plateau associated with the weak backscatter from the blood within the lumen. As part of this step 3004, the integrated power function is first normalized to unity (step 3006), as is depicted in
Next, the plateau is detected per step 3010. First, the number of samples occurring within each interval of normalized power is computed (step 3012). The rationale behind this computation is that when the power is low, corresponding to the backscatter from blood for example, many values must be integrated to cross from one integral to the next. Hence, an interval containing many samples is indicative of a plateau (and the lumen). In the illustrated embodiment of
where Mcnt(k) denotes the sum of the counts in three consecutive intervals ending with the kth interval, and m(n) denotes the number of samples in the nth interval. This metric is shown in
An additional term was added to the foregoing metric to ensure that the plateau owing to low power towards the deeper depths does not trigger a false lumen detection. Specifically, the metric includes the requirement that the three consecutive intervals must be followed by an interval with a low count corresponding to the back arterial wall. Hence, the modified metric is given by Eqn. 22:
Note that the count, m(k+2), two intervals ahead of the group of three consecutive intervals, is incorporated into Eqn. 22. A plot of this metric for a single A-mode line is shown in
Detection of the peak results in the identification of the three consecutive intervals most likely to correspond to the lumen. The total count of samples in all intervals prior to the three intervals corresponding to the peak identifies the depth of the lumen.
In one exemplary embodiment, the sample point within the A-mode line associated with the lumen for the purpose of the subsequent arterial wall search (described below) is derived from the total number of samples in all intervals from the first interval up to (and including) the first interval in the three successive intervals. Hence, the sample associated with the lumen for the given A-mode line is estimated per Eqn. 23:
where L denotes the number of samples prior to the lumen area, and K denotes the “pointer” to the third of the three consecutive intervals for which the peak was detected.
In addition, an estimate of the mean of the lumen power may be derived from the power contained in one or more of the three consecutive intervals (step 3016). For example, in one exemplary approach, mean lumen power is determined from the second of the three consecutive intervals by simply averaging the sample values of the envelope-squared that correspond to this interval. This estimate of the lumen backscattered power may be used, for example, in conjunction with the estimated position of the detected lumen to detect the arterial walls, as described in greater detail below.
It is noted that in addition to arterial lumen, plateaus in the integrated power profile may result from other sources. Specifically, in the case of the human radial artery, such plateaus may also be induced by the presence of one or more veins located between the applanation device and the blood vessel of interest, or by the presence of cysts or other growths. While more common, plateaus due to veins are generally quite small in comparison to the “true” plateau of interest associated with compression of the radial artery, due largely to the comparatively smaller vein diameter (and wall thickness). As previously described, the methodology of the present invention effectively addresses this issue when required by conducting measurements of the tissue at applanation pressures above the level necessary to collapse the comparatively thin-walled veins. Such collapse of the veins generally occurs at pressures well below that necessary to significantly affect the diameter of the larger blood vessel (e.g., radial artery), thereby allowing for an elegant solution to the problem of potentially “false” plateaus due to veins.
In contrast to veins, cyst or growth-related artifacts generally occur only in a very small fraction of the population, and are frequently spatially localized to the extent that relocation of the transducer at another location over the artery will eliminate any effects resulting there from. Additionally, the cystic areas do not have corresponding pulse pressure or motion components related to pulse pressure, and hence can be readily identified and screened using any number of signal processing techniques well known to those of ordinary skill.
In a second embodiment, detection of the lumen in step 2010 of
D=ct/2 (Eqn. 24)
where:
The 1 mm interval for power calculation was selected in the illustrated embodiment based on the observation by the Assignee hereof that the diameter of the blood vessel under examination (e.g., radial artery) will exceed 1 mm in essentially all of the adult human population; hence, the power calculation is reasonably assured to constitute signal attributable only to the lumen. However, it will be recognized that this interval may be adjusted based on factors such as measurement of non-adult populations, use of other blood vessels, and/or use of the technique on other species. It is also noted that the 1 mm interval referenced above also advantageously provides a “reasonable” number of samples to average for an estimate of the A-mode signal power.
For a sampling rate of 16 MHz, the aforementioned 1 mm interval corresponds to a time interval of 1.33 usec, or approximately 22 samples. The estimate of power at time nTD, P1 mm (nTD), is computed according to Eqn. 25:
An exemplary plot of the acoustic power in a 1 mm interval along the line of TGC corrected A-mode data is depicted in
The location of the lumen (e.g., blood) within the confines of the radial artery is detected as the first minimum in the 1 mm average power calculation. The search for this minimum begins at a predetermined point along the A-mode line, (e.g. 1 mm), and continues to a second predetermined depth, chosen in the present illustration as 7 mm. This range of 1 mm to 7 mm was selected based on the observation that the front wall of the radial artery (i.e., that wall first encountered by the acoustic energy radiated from the transducer) will occur within this interval in essentially all of the adult human population. It will also be noted that the aforementioned minimum is clearly distinguishable in the plot of
b graphically illustrates lumen detection using the aforementioned “interval” method. As illustrated in
During the foregoing procedure, the level of the A-mode signal associated with backscatter from lumen, Esq(blood), can be easily estimated once the region of lumen has been identified. The estimate is computed as a simple average over samples of the envelope-squared over a range centered at the depth for which lumen has been detected. The average is computed according to the exemplary relationship of Eqn. 26:
where Nblood denotes the index of the envelope squared corresponding to the depth of blood detection. Note that in Eqn. 26, the average is computed over fifteen samples of the envelope squared, although it will be recognized that other values may be substituted depending on the particular application.
Note also that the procedures of
Furthermore, it will be recognized that lumen (blood vessel) location information may be used to maintain the ultrasonic transducer or other measurement/treatment apparatus in any desired orientation with respect to the blood vessel; e.g., with a fixed lateral offset; with a lateral offset which is functionally related to the diameter of the blood vessel (as described below), etc. Similarly, the lumen detection information may be used to control the position of the transducer based on other parameters such as signal quality, the presence of cystic components or clutter, degree of applanation (if any), and the like.
Lumen and Wall Detection
Referring now to
Various methodologies for wall detection are now described in detail with respect to
As used herein, the terms “front” and “back” infer no specific spatial orientation, but simply refer to the order in which the walls of the blood vessel are encountered during direct propagation by a moving ultrasonic wavefront emanated from an ultrasonic source. Hence, what may be the “front” wall when measuring hemodynamic properties in one transducer orientation may comprise the “rear” wall in another transducer orientation. Unique to the present invention is also the use of lumen detection as a means of front and back wall detection; i.e., due to the comparatively lower backscatter of ultrasonic energy by the lumen as compared to other blood vessel components, the position of the lumen may be readily identified from the backscattered energy, and the front and rear vessel walls identified relative thereto.
In a first exemplary embodiment (
where Pbk(m) denotes the integrated power in the direction of the back wall starting at sample Kst up to sample m, and P(k) denotes the kth sample of the square of the envelope of the A-mode signal. When Pbk(m) exceeds the prescribed threshold, the back wall is assumed detected and the corresponding sample value, m, denotes the depth of the back wall (step 3206). Note that the sample number along the A-mode line and depth are related; the actual depth is derived from the sample number as shown in Eqn 28:
D=cNsamp/2Fs (Eqn. 28)
where c denotes the speed of propagation, Nsamp denotes the sample number, and Fs denotes the sampling rate associated with the envelope-squared sequence.
The front wall is detected in much the same manner as the back wall. Starting from the same position used for the back wall, the integrated power is computed by summing consecutive samples of the square of the envelope of the A-mode signal in the direction of the front wall. Hence, the samples are taken in descending order from sample Kst. When the integrated power exceeds the prescribed threshold, the front wall is assumed detected and the corresponding sample value determines the depth of the front wall.
In the embodiment of
Furthermore, to facilitate the processing, inter-line averaging of the A-mode lines as is well known in the signal processing arts may be performed prior to lumen and wall detection. This technique can be used to improve performance and robustness of the system, both in terms of lumen detection and arterial wall depth estimation.
In an alternative embodiment of the method for detecting the arterial walls (
The search for the back wall is performed in a similar manner to that described for the front wall. Specifically, the search begins at the depth of the detected lumen, but proceeds in the direction of increasing depth (i.e., away from the ultrasonic transducer). As with the front wall, when the amplitude of the envelope-squared exceeds satisfies a designated criterion, this amplitude is attributed to backscatter from the back wall. The depth of this occurrence is assumed to be the location of the back wall.
Accordingly, a simple search algorithm may be used in conjunction with the signal level (envelope-squared) methodology to identify the locations associated with the front and back arterial walls when the A-mode data is of “reasonable” quality. Specifically, as shown in
Note that the processes of computing the envelope-squared, determining the corresponding average power in the designated interval (e.g., 1 mm) and the lumen signal, and detection of the front and back arterial walls, is performed in the present embodiment on an A-mode “line-by-line” basis. The arterial wall positions determined in this manner for an exemplary A-mode data set consisting of 5000 lines is shown in
Once the relative wall positions are determined, the diameter of the blood vessel may be simply determined by taking the difference in depth between the rear and front walls. For example, if the rear wall occurs at a depth of 3.5 mm, and the front wall at a depth of 1.5 mm, the diameter of the blood vessel can be estimated at (3.5 mm−=1.5 mm)=2.0 mm. This determination is made in one embodiment using smoothed wall position estimates (i.e., those which are mathematically averaged of smoothed using other signal processing techniques) which are derived as previously described herein.
It will be appreciated however that due to a number of factors including the elasticity of the blood vessel walls, variations in output pressure of the cardiac muscle, and respiration, the effective diameter of a given blood vessel in a living subject will vary as a function of time. Hence, the foregoing wall detection methodologies must be adapted to account for these variation as a function of time. Consider, for example, the case where movement by the subject during measurement causes inadvertent repositioning of the ultrasonic transducer(s) with respect to the radial artery, such that the transducer is no longer situated directly “over” the artery. Under static conditions, such repositioning would be reflected as a reduction in measured blood vessel diameter, thereby inducing the control scheme for transducer position to attempt to relocate the transducer again to the optimal (i.e., maximal diameter) position over the artery. However, under normal “dynamic” conditions associated with a living subject, the diameter of the blood vessel will vary with no inadvertent movement or repositioning. Hence, the apparatus of the present invention is further adapted to compensate for transient or dynamic wall diameter effects using signal processing. Specifically, in one aspect, respiratory effects (which are comparatively low in frequency compared to cardiac rate) are electronically filtered. Similarly, cardiac effects (i.e., the natural expansion and contraction of the blood vessel due to changes in pressure within the blood vessel induced by the heart) are integrated or averaged out, thereby providing a wall diameter signal which is effectively independent of these effects. Specifically, in one exemplary embodiment, “raw” wall diameter measurements are integrated over several (“n”) cardiac cycles before any control signal is generated to reposition the lateral transducer positioning assembly.
It will be appreciated that while the foregoing exemplary methodologies of wall detection (e.g., integrated power and envelope-squared signal level) are described in terms of both front and back walls of the blood vessel, either the front or back wall detection approaches may be applied to varying degrees. For example, if it is determined that for a certain subject being evaluated (or group of subjects having some common characteristic) that the front wall artifact is particularly weak or otherwise unreliable, back wall detection may be weighted more substantially in compensation. Similarly, if the clutter in the blood vessel under examination is significant, the more affected wall may be selectively de-emphasized in terms of weighting. Other such modifications may also be employed depending on the particular application.
Additionally, it will be recognized that the integrated power threshold and envelope-squared signal level approaches may be used either alone or in combination, or other methods (e.g., so-called “boxcar” averaging of the type well known in the signal processing arts) may be employed. For example, parallel computation of envelope-squared signal level and integrated power may be performed, and the calculated values compared to the applicable threshold criteria (e.g., 4 times lumen signal level, and 500 times mean lumen power, respectively). The results of these comparisons may then be used to determine the relative reliability or confidence in the wall detection, such as by calculation of a “confidence level” metric which can be subsequently used by system and/or user. If the wall detection scores for both the integrated power and envelope-squared approaches are high, the resulting confidence metric is high; if the wall detection scores for one technique is high and the other low, then the value of the confidence metric is reduced, and subsequent confirmatory processing is indicated.
Furthermore, it will be appreciated that in the context of wall detection as a whole, various forms of scoring or weighting known in the signal processing arts may be used in substitution for, or conjunction with, the aforementioned criteria. Such techniques advantageously increases the robustness of the system under actual clinical use. For example, in one alternative embodiment, A-mode signals having an envelope-squared or integrated power value meeting or exceeding a discrete value (e.g., 4 times estimated signal level in the case of signal level, or 500 times the mean lumen power in the case of the integration approach) are assigned a score of “1.0”. Signals having a value less that this discrete value are assigned scores based on their relationship to a window function w(x), such that values falling below a predetermined threshold (e.g., 2 times estimated signal level, or 250 times mean lumen) are given a score of 0.0, and values between the predetermined threshold and the designated criterion are assigned scores between 0.0 and 1.0 according to the function w(x).
As yet another alternative, the envelope-squared or integrated power values associated with given A-mode measurement may be weighted based on some extrinsic or intrinsic “quality factor” which is related to the quality of data sampled during that interval. As a simple example, if the subject under evaluation moves during a given series of A-mode lines, the quality of data may be reduced, and accordingly any lumen/wall detection computations performed based on this data may be artificially reduced in weighting with respect to other samples.
As yet another alternative, “locational” weighting and/or scoring may be applied, such that envelope-squared or integrated power values generated by A-mode lines corresponding to certain depths may be adjusted. For example, as previously described, the likelihood of finding the front wall of the radial artery in an adult human less than 1 mm from the surface of the skin is exceedingly low; accordingly, an envelope-squared or integrated power value derived from the first “N” A-mode lines (corresponding to the depth of 1 mm) would be heavily de-valued or even eliminated (i.e., zero-weighted).
Similarly, interval-to-interval processing may be conducted such that wall artifact determined in non-contiguous A-mode line intervals is marked as an ambiguity requiring resolution. If a front wall artifact is detected in the first 1 mm depth interval, and again in the third, it can be assumed with some level of confidence that either (i) the wall artifact detected in the first interval is the front wall, and the artifact detected in the third interval is the back wall, or (ii) the first artifact was noise, and the third-interval artifact is the true front wall signal. Such ambiguity can be resolved through any number of techniques, such as the application of the aforementioned “locational” weighting to eliminate the first artifact based on low likelihood of occurrence in the adult population, or the use of sampling of subsequent A-mode signals for those intervals.
The present methodology also includes significant smoothing/filtering of the signal where needed. Such smoothing/filtering furthermore eliminates the time variations that occur from systole to diastole, as well as beat-to-beat variations caused by respiration. Such signal smoothing/filtering is generally well understood in the signal processing arts, and accordingly is not described further herein.
Referring now to
As shown in
It will be recognized that the wall diameter information referenced above may be used as the basis for any number of different control schemes, including for example the fuzzy logic control approach previously described herein. Such variations and applications are well known to those of ordinary skill in the controller arts, and accordingly are not described further herein.
It is lastly noted that many variations of the methods described above may be utilized consistent with the present invention. Specifically, certain steps are optional and may be performed or deleted as desired. Similarly, other steps (such as additional data sampling, processing, filtration, calibration, or mathematical analysis for example) may be added to the foregoing embodiments. Additionally, the order of performance of certain steps may be permuted, or performed in parallel (or series) if desired. Hence, the foregoing embodiments are merely illustrative of the broader methods of the invention disclosed herein.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. The foregoing description is of the best mode presently contemplated of carrying out the invention. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the invention. The scope of the invention should be determined with reference to the claims.
Algorithm Experiments
To demonstrate the maximum time-frequency principle, 10 learning data files were selected from past applanation sweeps that possessed high quality ultrasound, overcompression, and generally large mean arterial pressure (MAP) difference. MAP difference was calculated by comparing estimated MAP to the average of two cuff MAPs measured immediately before and after an applanation sweep. Two additional files were acquired with an additional constraint of sweeping down to a minimum diastolic value less than 30 mm Hg below the true diastole (specifically files 11 and 12). The data files were acquired using a variety of sensor geometries, position angles (steel mount angles are varied and unknown), and subjects, as illustrated in Table 1.
In each file, MAP was estimated by searching for the maximal pulsatile pressure. MAP was also estimated by determining the MAP associated with a pressure waveform with the maximal mean time-frequency distribution. The Pseudo Wigner distribution of the velocity, with k=0, calculated. Within each pressure waveform time interval, the mean distribution value was then calculated. The algorithm for calculating the maximal time-frequency distribution was “tuned” to the 12 files. By tuning, secondary algorithm steps such as the determination of the choice of the first pressure and velocity waveforms to be analyzed within a sweep were optimized. Also, the MAP differences using the maximum mean distribution versus maximum diastolic distribution were evaluated. While the results from both methods were insignificantly different, the maximum mean distribution was easier to calculate.
Once the mean time-frequency algorithm was tuned, the MAP in 6 new data files (again, with various sensor geometries, position angles, and subjects; see Table 2) was estimated and compared to the cuff MAP. For each comparison, the mean and standard deviation of the MAP difference was calculated. The paired, two-sided t test was used to assess significant differences between methods, using a 95% confidence interval.
Results
For the learning data (Table 1), the maximum pulsatile MAP difference was 15±17 mm Hg; the maximum time-frequency MAP difference was 3±11 mm Hg. For the testing data (Table 2), the maximum pulsatile MAP difference was 19±15 mm Hg; the maximum time-frequency MAP difference was 3±5 mm Hg. In both the learning and testing data sets, the results obtained from the maximum time-frequency method were significantly different from those obtained using the maximum pulsatile method (p≦0.02 and p≦0.03, respectively).
Mechanical Impulse Response
In obtaining experimental verification of the methods disclosed herein, Applicant obtained data in 10 second intervals from three different human subjects in a hospital operating room. During these 10 second intervals, data was sampled at 400 Hz, and decimated to 100 Hz. The mean arterial pressures (MAPs) measured for each of the three subjects were 73, 126, and 83 mm Hg, respectively. These means were subtracted from the respective data sets for each subject, and fit to the ARX model using various combinations of N and M, as illustrated in Table B-1:
For all three subjects, the optimum model was a zeroeth order model with one feedforward coefficient. The identified feedforward coefficients and their associated standards of deviation are shown in Table B-2.
Estimate of Diastolic Pressure
Using the time-frequency algorithm for estimating catheter MAP (such as that described with respect to
FIG. B-1. Time-Frequency Estimated MAP Versus Average Catheter MAP
While the squared correlation coefficients for all three methods were significant, thereby indicating that approximately 60% of the variance in the estimates may be attributed to variation in catheter pressures, only the time-frequency and wavelet approaches resulted in low mean errors. It is believed that the standard deviation values observed for these errors are in part a reflection of the low sensitivity in the prototype ultrasound circuit.
When the ultrasonic/pressure sensor is positioned with respect to the subject's blood vessel to measure a pressure equivalent to the catheter mean, the end-diastolic velocity is maximized. In the controller example illustrated in
Preliminary studies have been conducted by the Applicant herein to assess the accuracy of the fuzzy logic controller. Over a two hour period, two anesthetized operating room subjects were subjected to continuous two 20 minute intervals of measurement, followed by 5 minute intervals of rest. During each 20 minute measurement, an applanation pressure sweep was conducted, followed by continuous servo control. The catheter MAPs ranged from 69 to 106 mm Hg. Over 3,103 beats, the mean error of the controller MAPs, compared to catheter MAPs, was −3±5 mm Hg. Individual data sets are summarized in Table C-1 below.
This application is a continuation-in-part of U.S. application Ser. No. 09/342,549, now U.S. Pat. No. 6,471,655 entitled “Method And Apparatus For The Noninvasive Determination Of Arterial Blood Pressure” filed Jun. 29, 1999, and assigned to the Applicant herein. This application is related to U.S. Pat. No. 6,514,211 entitled “Method And Apparatus For The Noninvasive Determination Of Arterial Blood Pressure” filed Jan. 21, 2001, and U.S. Pat. No. 7,048,691 entitled “Method and Apparatus for Assessing Hemodynamic Parameters within the Circulatory System of a Living Subject” filed contemporaneously herewith, both assigned to the Assignee hereof.
Number | Name | Date | Kind |
---|---|---|---|
3527197 | Ware et al. | Sep 1970 | A |
3601120 | Massie et al. | Aug 1971 | A |
3617993 | Massie et al. | Nov 1971 | A |
3663932 | Mount et al. | May 1972 | A |
3791378 | Hochbert et al. | Feb 1974 | A |
3885551 | Massie | May 1975 | A |
4109647 | Stern et al. | Aug 1978 | A |
4127114 | Bretscher | Nov 1978 | A |
4154231 | Russell | May 1979 | A |
4239047 | Griggs, III et al. | Dec 1980 | A |
4249540 | Koyama et al. | Feb 1981 | A |
4269193 | Eckerle | May 1981 | A |
4318413 | Iinuma et al. | Mar 1982 | A |
4349034 | Ramsey, III | Sep 1982 | A |
4476875 | Nilsson et al. | Oct 1984 | A |
4566462 | Janssen | Jan 1986 | A |
4584880 | Matzuk | Apr 1986 | A |
4590948 | Nilsson | May 1986 | A |
4596254 | Adrian et al. | Jun 1986 | A |
4630612 | Uchida et al. | Dec 1986 | A |
4651747 | Link | Mar 1987 | A |
4660564 | Benthin et al. | Apr 1987 | A |
4719923 | Hartwell et al. | Jan 1988 | A |
4721113 | Stewart et al. | Jan 1988 | A |
4733668 | Torrence | Mar 1988 | A |
4754761 | Ramsey, III et al. | Jul 1988 | A |
4771792 | Seale | Sep 1988 | A |
4802488 | Eckerle | Feb 1989 | A |
4867170 | Takahashi | Sep 1989 | A |
4869261 | Penaz | Sep 1989 | A |
4901733 | Kaida et al. | Feb 1990 | A |
4924871 | Honeyager | May 1990 | A |
4960128 | Gordon et al. | Oct 1990 | A |
5030956 | Murphy | Jul 1991 | A |
5065765 | Eckerle et al. | Nov 1991 | A |
5072733 | Spector et al. | Dec 1991 | A |
5094244 | Callahan et al. | Mar 1992 | A |
5119822 | Niwa | Jun 1992 | A |
5158091 | Butterfield et al. | Oct 1992 | A |
5163438 | Gordon et al. | Nov 1992 | A |
5170796 | Kobayashi | Dec 1992 | A |
5238000 | Niwa | Aug 1993 | A |
5240007 | Pytel et al. | Aug 1993 | A |
5241964 | McQuilkin | Sep 1993 | A |
5261412 | Butterfield et al. | Nov 1993 | A |
5273046 | Butterfield et al. | Dec 1993 | A |
5280787 | Wilson et al. | Jan 1994 | A |
5289823 | Eckerle | Mar 1994 | A |
5327893 | Savic | Jul 1994 | A |
5363849 | Suorsa et al. | Nov 1994 | A |
5368039 | Moses | Nov 1994 | A |
5409010 | Beach et al. | Apr 1995 | A |
5439001 | Butterfield et al. | Aug 1995 | A |
5450852 | Archibald et al. | Sep 1995 | A |
5467771 | Narimatsu et al. | Nov 1995 | A |
5479928 | Cathignol et al. | Jan 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5495852 | Stadler et al. | Mar 1996 | A |
5551434 | Iinuma | Sep 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5617867 | Butterfield et al. | Apr 1997 | A |
5634467 | Nevo | Jun 1997 | A |
5640964 | Archibald et al. | Jun 1997 | A |
5642733 | Archibald et al. | Jul 1997 | A |
5649542 | Archibald et al. | Jul 1997 | A |
5669388 | Vilkomerson | Sep 1997 | A |
5701898 | Adam et al. | Dec 1997 | A |
5718229 | Pesque et al. | Feb 1998 | A |
5720292 | Poliac | Feb 1998 | A |
5722414 | Archibald et al. | Mar 1998 | A |
5738103 | Poliac | Apr 1998 | A |
5749364 | Sliwa et al. | May 1998 | A |
5785654 | Iinuma et al. | Jul 1998 | A |
5797850 | Archibald et al. | Aug 1998 | A |
5832924 | Archibald et al. | Nov 1998 | A |
5833618 | Caro et al. | Nov 1998 | A |
5848970 | Voss et al. | Dec 1998 | A |
5855557 | Lazenby | Jan 1999 | A |
5876346 | Corso | Mar 1999 | A |
5895359 | Peel, III | Apr 1999 | A |
5904654 | Wohltmann et al. | May 1999 | A |
5908027 | Butterfield et al. | Jun 1999 | A |
5916180 | Cundari et al. | Jun 1999 | A |
5938618 | Archibald et al. | Aug 1999 | A |
5941828 | Archibald et al. | Aug 1999 | A |
5964711 | Voss et al. | Oct 1999 | A |
5993394 | Poliac | Nov 1999 | A |
6017314 | Poliac | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6099477 | Archibald et al. | Aug 2000 | A |
6132382 | Archibald et al. | Oct 2000 | A |
6159157 | Archibald et al. | Dec 2000 | A |
6176831 | Voss et al. | Jan 2001 | B1 |
6228034 | Voss et al. | May 2001 | B1 |
6241679 | Curran | Jun 2001 | B1 |
6245022 | Archibald et al. | Jun 2001 | B1 |
6258031 | Sunagawa et al. | Jul 2001 | B1 |
6267728 | Hayden | Jul 2001 | B1 |
6340349 | Archibald et al. | Jan 2002 | B1 |
D458375 | Thede | Jun 2002 | S |
6443905 | Nissila et al. | Sep 2002 | B1 |
6447456 | Tsubata | Sep 2002 | B1 |
6471646 | Thede | Oct 2002 | B1 |
6471655 | Baura | Oct 2002 | B1 |
6514211 | Baura | Feb 2003 | B1 |
6554774 | Miele | Apr 2003 | B1 |
6558335 | Thede | May 2003 | B1 |
6589185 | Archibald et al. | Jul 2003 | B1 |
6676600 | Conero et al. | Jan 2004 | B1 |
Number | Date | Country |
---|---|---|
4218319 | Jun 1992 | DE |
284 095 | Mar 1988 | EP |
0 342 249 | May 1988 | EP |
0299 827 | Jun 1988 | EP |
0595 666 | Sep 1993 | EP |
0 603 666 | Dec 1993 | EP |
0818 176 | Jul 1996 | EP |
WO 84 00290 | Feb 1984 | WO |
WO 92 07508 | May 1992 | WO |
WO 9500074 | Jan 1995 | WO |
WO 95 13014 | May 1995 | WO |
WO 98 25511 | Jun 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20020055680 A1 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09342549 | Jun 1999 | US |
Child | 09815982 | US |