This application claims an invention which was disclosed in Provisional Application No. 60/098,498, filed Aug. 31, 1998, entitled "METHODS AND APPARATUS FOR THE USE OF SENTINEL MICROORGANISMS". The benefit under 35 USC .sctn.119(e) of the United States provisional application is hereby claimed, and the aforementioned application is hereby incorporated herein by reference.
Entry |
---|
Jenkins et al; Applied & Envir. Microb.; V65; p1998-2005 (May 1999). |
Anguish, L. J. and W. C. Ghiorse. 1997. Computer-assisted laser scanning and video microscopy for analysis of Cryptosporidium parvum oocysts in soil, sediment, and feces. Appl. Environ. Microbiol. 63:724-733. |
Blewett, D. A. 1989. Quantitative techniques in Cryptosporidium research, pp. 85-95. In: Angus, K. W. and D. A. Blewett (eds.), Cryptosporidiosis. Proceedings of the First International Workshop. The Animal Diseases Research Association, Edinburgh, UK. |
Buijsman, E., H. F. M. Maas, and W. A. H. Aasman, 1987. Anthropogenic NH.sub.3 emissions in Europe. Atmospheric Environ. 21:1009-1022. |
Campbell, A. T., L. J. Robertson, and H. V. Smith. 1992. Viability of Cryptosporidium parvum oocysts: correlation in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl. Environ. Microbiol. 58:3488-3493. |
Current, W. L. and L. S. Garcia. 1991. Crytosporidiosis. Clin. Microbiol. Rev. 4:325-258. |
Dewes, T. 1996. Effect of pH, temperature, amount of litter and storage density of ammonia emmissions from stable manure. J. Agric. Res. 127:501-509. |
Fayer, R. 1994. Effect of high temperature on infectivity of Cryptosporidium parvum oocysts in water. Appl. Environ. Microbiol. 60:2732-2735. |
Fayer, R. and R. G. Leek. 1984. The Effects of reducing conditions, medium, pH, temperature, and time on in vitro excystation of Cryptosporidium. J. Protozool. 31:567-569. |
Fayer, R. and T. Nerad. 1996. Effect of low temperatures on viability of Cryptosporidium parvum oocyst. Appl. Environ. Microbiol. 62:1431-1433. |
Hillel, D. 1971. Soil and water. Academic Press, New York, NY. pp. 65-68. |
Jenkins, M. B., L. J. Anguish, D. D. Bowman, M. J. Walker, and W. C. Ghiorse. 1997. Assessmen of a dye permeability assay for determination fo inactivation rates of Cryptosporidium parvum oocysts. Appl. Environ. Microbiol. 63:3844-3850. |
Jenkins, M. B., D. D. Bowman, and W. C. Ghiorse. 1998. Inactivation of Cryptosporidium parvum oocysts by ammonia. Appl. Environ. Microbiol. 64:784-788. |
Kirchmann, H., and E. Witter. 1989. Ammonia volatilization during aerobic and anaerobic manure decomposition. Plant Soil. 115:35-41. |
MacKenzie, W. R., N. J. Hoxie, M. E. Proctor, S. Gradus, K. A. Blair, D. E. Peterson. JT Kazmierczak, K. Fox, D. G. Addis, J. B. Rose, and JT Davis. 1994. Massive waterborne outbreak of Cryptosporidium infection associated with a filtered public water supply, Milwaukee, Mar. and Apr., 1993. New England J. Med. 331:161-167. |
Madore, M. S., J. B. Rose, C. P. Gerba, M. J. Arrowood, and C. R. Sterling. 1987. Occurrence of Cryptosporidium oocysts in sewage effulents and selected surface waters. J. Parasitol. 73:702-705. |
Moore, A. C., B. L. Herwaldt, G. F. Craun, R. L. Calderon, A. K. Highsmith, and D. D. Juranek. 1994. Waterbome disease in the United States, 1991-1992. J. Am. Water Works Assoc. 86(2):87-99. |
Pavelic, P., et. al., Diffusion Chamber Method For In Situ Measurement Of Pathogen Inactivation In Groundwater, Water Resources 32(4), p. 1144 (1998). |
Peng, M. M., L. Xiao, A. R. Freeman, MT Arrowood, A. A. Escalante, A. C. Weltman, C. S. L. Ong, W. R. MacKenzie, A. A. Lal, and C. B. Beard. Genetic polymorphisms among Cryptosporidium parvum isolates: evidence of two distinct human transmission cycles. Emerging Infectious Diseases 3:567-573. |
Roberson L. J., A. T. Campbell, and H. V. Smith. 1992. Survival of Cryptosporidium parvum oocysts under various environmental pressures. Appl. Environ. Microbiol. 58:3494-3500. |
Roberson, L. J., A. T. Campbell, and FIN. Smith. 1993. A low cost, low technology container for studying the survival of transmission stages of parasites and other pathogens in water-related environments. Wat. Res. 27:723-725. |
Rose, J. B. 1988. Occurrence and significance of Cryptosporidium in water. J. Am. Water Works Assoc. 80:53-58. |
Rose, J. B., A. Cifrino, M. S. Madore, C. P. Gerba, C. R. Sterling, and M. J. Arrowood. 1986. Detection of Cryptosporidium from wastewater and freshwater environments. Water Sci. Technol. 18;233-239. |
Topp, G. C. 197 1. Soil water hysteresis in silt loam and clay loam soils. Wat. Resources Res. 7:914-920. |
Walker, M. J., C. Montemagno, J. C. Bryant, and W. C. Ghiorse. 1998. Method detection limits of PCR and immunofluorescence assay for Cryptosporidium parvum in soil. Appl. Environ. Microbiol. 64:2281-2283. |
Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. |
Watershed Agricultural Progarm Progress Report, 1997, "Pollution Prevention Through Agricultural Management", 3 pages. |
Watershed Agricultural News, Dec. 1996, "Farm Profile: Wild Flower Farm", 2 pages. |