1. Technical Field
The invention relates to printing. More particularly, the invention relates to a method and apparatus for thermal expansion based print head alignment.
2. Description of the Background Art
Aligning large numbers of print heads is time consuming and/or costly. Print heads are currently aligned within the printer using precision mechanical references, manually adjusted by mounts, or adjusted by motors. Initially, the carriage plates the support the print heads must be machined very accurately to place the print heads exactly where they should be. Doing so is expensive and not always as accurate as required. Further, variability in manufacturing the print heads themselves means the print heads are not always positioned where they need to be. The state of the art provides an adjustment screw. The operator manually turns the screw to push the print heads forward or back. This procedure is very time consuming. After making such adjustment, the operator prints a pattern, inspects it, and measures it with a microscope. Then the operator makes another adjustment. This procedure is repeated, and typically four hours or more have elapsed before the alignment is done.
Some alignment techniques attempt to use thermal expansion to compensate for print head movement during operation. That is, the print heads are intentionally misaligned during manufacture to allow them to move into alignment when they are at an operating temperature in the field. For example, see U.S. Pat. No. 6,793,323, Thermal Expansion Compensation for Modular Printhead Assembly; U.S. Pat. No. 7,090,335, Thermal Expansion Compensation for Printhead Assembly; and U.S. Pat. No. 7,810,906, Printhead Assembly Incorporating Heat Aligning Printhead Modules. Such approach leaves much to serendipity because operating conditions vary widely in the field and no mechanism is provided for realigning the print heads if they are out of alignment in the field when at an operating temperature.
It would be advantageous to provide a mechanism that addresses the problem of aligning print heads in the field, and that allows such alignment to be performed as needed without the need for time consuming and/or costly procedures.
An embodiment of the invention provides automated print head alignment using thermal expansion. By leveraging thermal expansion to position print heads within the carriage, the tedious manual adjustment process is eliminated. The invention also reduces the need for costly precision references within the printer and on the print head. At least in bulk, as in a highly populated printer, the herein disclosed thermal expansion adjustment technique is more cost-effective than either rotary or piezo motors.
An embodiment of the invention provides automated print head alignment using thermal expansion. By leveraging thermal expansion to position print heads within the carriage, the tedious manual adjustment process is eliminated. The invention also reduces the need for costly precision references within the printer and on the print head. At least in bulk, as in a highly populated printer, the herein disclosed thermal expansion adjustment technique is more cost-effective than either rotary or piezo motors.
The expansion block can be made of a high thermal coefficient of expansion material, such as a Zinc alloy or other material. In the presently preferred embodiment of the invention, the expansion block is made of commercial zinc that preferably has a thermal coefficient of linear expansion of 0.000019″/″/° F. Those skilled in the art will appreciate that the expansion block may be made of other materials and may have other thermal coefficients of linear expansion. Examples of such materials include, but are not limited to acetal, with a thermal coefficient of linear expansion of 0.000059″/″/° F., acrylonitrile butadiene styrene (ABS), with a thermal coefficient of linear expansion of 0.000041, and polyetheretherketone (PEEK), with a thermal coefficient of linear expansion of 0.000025.
The heater element can comprise, for example, a silicon rubber heater, such as McMaster Carr's 35765K364 1″×2″ heater (a similar heater is available from Hi- Heat); or it can comprise a kapton heater, such as Omega's KH-103/10-P (a similar heater is available from Minco/Honeywell). Those skilled in the art will appreciate that other heaters may be used in various embodiments of the invention.
If the heads need to be moved (230), a control system 19 increases the heater temperature using a pulse width modulated (PWM) drive signal (250). The control system then slightly delays further application of the drive signal to the heater, thus allowing the heater temperature to settle. For faster response, a thermocouple feedback mechanism 20 can be installed. The control system adjusts the PWM and repeats the printed test as required until the head is in position. In some circumstances, if the amount of adjustment is too great (overshoot), then expansion block is allowed to cool, such that the horizontal spring moves the print heads back into alignment. Thus, adjustment is effected both to the left and to the right as necessary.
Once proper alignment is achieved, the operator is signaled to activate the lock down to hold the head in position (240). The heater is then deactivated and the expansion block contracts, but the print heads remain locked in alignment. Alternatively, the control system can operate a solenoid or other electro-mechanical actuator (not shown) to engage the lock down automatically when proper alignment is achieved.
The important part of the alignment images can be seen on
In an embodiment, there is one heater and expansion block for every print head. This allows the operator to align all of the print heads to each other. Thus, an alignment is performed first for one print head, and then it is performed for a next print head until all of the print heads are aligned. Alternatively, the print heads may all be aligned at the same time. In this case, there is a reference print head, which in
Computer Implementation
The computer system 1600 includes a processor 1602, a main memory 1604 and a static memory 1606, which communicate with each other via a bus 1608. The computer system 1600 may further include a display unit 1610, for example, a liquid crystal display (LCD) or a cathode ray tube (CRT). The computer system 1600 also includes an alphanumeric input device 1612, for example, a keyboard; a cursor control device 1614, for example, a mouse; a disk drive unit 1616, a signal generation device 1618, for example, a speaker, and a network interface device 1628.
The disk drive unit 1616 includes a machine-readable medium 1624 on which is stored a set of executable instructions, i.e., software, 1626 embodying any one, or all, of the methodologies described herein below. The software 1626 is also shown to reside, completely or at least partially, within the main memory 1604 and/or within the processor 1602. The software 1626 may further be transmitted or received over a network 1630 by means of a network interface device 1628,
In contrast to the system 1600 discussed above, a different embodiment uses logic circuitry instead of computer-executed instructions to implement processing entities. Depending upon the particular requirements of the application in the areas of speed, expense, tooling costs, and the like, this logic may be implemented by constructing an application-specific integrated circuit (ASIC) having thousands of tiny integrated transistors. Such an ASIC may be implemented with complementary metal oxide semiconductor (CMOS), transistor-transistor logic (TTL), very large systems integration (VLSI), or another suitable construction. Other alternatives include a digital signal processing chip (DSP), discrete circuitry (such as resistors, capacitors, diodes, inductors, and transistors), field programmable gate array (FPGA), programmable logic array (PLA), programmable logic device (PLD), and the like.
It is to be understood that embodiments may be used as or to support software programs or software modules executed upon some form of processing core (such as the CPU of a computer) or otherwise implemented or realized upon or within a machine or computer readable medium. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine, e.g., a computer. For example, a machine readable medium includes read-only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other form of propagated signals, for example, carrier waves, infrared signals, digital signals, etc.; or any other type of media suitable for storing or transmitting information.
Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention.
For example, the use of thermal expansion as described herein may be applied to adjust the print heads in more than one direction per print head. Thus, the invention may be used to make adjustments either, or both of, the X and Y dimensions, i.e. left and right and forward and backward.
Further, embodiments of the invention may include a reporting or recording mechanism that tracks the history of the alignment adjustments. The history is useful in identifying changes in alignment over time, for example to determine how the jets or print heads impact the prints, to identify wear and the need for maintenance, to determine how much and how often the heads should be aligned (and thus establish a maintenance schedule, and/or to identify patterns in certain batches of print heads or other components. In an embodiment, this feature of the invention is implemented with an inspection camera, and the results are stored in the printer memory.
Finally, an embodiment of the invention instruments the herein disclosed mechanism to provide remote diagnostics. For example, the expansion blocks are not only used to adjust the location of the heads, but the system may include sensors associated with the expansion mechanism and/or print heads to ascertain the location of the heads remotely. For example, in an embodiment expansion to a determined resistance threshold, as measured by a strain sensor in line with, or influenced by, the expansion blocks, provides data to allow remote viewing of print head alignment.
Accordingly, the invention should only be limited by the Claims included below.
This application is a continuation of U.S. patent application Ser. No. 13/301,624, filed Nov. 21, 2011, which application is incorporated herein in its entirety by this reference thereto.
Number | Date | Country | |
---|---|---|---|
Parent | 13301624 | Nov 2011 | US |
Child | 13913279 | US |