A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
This invention relates to a method and apparatus for three dimensional inspection and, more particularly, a method and apparatus for three dimensional inspection of solder balls on ball grid arrays and solder bumps on wafer and die, and to a calibration method.
Prior art three dimensional inspection systems have involved laser range finding technology, moire interferometry, structured light patterns or two cameras. The laser range finding method directs a focused laser beam onto the Ball Grid Array, BGA, and detects the reflected beam with a sensor. Elements of the BGA are determined in the X, Y and Z dimensions utilizing a triangulation method. This method requires a large number of measurement samples to determine the dimensions of the BGA resulting in longer inspection times. This method also suffers from specular reflections from the smooth surfaces of the solder balls resulting in erroneous data.
Moiré interferometry utilizes the interference of light waves generated by a diffraction grating to produce a pattern of dark contours on the surface of the BGA. These contours are of known distance in the Z dimension from the diffraction grating. By counting the number of contours from one point on the BGA to another point on the BGA, the distance in the Z dimension between the two points can be determined. This method suffers from the problem of low contrast contour lines resulting in missed counting of the number of contours and resulting in erroneous data. This method also suffers from the contour lines merging at surfaces with steep slopes, such as the sides of the balls on the BGA, resulting in an incorrect count of the number of contours and resulting in erroneous data.
Structured light systems project precise bands of light onto the part to be inspected. The deviation of the light band from a straight line is proportional to the distance from a reference surface. The light bands are moved across the part, or alternately the part is moved with respect to the light bands, and successive images are acquired. The maximum deviation of the light band indicates the maximum height of a ball. This method suffers from specular reflections due to the highly focused nature of the light bands resulting in erroneous data. This method further suffers from increased inspection times due to the number of images required.
Two camera systems utilize one camera to view the BGA device in the normal direction to determine X and Y dimensions and the second camera to view the far edges of the balls from an angle. The two images are combined to determine the apparent height of each ball in the Z dimension utilizing a triangulation method. This method suffers from the need for a higher angle of view of the ball from the second camera resulting in looking at a point significantly below the top of the ball for BGA's having fine pitch. This method also suffers from limited depth of focus for the second camera limiting the size of BGA's that can be inspected. This system can only inspect BGA's and not other device types such as gullwing and J lead devices.
The prior art does not provide two separate and opposite side views permitting larger BGA's to be inspected or nonlinear optics to enhance the separation between adjacent ball images in the side perspective view.
It is therefore a motivation of the invention to improve the accuracy of the measurements, the speed of the measurements, the ability to measure all sizes and pitches of BGA's and to measure other devices including gullwing and J lead parts in a single system.
The invention provides an apparatus for three dimensional inspection of an electronic part, wherein the apparatus is calibrated using a precision pattern mask with dot patterns deposited on a calibration transparent reticle, the apparatus for three dimensional inspection of an electronic part comprising a camera and an illuminator for imaging the electronic part, the camera being positioned to obtain a first view of the electronic part, a means for light reflection positioned to reflect a different view of the electronic part into the camera, wherein the camera provides an image of the electronic part having differing views of the electronic part, and a means for image processing the image of the electronic part that applies calculations on the differing views of the image to calculate a three dimensional position of at least one portion of the electronic part.
The invention further comprises a ring light. The means for light reflection could further comprise a mirror, a prism, or a curved mirror. The electronic part may be a ball grid array, balls on a wafer, or balls on a die.
The means for imaging provides the image to a frame grabber board. The frame grabber board provides an image data output to a processor to perform a three dimensional inspection of the part.
The apparatus may further comprise a nonlinear optical element to magnify the second image in one dimension. In the apparatus a maximum depth of focus of a side perspective view allows for a fixed focus system to inspect larger electronic parts, with one perspective view imaging one portion of the electronic part and a second perspective view imaging a second portion of the electronic part. Also, in the apparatus a maximum depth of focus of a side perspective view includes an area of the electronic part including a center row of balls. Furthermore, all of the balls on the electronic part may be in focus resulting in two perspective views for each ball.
The invention comprises a means for inspecting gullwing and J lead devices.
The invention further provides a method for three dimensional inspection of a lead on a part, the method comprising the steps of using a camera to receive an image of the lead, transmitting the image of the lead to a frame grabber, providing fixed optical elements to obtain a side perspective view of the lead, transmitting the side perspective view of the lead to the frame grabber, operating a processor to send a command to the frame grabber to acquire images of pixel values from the camera, and processing the pixel values with the processor to calculate a three dimensional position of the lead. State values may be determined from the part itself.
The lead may be a curved surface lead, a ball, a ball grid array, a formed wire, a stamped metal form or similar object that can be imaged from two separate directions.
The processor processes the pixel values to find a rotation, an X placement value and a Y placement value of the part relative to world X and Y coordinates by finding points on four sides of the part.
The invention further provides the steps of using a part definition file that contains measurement values for an ideal part, calculating an expected position for each lead of the part for a bottom view using the measurement values from the part definition file and the X placement value and Y placement value.
The invention further provides the step of using a search procedure on the image data to locate the lead.
The invention further provides the step of determining a lead center location and a lead diameter in pixels and storing the lead center location and lead diameter in memory.
The invention further provides the step of calculating an expected position of a center of each lead in both side perspective views in the image using a known position of each side view from calibration.
The invention further provides the step of using a subpixel edge detection method to locate a reference point on each lead.
The invention further provides the step of converting the pixel values into world locations by using pixel values and parameters determined during calibration wherein the world locations represent physical locations of the lead with respect to world coordinates defined during calibration.
The invention further provides for the calculation of a Z height of each lead in world coordinates in pixel values by combining a location of a center of a lead from a bottom view with a reference point of the same lead from a side perspective view.
The invention further provides the step of converting the world values to part values using the rotation, the X placement value and the Y placement value to define part coordinates for the ideal part where the part values represent physical dimensions of the lead including lead diameter, lead center location in X part and Y part coordinates and lead height in Z world coordinates.
The invention further provides the step of comparing ideal values defined in the part file to calculate deviation values that represent a deviation of the center of the lead from its ideal location. The deviation values may include lead diameter in several orientations with respect to the X placement value and Y placement value, lead center in the X direction, Y direction and radial direction, lead pitch in the X direction and Y direction and missing and deformed leads, further comprising the step of calculating the Z dimension of the lead with respect to the seating plane based on the Z world data.
The invention further provides the step of comparing the deviation values to predetermined tolerance values with respect to an ideal part as defined in the part definition file to provide a lead inspection result.
To illustrate this invention, preferred embodiments will be described herein with reference to the accompanying drawings.
FIGS. 1B1, 1B2 and 1B3 show an example calibration pattern and example images of the calibration pattern acquired by the system.
FIGS. 3B1, 3B2 and 3B3 show example images of a part acquired by the system.
FIGS. 11B1, 11B2 and 11B3 show an example calibration pattern and example images of a calibration pattern acquired by the system, utilizing a single side perspective view, of the invention.
FIGS. 12B1, 12B2 and 12B3 show an example ball grid array and example images of the ball grid array for three dimensional inspection, utilizing a single side perspective view.
In one embodiment of the invention, the method and apparatus disclosed herein is a method and apparatus for calibrating the system by placing a pattern of calibration dots of known spacing and size on the bottom plane of a calibration reticle. From the precision dots the missing state values of the system are determined allowing for three dimensional inspection of balls on ball grid array devices, BGA devices or balls on wafers or balls on die. In one embodiment of the invention the system may also inspect gullwing and J lead devices as well as ball grid arrays.
Refer now to
FIGS. 1B1, 1B2 and 1B3 show an example image 50 from camera 10 and an example image 60 from camera 15 acquired by the system. The image 50, a bottom view of dot pattern 22, shows dots 52 acquired by camera 10. The dot pattern contains precision dots 24 of known dimensions and spacing. The precision dots 24 are located on the bottom surface of the calibration reticle 20. The image 60 shows two side perspective views of the dot pattern 22. A first side perspective view in image 60 contains images 62 of dots 24 and is obtained by the reflection of the image of the calibration reticle dot pattern 22 off of fixed optical elements 30, 32 and 38 into camera 15. A second side perspective view in image 60 contains images 66 of dots 24 and is obtained by the reflection of the image of the calibration reticle dot pattern 22 off of fixed optical elements 34, 36 and 38 into camera 15.
Optical element 36 is positioned to adjust the optical path length of a second side perspective view to equal the optical path length of a first side perspective view. Those skilled in the art will realize that any number of perspective views can be utilized by the invention. In one embodiment of the invention, the maximum depth of focus of a side perspective view includes an area of the reticle including the center row of dots. This allows for a fixed focus system to inspect larger parts, with one perspective view imaging half of the part and the second perspective view imaging the other half of the part.
Substituting:
DBcal=DB(Dh/DH)
Substituting into the equation for the side perspective view angle 177 described earlier yields:
FIGS. 3B1, 3B2 and 3B3 show an example image 80 from camera 10 and an example image 90 from camera 15 acquired by the system. The image 80 shows the bottom view of the balls located on the bottom surface of a part 70. The image 90 shows two side view perspectives of the balls located on part 70. A first side perspective view in image 90 contains images of balls 91 and is obtained by the reflection of the image of the part 70 off of fixed optical elements 30, 32 and 38 into camera 15. A second side perspective view in image 90 contains images of balls 92 and is obtained by the reflection of the image of the part 70 off of fixed optical elements 34, 36 and 38 into camera 15. Optical element 36 is positioned to adjust the optical path length of a second side perspective view to equal the optical path length of a first side perspective view. In one embodiment of the invention, the maximum depth of focus of a side perspective view just includes an area of the part including the center row of balls. This allows for a fixed focus system to inspect larger parts, with one perspective view imaging at least half of the part and the second perspective view imaging at least the other half of the part. Those skilled in the art will realize that any number of perspective views can be utilized by the invention. In another embodiment of the invention, all of the balls are in focus from both side perspective views resulting in two perspective views for each ball. This permits two Z calculations for each ball as shown in conjunction with
The invention contemplates the inspection of parts that have ball shaped leads whether or not packaged as a ball grid array. The invention also contemplates inspection of leads that present a generally curvilinear profile to an image sensor.
The inspection system processes the pixel values of the stored image 80 in step 154 to find a rotation, and X placement and Y placement of the part relative to the world X and Y coordinates. The processor determines these placement values finding points on four sides of the body of the part. In step 155, the processor employs a part definition file that contains values for an ideal part.
By using the measurement values from the part definition file and the placement values determined in step 154, the processor calculates an expected position for each ball of the part for the bottom view contained in image 80. The processor employs a search procedure on the image data to locate the balls 81 in image 80. The processor then determines each ball's center location and diameter in pixel values using grayscale blob techniques as described with respect to FIG. 7A. The results are stored in memory 14.
The processor proceeds in step 156 to calculate an expected position of the center of each ball in both side perspective views in image 90 using the known position of each side view from calibration. The processor employs a subpixel edge detection method described with respect to
Now refer to FIG. 5B. In step 158 the processor converts the stored pixel values from steps 154 and 157 into world locations by using pixel values and parameters determined during calibration. The world locations represent physical locations of the balls with respect to the world coordinates defined during calibration.
In step 159 the Z height of each ball is calculated in world coordinates in pixel values. The method proceeds by combining the location of the center of a ball from the bottom view 80 with the reference point of the same ball from a side perspective view in image 90 as described in
In step 161 these part values are compared to the ideal values defined in the part file to calculate the deviation of each ball center from its ideal location. In one example embodiment of the invention the deviation values may include ball diameter in several orientations with respect to the X and Y part coordinates, ball center in the X direction, Y direction and radial direction, ball pitch in the X direction and Y direction and missing and deformed balls. The Z world data can be used to define a seating plane, using well known mathematical formulas, from which the Z dimension of the balls with respect to the seating plane can be calculated. Those skilled in the art will recognize that there are several possible definitions for seating planes from the data that may be used without deviating from the spirit and scope of the invention.
In step 162 the results of step 161 are compared to predetermined thresholds with respect to the ideal part as defined in the part file to provide an electronic ball inspection result. In one embodiment the predetermined tolerance values include pass tolerance values and fail tolerance values from industry standards. If the measurement values are less than or equal to the pass tolerance values, the processor assigns a pass result for the part. If the measurement values exceed the fail tolerance values, the processor assigns a fail result for the part. If the measurement values are greater than the pass tolerance values, but less than or not equal to the fail tolerance values, the processor designates the part to be reworked. The processor reports the inspection result for the part in step 163, completing part inspection. The process then returns to step 151 to await the next inspection signal.
Now refer to FIG. 6A. The processor locates a point 258 on the world plane 250 determined by a bottom view ray 255 passing through the center 257 of a ball 71 on a part 70. The processor locates a side perspective view point 260 on the world plane 250 determined by a side perspective view ray 256 intersecting a ball reference point 259 on ball 71 and intersecting the bottom view ray 255 at a virtual point 261. Ray 256 intersects the world plane 250 at an angle 262 determined by the reflection of ray 256 off of the back surface 263 of prism 30. The value of angle 262 was determined during the calibration procedure.
Now refer to FIG. 6B. The distance L1 is calculated by the processor as the difference between world point 258, defined by the intersection of ray 255 with the Z=0 world plane 250, and world point 260, defined by the intersection of ray 256 and the Z=0 world plane 250. The value Z is defined as the distance between world point 261 and 258 and is related to L1 as follows:
Z can be computed by processor 13 since the angle 262 is known from calibration. The offset E 265 is the difference between the virtual point 261 defined by the intersection of ray 255 and ray 256 and the crown of ball 71 at point 264, defined by the intersection of ray 255 with the crown of ball 71, and can be calculated from the knowledge of the angle 262 and the ideal dimensions of the ball 71. The final value of Z for ball 71 is:
ZFinal=Z−E
In one embodiment of the invention the processor 13 implements image processing functions written in the C programming language.
The C language function “FindBlobCenter”, as described below, is called to find the approximate center of the ball 71 by finding the average position of pixels that are greater than a known threshold value. The exact center of the ball 71 can be found by calling the C language function “FindBallCenter” which also returns an X world and Y world coordinate.
The C language function “FindBlobCenter” is called to compute the approximate center of the crescent image 291 by finding the average position of pixels that are greater than a known threshold value. Using the coordinates of the approximate center of the crescent image 291, the C language function “FindCrescentTop” is called to determine the camera pixel, or seed pixel 292 representing the highest edge on the top of the crescent. The camera pixel coordinates of the seed pixel are used as the coordinates of a region of interest for determining the subpixel location of the side perspective ball reference point.
One example of grayscale blob analysis and reference point determination implemented in the C language is presented as follows:
In another embodiment of the invention, the method and apparatus disclosed herein is a method and apparatus for calibrating the system by placing a pattern of calibration dots of known spacing and dimensions on the bottom plane of a calibration reticle and for providing for two side perspective views of each ball for the three dimensional inspection of parts. From the precision dots the missing state values of the system are determined allowing for three dimensional inspection of balls on BGA devices or balls on wafers or balls on die.
Now refer to FIG. 10A. The processor locates a point 709 on the world plane 700 determined by a bottom view ray 705 passing through the center 708 of a ball 717. The processor locates a first side perspective view point 711 on the world plane 700 determined by a side view ray 706 intersecting a ball reference point 710 on ball 717 and intersecting the bottom view ray 705 at a virtual point 714. Ray 706 intersects the world plane 700 at an angle 715 determined by the reflection of ray 706 off of the back surface of prism 30. The value of angle 715 was determined during the calibration procedure. The processor locates a second side perspective view point 713 on the world plane 700 determined by a side view ray 707 intersecting a ball reference point 712 on ball 717 and intersecting the bottom view ray 705 at a virtual point 718. Ray 707 intersects the world plane 700 at an angle 716 determined by the reflection of ray 707 off of the back surface of prism 34. The value of angle 716 was determined during the calibration procedure.
Now refer to FIG. 10B. The distance L1 is calculated by the processor as the distance between world point 709 and world point 711. The distance L2 is calculated by the processor as the distance between world point 713 and world point 709. The value Z1 is defined as the distance between world point 714 and 709 and is related to L1 as follows:
The value Z2 is defined as the distance between world point 718 and 709 and is related to L2 as follows:
The average of Z1 and Z2 are calculated and used as the value for Z of the ball. This method is more repeatable and accurate than methods that use only one perspective view per ball.
In still another embodiment of the invention, the method and apparatus disclosed herein is a method and apparatus for calibrating the system by placing a pattern of calibration dots of known spacing and dimensions on the bottom plane of a calibration reticle and for providing a single side perspective view for the three dimensional inspection of parts. From the precision dots the missing state values of the system are determined allowing for three dimensional inspection of balls on BGA devices or balls on wafers or balls on die.
FIGS. 11B1, 11B2 and 11B3 show an example calibration pattern and example images of a calibration pattern acquired by the system, utilizing a single side perspective view, of the invention. FIGS. 11B1, 11B2 and 11B3 show an example image 50 from camera 10 and an example image 64 from camera 15 acquired by the system. The image 50 showing dots 52 acquired by camera 10 includes a bottom view of the dot pattern 22, containing precision dots 24 of known dimensions and spacing, located on the bottom surface of the calibration reticle 20. The image 64 shows a side perspective view of the dot pattern 22, containing precision dots 24 of known dimensions and spacing, located on the bottom surface of the calibration reticle 20. A side perspective view in image 64 contains images of dots 65 and is obtained by the reflection of the image of the calibration reticle dot pattern 22 off of fixed optical element 40, passing through nonlinear element 42 and into camera 15.
The side perspective calibration is identical to the method shown in
The determination of the state values for the side perspective view is identical to the method shown in
In still another embodiment employing a single side perspective view, the invention does not include the nonlinear element 42.
FIGS. 12B1, 12B2 and 12B3 show an example ball grid array and example images of the ball grid array for three dimensional inspection, utilizing a single side perspective view. FIGS. 12B1, 12B2 and 12B3 show an example image 80 from camera 10 and an example image 94 from camera 15 acquired by the system. The image 80 shows the bottom view of the balls 71 located on the bottom surface of a part 70. The image 94 shows a side perspective view of the balls 71 located on part 70. The side perspective view in image 94 contains images of balls 95 and is obtained by the reflection of the image of the part 70 off of fixed optical element 40 and passing through the nonlinear fixed element 42 into camera 15.
In an alternate embodiment of the invention, the system can be used to inspect other types of electronic parts in three dimensions, such as gullwing and J lead devices. By utilizing only one camera and adding an additional set of prisms on the reticle 400 these other devices may be inspected. The advantage of being able to inspect different devices with the same system includes savings in cost, and floor space in the factory. Additionally this design allows more flexibility in production planning and resource management.
The UltraVim is described in U.S. Pat. No. 6,055,054 entitled THREE DIMENSIONAL INSPECTION SYSTEM by Beaty et al., issued Apr. 25, 2000 which is incorporated in its entirely by reference thereto.
Refer now to FIG. 14. In still another embodiment of the invention, the system may use three cameras to image directly the bottom view and two side perspective views as shown in FIG. 14.
The camera 15 is located to receive an image 94, comprising a single side perspective view, described in conjunction with FIG. 12B and utilizing fixed optical element 38, to magnify the side perspective view in one dimension. The camera 15 is connected to a frame grabber board 17 to receive the image 94. The frame grabber board 17 provides an image data output to a processor 13 to calculate the Z position of the balls, described in conjunction with FIG. 12B. The processor 13 may store an image in memory 14. The apparatus for an image of a second side perspective view includes a camera 15 with a lens 19. The camera 15 is located to receive an image similar to 94, comprising a single side perspective view, described in conjunction with FIG. 12B and utilizing fixed optical element 38, to magnify the side perspective view in one dimension. The camera 15 is connected to a frame grabber board 17 to receive the image similar to 94. The frame grabber board 17 provides an image data output to a processor 13 to calculate the Z position of the balls, described in conjunction with FIG. 12B. The processor 13 may store an image in memory 14. In another embodiment, the nonlinear fixed optical element 38 may be missing. In still another embodiment of the invention, only one side perspective view may be utilized.
In another embodiment of the invention, the method and apparatus disclosed herein is a method and apparatus using a single camera for calibrating the system by placing a pattern of calibration dots of known spacing and size on the bottom plane of a calibration reticle. From the precision dots the missing state values of the system are determined allowing for three dimensional inspection of balls on ball grid array devices, BGA devices or balls on wafers or balls on die.
Refer now to
In one embodiment of the invention, the optical element 1002 may comprise a prism. In another embodiment of the invention, the optical element 1002 may comprise a mirror. As will be appreciated by one skilled in the art, the invention will work with any number of side views. The calibration pattern 1021 on the reticle 1020 comprises precision dots 1022. The camera 1008 is located below the central part of the calibration reticle 1020 to receive an image 1024 described in conjunction with
Now refer to
In another embodiment of the invention, the method and apparatus disclosed herein is a method and apparatus using a single camera for a three dimensional inspection of balls on ball grid array devices, BGA/CSP devices or balls on wafers or balls on die.
Refer now to
In one example, the means for illumination may comprise reflected light, the lens 1006 may comprise a plurality of lens elements, a pin hole lens or a telecentric lens, and the processor 1012 may comprise a personal computer. Those skilled in the art will understand that the output of the sensor may be transmitted directly to memory without the use of a frame grabber.
A separate second optical element 1002 is positioned below the bottom plane of part 1040 to provide an additional perspective or side view 1048 of the part 1040 containing an image of the ball 1052 of the part 1040. In one embodiment of the invention, the optical element 1002 may comprise a prism. In another embodiment of the invention, the optical element 1002 may comprise a mirror. As will be appreciated by one skilled in the art, the invention will work with any number of side views. The camera 1008 is located below the central part of the part 1040 to receive an image 1044 described in conjunction with
Now refer to
The invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment details and operating procedures, can be accomplished without departing from the scope of the invention itself.
This application is a continuation-in-part of co-pending U.S. application Ser. No. 09/351,892, filed Jul. 13, 1999, currently pending, which is a continuation-in-part of U.S. application Ser. No. 09/008,243, filed Jan. 16, 1998, now U.S. Pat. No. 6,072,898, issued Jun. 6, 2000. The Ser. No. 09/351,892 application and U.S. Pat. No. 6,072,898 are both incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1894025 | Dennison et al. | Jan 1933 | A |
3895446 | Orlov et al. | Jul 1975 | A |
4084875 | Yamamoto | Apr 1978 | A |
4213146 | Maiman | Jul 1980 | A |
4463310 | Whitley | Jul 1984 | A |
4521807 | Werson | Jun 1985 | A |
4603487 | Matsunata | Aug 1986 | A |
4638471 | van Rosmalen | Jan 1987 | A |
4677473 | Okamoto | Jun 1987 | A |
4714830 | Usui | Dec 1987 | A |
4731855 | Suda et al. | Mar 1988 | A |
4774768 | Chiponis | Oct 1988 | A |
4776102 | Carroll | Oct 1988 | A |
4776103 | Cote | Oct 1988 | A |
4821157 | Birk et al. | Apr 1989 | A |
4825394 | Beamish et al. | Apr 1989 | A |
4849743 | Ohno | Jul 1989 | A |
4886958 | Merryman et al. | Dec 1989 | A |
4943722 | Breton et al. | Jul 1990 | A |
4973948 | Roberts | Nov 1990 | A |
5032924 | Brown et al. | Jul 1991 | A |
5039868 | Kobayashi | Aug 1991 | A |
5048904 | Montagu | Sep 1991 | A |
5058178 | Ray | Oct 1991 | A |
5095447 | Manns et al. | Mar 1992 | A |
5113581 | Hidese | May 1992 | A |
5114229 | Hideshima | May 1992 | A |
5133601 | Cohen et al. | Jul 1992 | A |
5140643 | Izumi et al. | Aug 1992 | A |
5163232 | Gonzales, Jr. et al. | Nov 1992 | A |
5173796 | Palm et al. | Dec 1992 | A |
5204734 | Cohen et al. | Apr 1993 | A |
5208463 | Honma et al. | May 1993 | A |
5245671 | Kobayashi et al. | Sep 1993 | A |
5276546 | Palm et al. | Jan 1994 | A |
5307149 | Palm et al. | Apr 1994 | A |
5355221 | Cohen et al. | Oct 1994 | A |
5420689 | Siu | May 1995 | A |
5420691 | Kawaguchi | May 1995 | A |
5430548 | Hiroi et al. | Jul 1995 | A |
5440391 | Smeyers | Aug 1995 | A |
5452080 | Tomiya | Sep 1995 | A |
5455870 | Sepai | Oct 1995 | A |
5465152 | Bilodeau et al. | Nov 1995 | A |
5546189 | Svetkoff et al. | Aug 1996 | A |
5550763 | Michael et al. | Aug 1996 | A |
5563702 | Emery et al. | Oct 1996 | A |
5563703 | Lebeau et al. | Oct 1996 | A |
5574668 | Beaty | Nov 1996 | A |
5574801 | Collet-Beillon | Nov 1996 | A |
5581632 | Koljonen . | Dec 1996 | A |
5592562 | Rooks | Jan 1997 | A |
5600150 | Stern et al. | Feb 1997 | A |
5617209 | Svetkoff et al. | Apr 1997 | A |
5621530 | Marrable, Jr. | Apr 1997 | A |
5648853 | Stern et al. | Jul 1997 | A |
5652658 | Jackson et al. | Jul 1997 | A |
5654800 | Svetkoff et al. | Aug 1997 | A |
5692070 | Kobayashi | Nov 1997 | A |
5734475 | Pai | Mar 1998 | A |
5761337 | Nishimura et al. | Jun 1998 | A |
5801966 | Ohashi | Sep 1998 | A |
5812268 | Jackson et al. | Sep 1998 | A |
5812269 | Svetkoff et al. | Sep 1998 | A |
5815275 | Svetkoff et al. | Sep 1998 | A |
5818061 | Stern et al. | Oct 1998 | A |
5828449 | King | Oct 1998 | A |
5859698 | Chau et al. | Jan 1999 | A |
5859924 | Liu et al. | Jan 1999 | A |
5870489 | Yamazaki et al. | Feb 1999 | A |
5909285 | Beaty | Jun 1999 | A |
5943125 | King et al. | Aug 1999 | A |
6005965 | Tsuda et al. | Dec 1999 | A |
6055054 | Beaty | Apr 2000 | A |
6064756 | Beaty et al. | May 2000 | A |
6064757 | Beaty et al. | May 2000 | A |
6072898 | Beaty | Jun 2000 | A |
6118540 | Roy et al. | Sep 2000 | A |
6236747 | King et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
9304030 | Nov 1997 | JP |
10104033 | Apr 1998 | JP |
10221066 | Aug 1998 | JP |
10227623 | Aug 1998 | JP |
10232114 | Sep 1998 | JP |
10267621 | Oct 1998 | JP |
WO9112489 | Aug 1991 | WO |
WO9207250 | Apr 1992 | WO |
WO9744634 | Nov 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20020034324 A1 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09351892 | Jul 1999 | US |
Child | 09844626 | US | |
Parent | 09008243 | Jan 1998 | US |
Child | 09351892 | US |