Method and apparatus for tissue ablation

Information

  • Patent Grant
  • 7435250
  • Patent Number
    7,435,250
  • Date Filed
    Friday, February 18, 2005
    19 years ago
  • Date Issued
    Tuesday, October 14, 2008
    16 years ago
Abstract
A device for ablating tissue is provided. The device comprises a conductive element with a channel for irrigating fluid formed therein, which is in contact with a non-conductive microporous interface. All or a portion of the interface may be removable. When the interface is removed, a portion of the conductive element is exposed for use in ablating tissue. Methods of using the device and of removing the interface are also provided.
Description
FIELD OF THE INVENTION

This invention relates to ablation devices that are used to create lesions in tissue. More particularly, this invention relates to conductive elements for use in such devices which vary in length and which incorporate improved methods of irrigation delivery.


BACKGROUND OF THE INVENTION

The action of the heart is known to depend on electrical signals within the heart tissue. Occasionally, these electrical signals do not function properly. The maze procedure is a surgical operation for patients with chronic atrial fibrillation that is resistant to medical treatment. In this procedure, incisions are created in the right and left atria to produce an orderly passage of the electrical impulse from the SA node to the atrioventricular node. Blind passageways are also created to suppress reentry cycles. Currently, the lesions may still be created using a traditional cut and sew technique. The scar tissue resulting from the procedure results in a non-conductive lesion.


Ablation of cardiac conduction pathways in the region of tissue where the signals are malfunctioning is now being used to replace the surgical incisions. Ablation is also used therapeutically with other organ tissue, such as the liver, prostate and uterus. Ablation of organic tissue is also used in several surgical procedures, for both diagnosis and therapy.


In one type of procedure, one or more electrodes at the tip of an electrophysiology ablation device allow the physician to measure electrical signals along the surface of the heart (mapping). When necessary, in another type of procedure, the physician can also ablate certain tissues using, typically, radio frequency (RF) energy conducted to one or more ablation electrodes. During tissue ablation, energy is used to create lesions in the tissue for different purposes. High levels of energy are used to cut and remove tissue (electrosurgery). Lower levels of energy are used to cause cell damage but leave the structure intact so that electrical pathways are blocked within the tissue.


A variety of devices, such as catheters, are used to ablate tissue. Typically, such devices include a conductive tip, which serves as one electrode in an electrical circuit. The electrical circuit is completed via a grounding electrode that may also be on the device or may be coupled to the patient. By controlling the level of energy transmitted to the electrode, the surgeon is able to control the amount of heat generated for the purposes described above.


Irrigation of the ablation site cools the electrode. Irrigated ablation is also known to create deeper lesions that are more likely to be transmural. Transmurality is achieved when the full thickness of the target tissue is ablated.


During ablation, irrigation of the ablation site helps to cool the ablation electrodes, thereby reducing overheating in the vicinity of the electrodes. Undesirable consequences of overheating include the excessive coagulation of blood and the unintended destruction of healthy tissue adjacent the ablation site. The efficient cooling of the linear ablation electrode permits longer lesions to be created by permitting higher ablation energy without resulting in excessive electrode heating.


Typically, delivery of irrigation to the site is accomplished using a separate irrigation source which may pump into the ablation device or which may pump directly to the target tissue site. This requires a separate device that may not deliver irrigation as site-specifically as desired.


Furthermore, there is relatively high hydraulic impedance to saline flow at the distal end (towards ablation site) of a typical ablation device. In comparison, the hydraulic impedance to flow is lower at the proximal end (towards user) of the device. This sometimes results in more irrigation fluid being distributed at the proximal end than at the distal end.


Additionally, there may also be difficulties with electrical impedance to saline flow in a typical ablation device. This may be particularly true in a hemostat-type ablation device. In such a device, the target tissue is positioned between the two jaws of the hemostat, both of which carry ablation electrodes. If the tissue is shorter than the length of the hemostat jaws, a saline bridge may form between the hemostat jaws due to the surface tension of the fluid. This saline bridge is a low electrical impedance pathway. Electrical flow may, therefore, occur preferentially towards the bridge and yield unreliable ablation.


Irrigation fluid may also not be evenly distributed along a single electrode because of the impedance factors described above. Uneven distribution of fluid may result in an uneven lesion. In some cases, the tissue may not receive any irrigation in some areas. The electrode may contact the surface of the target tissue in these unirrigated areas, causing sticking or even charring.


Additionally, longer electrodes are sometimes desired to create longer lesions. These electrodes have a larger pressure drop along their length. This results in greater fluid flow from the proximal end than the distal end and thus irrigation is unevenly distributed which may result in sticking of the ablated tissue to the electrode. Currently an electrode of a given length is needed to create a lesion of a given length. If a lesion of a different length is desired, a new electrode must be used.


It would be desirable therefore to provide a means to control and vary irrigation.


It would further be desirable to facilitate control of lesion length.


It would further be desirable to provide a means for evenly irrigating an ablation electrode and concomitant target tissue site.


It would further be desirable to provide a means for evenly irrigating ablation electrodes of variable length.


It would further be desirable to provide a device in which irrigation capabilities and ablation capabilities are integrated.


SUMMARY OF THE INVENTION

One aspect of the present invention provides a device for ablating organic tissue. The device includes a conductive element, a fluid component in communication with the conductive element and a non-conductive interface positioned adjacent the tissue to allow the fluid to pass through the interface and contact the tissue. The conductive element may be, for example, a metallic coil with a lumen, a spring with a lumen or a wire. The diameter of the conductive element may be greater than the diameter of the interface. The conductive element and the interface may be the same. The interface may be micro-porous. The interface may also be of a variable length and a portion of the interface may be removable. The interface may be perforated, may comprise openings that are slidably or rotatably opened. The interface may be non-conductive or conductive. The interface may lie between the conductive element and the tissue surface. The interface may encircle the conductive element and the fluid component. The interface may be a rigid structure, a fluid saturated gel, or a micro-porous section of the fluid component. The interface and the fluid component may be the same. The fluid component may be a non-porous coating. The device may also include means for flowing the fluid component through the interface, such as an infusion pump.


Another aspect of the invention provides a device for creating ablations of variable length, comprising a conductive element having a channel formed therein, the channel operatively adapted to receive irrigating fluid; and a removable non-conductive interface in communication with the conductive element. The device may include a support element in communication with the conductive element. The support element may be a slotted tube. The conductive element may be a slotted tube.


Another aspect of the invention provides a device for creating ablations of variable length, comprising a non-porous tube operatively adapted to receive irrigating fluid therein, a conductive element in communication with the tube and a removable non-conductive interface in communication with the conductive element. The non-conductive interface may be a portion of the non-porous tube. The non-conductive interface may be micro-porous. The non-conductive interface may be rigid.


Another aspect of the present invention provides a device for creating ablations of variable length, comprising a non-porous tube operatively adapted to receive a hydrogel, a conductive element in communication with the tube and a removable non-conductive interface in communication with the conductive element. The non-porous tube may be slotted.


Another aspect of the present invention provides a method of ablating organic tissue. The method includes providing a conductive element having a channel formed therein, the channel operatively adapted to receive irrigating fluid; and a removable non-conductive interface in communication with the conductive element. The method also includes removing a portion of the interface to expose a portion of the conductive element and ablating the tissue with the exposed portion of the conductive element. The interface may be perforated. The interface may be disposable. The interface may be reusable. The interface may also be a removable tip.


The foregoing, and other, features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims in equivalence thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a system for ablating tissue in accordance with the present invention;



FIG. 2 is a longitudinal schematic view of a variable length ablation electrode in accordance with the present invention;



FIG. 3 is a longitudinal schematic view of a second embodiment of a variable length ablation electrode in accordance with the present invention;



FIG. 4 is a schematic view of a cross-section of a third embodiment of a variable length ablation electrode in accordance with the present invention;



FIG. 5 is a longitudinal schematic view of a fourth embodiment of a variable length ablation electrode in accordance with the present invention;



FIG. 6 is a longitudinal schematic view of a fifth embodiment of a variable length ablation electrode in accordance with the present invention;



FIG. 7 is a schematic view of a cross-section of one embodiment of an ablation electrode in accordance with the present invention;



FIG. 8 is a schematic view of a cross-section of another embodiment of an ablation electrode in accordance with the present invention;



FIG. 9 is a schematic view of a cross-section of another embodiment of an ablation electrode in accordance with the present invention;



FIG. 10 is a schematic view of a cross-section of another embodiment of an ablation electrode in accordance with the present invention;



FIG. 11 is a schematic view of a cross-section of another embodiment of an ablation electrode in accordance with the present invention; and



FIG. 12 is a schematic view of a cross-section of another embodiment of an ablation electrode in accordance with the present invention.





DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS


FIG. 1 shows a schematic view of one embodiment of system 10 for ablating tissue in accordance with the present invention. Typically the tissue to be ablated will be located within the body cavity, such as the endocardial or epicardial tissue of the heart. Other body organ tissue, such as the liver, can also be ablated using the present invention. System 10 may include an ablation device 20 that comprises at least one conductive element 22, such as an electrode, and a connection 28 to a power source 30. System 10 also may include a conduit 38 to an irrigation source 40 that provides irrigation fluid to the ablation site. System 10 may also include an insulating material 32 that may insulate conductive element 22. Insulating material 32 may also direct delivery of energy and/or irrigation along conductive element 22. System 10 may also include a support member 33 that may provide structural integrity to conductive element 22. System 10 may also include an indifferent electrode 23 which may serve as the return plate for energy transmitted through electrode 22. Electrode 23 may also be covered by insulating material and supported by a support member.


Ablation device 20 may be any suitable ablation tool such as, for example, a catheter, an electrocautery device, an electrosurgical device, a suction-assisted ablation tool, an ablation pod, an ablation paddle, an ablation hemostat or an ablation wire. Ablation device 20 and its components are preferably made of a biocompatible material such as stainless steel, biocompatible epoxy or biocompatible plastic. Preferably, a biocompatible material prompts little allergenic response from the patient's body and is resistant to corrosion from being placed within the patient's body. Furthermore, the biocompatible material preferably does not cause any additional stress to the patient's body, for example, it does not scrape detrimentally against any elements within the surgical cavity.


Preferably, ablation device 20 may be permanently or removably attached to a maneuvering apparatus for manipulating device 20 onto a tissue surface. For example, ablation device 20 may be attached to hemostat handles 12 such as shown in FIG. 1. Ablation device 20 may also be located on one or more of the hemostat jaws 32. Ablation device 20 may also be used in conjunction with a traditional catheter, for example, in a closed heart ablation procedure. Ablation device 20 may also be maneuvered with a leash or pull-wire assembly. Ablation device may also be positioned on a pen-like maneuvering apparatus such as the Cardioblate pen available from Medtronic, Inc. Alternatively any appropriate flexible or rigid handle could be used as a maneuvering apparatus. Alternatively, any appropriate endoscopic or thoroscopic-maneuvering apparatus may also be used with device 20.


Device 20 also preferably includes a connection 28 suitable for conducting energy to device 20, particularly to conductive element 22 from a power source.


The conductive element 22 of ablation device 20 is preferably an electrode. This electrode 22 may be positioned in any suitable place on device 20. Preferably electrode 22 is placed near an end of the device 20, away from the user, to be more easily manipulated against the tissue 60 to be ablated.


System 10 may also include an indifferent electrode 23 which may serve as the return plate for energy transmitted through electrode 22.


Electrode 23 may be placed elsewhere on the patient's body than the ablation site. For example, electrode 23 may be placed on the patient's back or thigh. Electrode 23 may also serve as a second ablation electrode in a bipolar arrangement. The two electrodes 22, 23 may be arranged on the jaws of a hemostat-like tool such as shown in FIG. 1. Electrodes 22, 23 may be arranged in other orientations to each other, such as, for example, parallel to each other on a surface.


As ablation occurs, it is sometimes desirable to irrigate the ablation site with irrigation fluid, which may be, for example, any suitable fluid such as saline or another conductive fluid. The irrigating fluid may cool the electrode 22 of ablation device 20. Irrigated ablation is also known to create deeper lesions that are more likely to be transmural. Transmurality is achieved when the full thickness of the target tissue is ablated. Furthermore, continuous fluid flow may keep the ablation device surface temperature below the threshold for blood coagulation, which may clog the device. Use of irrigating fluid may therefore reduce the need to remove a clogged ablation device for cleaning or replacement. The presence of an ionic fluid layer between electrode 22 and the tissue to be ablated may also ensure that an ionic fluid layer conforming to the tissue contours is created. In one preferred embodiment, saline solution is used. Alternatively, other energy-conducting liquids, such as Ringer's solution, ionic contrast, or even blood, may be used. Diagnostic or therapeutic agents, such as lidocaine, CA++ blockers, ionic contrast, or gene therapy agents may also be delivered before, with or after the delivery of the irrigating fluid. Irrigation source 40 may be any suitable source of irrigation fluid such as, for example, a standard irrigation pump (not shown). This pump may also be connected to power source 30 or may have its own source of power. Preferably, device 20 also includes a conduit 38 for delivering irrigation to the ablation site from irrigation source 40.



FIG. 2 shows a schematic representation of one embodiment of a variable length electrode in accordance with the present invention. Electrode 222 may be covered with an insulating material 232. Prior to ablation, insulating material 232 may be removed, for example, by rolling back towards a proximal end of electrode 222. As insulating material 232 is rolled back, ablating surface 242 of electrode 222 may be revealed. The ablating surface may be applied against a surface of tissue 260. The length of ablating surface 242 may vary, depending on the amount of insulating material 232 that is uncovered. Insulating material 232 is preferably a material that insulates the unexposed area of the electrode 222. Such an insulating material may be, for example, silicone or polyurethane. The exposed ablation surface 242 may be conductive and irrigated. However, the section of electrode 222 covered by insulating material 232 may be non-conductive. Furthermore, the section of electrode 222 covered by insulating material 232 may be formed of a material that does not allow irrigating fluid to flow through. Since the irrigating fluid does not flow through the insulated end, a saline bridge as described above may not form. Additionally, the insulating material may direct all energy so that it is delivered to the exposed portion 242 of electrode 222. Additionally, the insulating material may direct all irrigating fluid so that it is delivered to the exposed portion 242 of electrode 222. The irrigation fluid may flow within the insulating material 232 but may not flow through the material 232. Therefore, the unexposed, insulated portion of tool 20 may not be irrigated. The irrigating fluid may thereby delivered only to the desired, exposed portion 242 of electrode 222.


Insulating material 232 may then be returned to its original state to cover exposed surface 242. The same electrode 222 may then be used to ablate a shorter surface. Alternatively, insulating material may be a tip, which may be removed completely. A new insulating material may then be placed over electrode. These tips of insulating material 232 may be of variable length.



FIG. 3 shows a schematic longitudinal representation of another embodiment of the variable length electrode of the present invention. In this embodiment, insulating material 332 is perforated. In use, a user may remove insulating material 332 from segment A, thereby exposing ablation surface 342 as shown. If the user desires, a longer ablation surface in order to create a longer lesion, he may remove additional insulating material 332 from segment B. This results in longer ablation surface 343 as shown. Preferably insulating material that is removed may be disposable.



FIG. 4 shows a cross-section view of another embodiment of the variable length electrode of the present invention. In this embodiment, electrode 422 may be covered by insulating material 432 and a rotating portion of insulating material 452. Portion 432 of the insulating material may cover most of the electrode 422. Electrode 422 may remain covered by portion 432 of the insulating material along the length of the electrode. Meanwhile, portion 452 of the insulating material may be removable or movable. Preferably, portion 452 may be rotatably removable or movable. In use, portion 452 of the insulating material may be moved to uncover ablating surface 442. For example, portion 452 of the insulating material may be moved in the direction indicated by the arrow to remove the cover. Portion 452 may be moved to expose ablating surface 442 of electrode 422 along the entire length of electrode 422. Alternatively, portion 452 of insulating material may be moved to uncover ablation surface 442 only along a given portion of electrode 422. Ablating surface 442 may be used to ablate a surface of tissue 460.



FIG. 5 shows a longitudinal schematic view of the variable length electrode of the present invention. In use, the insulating material 532 shown in FIG. 5 may be formed as a series of panels that cover electrode 522. For example, three panels, A, B, and C are shown in FIG. 5. Panel A of insulating material 532 may be moved to fit over panel B of insulating material 532. Panel A may be moved, for example, in the direction indicated by the arrows. This may expose ablation surface 542 which may have originally been covered by panel A. If the user desires a longer length electrode to create, for example, a longer lesion, the user may slide panel B over panel C and panel A over panel B to expose an even longer ablation surface 543. Ablating surface 542, 543 may be used to ablate a surface of tissue 560.


In the embodiments shown in FIGS. 1-5, the conductive element may preferably be a coil or spring. Alternatively, the conductive element may be metallic rod with a lumen machined into its axis, a wire braid, a wire mesh or another suitable type of electrode.



FIG. 6 shows a longitudinal schematic view of a conductive element 22 in accordance with the present invention. Preferably, the coil or spring may be made of a conductive material such as, for example, metal. This coil may have a lumen 24. Irrigating fluid may be flowed into the lumen 24 of coil 22. For example, irrigating fluid may be pumped from irrigation source 40. As the fluid is pumped from irrigation source 40, the fluid may weep evenly along the length of the coil, thus delivering fluid to the ablation site. A support member 33 may also be incorporated into or adjacent conductive element 22. Preferably support member 33 provides conductive element 22 with additional structural rigidity. The support member 33 may be, for example, a slotted metal tube. The support member may also be made from materials, such as, for example, Nitinol or other superelastic materials, which may allow support and some malleability.


Slotted tube 33 may be formed of a slightly smaller diameter than coil 22. In this case, a portion of coil 22 may protrude through the slot of tube 33 as shown at 630. This protruding of coil 22 may occur along the length of electrode 22. Alternatively, this protruding may occur at a given area of electrode 22. This protrusion may help coil 22 conform to the surface of tissue 660 to be ablated.


Preferably, the pitch or tightness of the coil of conductive element 22 may determine the current density of the conductive element 22. Increasing the pitch of the coil (i.e. winding the coil less tightly) may decrease the current density of the conductive element. Decreasing the pitch may increase the current density of conductive element 22.


Preferably, the pitch or tightness of the coil of conductive element 22 may determine the flow rate of the irrigation fluid through the conductive element 22. Increasing the pitch of the coil (i.e. winding the coil less tightly) may increase the flow rate of irrigation fluid through conductive element 22. Decreasing the pitch may decrease the flow rate of irrigation fluid through conductive element 22.


As seen in the embodiment of FIG. 6, the coil 22 may be a double coaxial, reverse-wound spring. This embodiment, for example, provides an increased resistance to fluid flow and nets a more even distribution along the length of the coil. Therefore, by varying the pitch of a conductive coil 22, characteristics of the lesion created along the length of the electrode may also be varied. Thus if a surgeon were to desire a shallower lesion at section F than at section G, he may use a variable pitch electrode as shown in FIG. 6. The decreased pitch at section f of electrode 22 may result in a lower rate of irrigation flow. This may create a shallower lesion at section F of the tissue. The increased pitch at section g of electrode 22 may result in a higher rate of irrigation flow. This may create a deeper lesion at section G of the tissue.



FIG. 7 shows a schematic view of a cross-section of a variable length electrode in accordance with the present invention. Conductive element 622 may be for example a double wound coil or spring as described above. Irrigating fluid may be flowed through the lumen 724 of electrode 722. Support element 733 may be for example a slotted tube. Such a slotted tube 733 may be any suitable material that may provide additional structural integrity to conductive element 722. The slotted tube 733 has an opening or slot 734. Preferably this opening 734 may run the length of an entire conductive element 722. This opening 734 may also run the length of an exposed section of a conductive element 722 which may be exposed in a manner as described in the above embodiments. This opening 734 may preferably face a surface of the tissue 760 to be ablated. As shown in FIG. 7, insulating material 732 may cover a portion of conductive element 760 rather than covering the entire conductive element 722. Insulating material 732 may be for example a microporous non-conductive component. Such a microporous non-conductive component may be manufactured from a material such as silicone, PTFE, Dacron fabric or solvent-precipitated polyurethane. Preferably, the pores in the microporous non-conductive component may be large enough to allow the free flow of irrigating fluid but small enough so as not to become clogged with protein or other detritus from the tissue to be irrigated. Irrigating fluid may flow from the lumen 724 of conductive element 722 in the manner indicated by the arrows.



FIG. 8 shows a schematic view of a cross-section of a second embodiment of a variable length electrode in accordance with the present invention. Conductive element 822 may be for example a double wound coil or spring as described above. Irrigating fluid may be flowed through the lumen 824 of electrode 822. Support element 833 may be for example a slotted tube. Such a slotted tube 833 may be any suitable material that may provide additional structural integrity to conductive element 822. The slotted tube 833 has an opening or slot 834. Preferably this opening 834 may run the length of an entire conductive element 822. This opening 834 may also run the length of an exposed section of a conductive element 822 which has been exposed in a manner as described in the above embodiments. This opening 834 may preferably face a surface of the tissue 860 to be ablated. As shown in FIG. 8, insulating material 832 may cover all of conductive element 822. Insulating material 832 may also cover slotted tube 833. Insulating material 832 may be for example a microporous non-conductive component. Such a microporous non-conductive component may be manufactured from a material such as silicone, PTFE, Dacron fabric or solvent-precipitated polyurethane. Preferably, the pores in the microporous non-conductive component may be large enough to allow the free flow of irrigating fluid but small enough so as not to become clogged with protein or other detritus from the tissue to be irrigated. Irrigating fluid may flow from the lumen 824 of conductive element 822 in the manner indicated by the arrows.



FIG. 9 shows a schematic view of a cross-section of a third embodiment of a variable length electrode in accordance with the present invention. Conductive element 922 may be a slotted tube that also serves as a support element. Irrigating fluid may be flowed through the lumen 924 of electrode 922. The slotted tube 922 has an opening or slot 934. Preferably this opening 934 may run the length of an entire conductive element 922. This opening 934 may also run the length of an exposed section of a conductive element 922 which may be exposed in a manner as described in the above embodiments. This opening 934 may preferably face a surface of the tissue 960 to be ablated. As shown in FIG. 9, insulating material 932 may cover all of conductive element 922. Insulating material 932 may be for example a microporous non-conductive component. Such a microporous non-conductive component may be manufactured from a material such as silicone, PTFE, Dacron fabric or solvent-precipitated polyurethane. Preferably, the pores in the microporous non-conductive component may be large enough to allow the free flow of irrigating fluid but small enough so as not to become clogged with protein or other detritus from the tissue to be irrigated. Irrigating fluid may flow from the lumen 924 of conductive element 922 in the manner indicated by the arrows.



FIG. 10 shows a schematic view of a cross-section of a fourth embodiment of a variable length electrode in accordance with the present invention. Conductive element 1022 may be, for example a conductive wire located in a non-porous tube 1040. Irrigating fluid may be flowed through the lumen 1024 of tube 1040. The non-porous tube 1040 may have a segment of insulating material 1032. Preferably this segment 1032 may run the length of an entire conductive element 1022. This segment 1032 may also run the length of an exposed section of a conductive element 1022 which has been exposed in a manner as described in the above embodiments. This segment 1032 may preferably face a surface of the tissue 1060 to be ablated. Insulating material segment 1032 may be for example a microporous non-conductive component. Such a microporous non-conductive component may be manufactured from a material such as silicone, PTFE, Dacron fabric or solvent-precipitated polyurethane. Preferably, the pores in the microporous non-conductive component may be large enough to allow the free flow of irrigating fluid but small enough so as not to become clogged with protein or other detritus from the tissue to be irrigated. Irrigating fluid may flow from the lumen 1024 of nonporous tube 1040 in the manner indicated by the arrows.



FIG. 11 shows a schematic view of a cross-section of a fifth embodiment of a variable length electrode in accordance with the present invention. Conductive element 1122 may be, for example a conductive wire located in a non-porous tube 1140. Irrigating fluid may be flowed through the lumen 1124 of tube 1140. The non-porous tube 1140 may have a rigid segment 1132 of microporous non-conductive material. Preferably this segment 1132 may run the length of an entire conductive element 1122. This segment 1132 may also run the length of an exposed section of a conductive element 1122 which has been exposed in a manner as described in the above embodiments. This segment 1132 may preferably face a surface of the tissue 1160 to be ablated. Rigid segment 1132 may be, for example, a microporous non-conductive component that is rigid. Such a microporous non-conductive component may be manufactured from a material such as rod stock. Preferably, the pores in the microporous non-conductive component may be large enough to allow the free flow of irrigating fluid but small enough so as not to become clogged with protein or other detritus from the tissue to be irrigated. Irrigating fluid may flow from the lumen 1124 of nonporous tube 1140 in the manner indicated by the arrows.



FIG. 12 shows a schematic view of a cross-section of a sixth embodiment of a variable length electrode in accordance with the present invention. Conductive element 1222 may be, for example a conductive wire located in a non-porous slotted tube 1233. Such a slotted tube 1233 may be any suitable material that may provide additional structural integrity to conductive element 1222. The slotted tube 1233 has an opening or slot 1234. Preferably this opening 1234 may run the length of an entire conductive element 1222. This opening 1234 may also run the length of an exposed section of a conductive element 1222 which has been exposed in a manner as described in the above embodiments. This opening 1234 may preferably face a surface of the tissue 1260 to be ablated. The lumen 1224 of tube 1233 may be filled with a material 1250 that exudes fluid such as, for example, a hydrogel. Irrigating fluid may be flowed through the hydrogel 1250 as described above. Alternatively, hydrogel 1250 may be saturated with irrigating fluid. When hydrogel 1250 contacts tissue 1260, gel 1250 may exude sufficient irrigating fluid. Tube 1233 may be for example a microporous non-conductive component that is rigid. Such a microporous non-conductive component may be manufactured from a material such as rod stock. Preferably, the pores in the microporous non-conductive component may be large enough to allow the free flow of irrigating fluid but small enough so as not to become clogged with protein or other detritus from the tissue to be irrigated. Irrigating fluid may flow from the lumen 1224 of nonporous tube 1240 in the manner indicated by the arrows.


It is contemplated that the electrodes of the present invention may be used in a variety of ablation systems such as those available from Medtronic, Inc., Minneapolis, USA. It should be appreciated that the embodiments described above are to be considered in all respects only illustrative and not restrictive. The scope of the invention is indicated by the following claims rather than by the foregoing description. All changes that come within the meaning and range of equivalents are to be embraced within their scope.

Claims
  • 1. A device for ablating organic tissue, comprising: a conductive element;a fluid component in communication with the conductive element;an interface positionable adjacent tissue to be ablated to allow the fluid to pass through the interface and contact the tissue to be ablated; anda maneuvering mechanism comprising a first jaw member and a second jaw member, wherein the first jaw member is movably coupled to the second jaw member, the first and second jaw members configured to receive a portion of tissue to be ablated between the first and second jaw members, wherein the first or second jaw member comprises the conductive element and the interface.
  • 2. The device of claim 1, wherein the conductive element is a metallic coil with a lumen.
  • 3. The device of claim 1, wherein the conductive element is a spring with a lumen.
  • 4. The device of claim 1, wherein the conductive element has a conductive element diameter and the interface has an interface diameter, the conductive element diameter being greater than the interface diameter.
  • 5. The device of claim 1, wherein the interface has a length, the length being variable.
  • 6. The device of claim 1, wherein the interface is micro-porous.
  • 7. The device of claim 1, wherein a portion of the interface may be removed to expose the conductive element.
  • 8. The device of claim 7, wherein the interface is perforated.
  • 9. The device of claim 7, wherein the interface may be rotatably opened.
  • 10. The device of claim 1, wherein the interface comprises openings that may be slidably opened.
  • 11. The device of claim 1, wherein the interface is non-conductive.
  • 12. The device of claim 1, wherein the interface is selected from the group consisting of: silicones, PTFE, PET fabrics, solvent-precipitated polyurethane micro-porous polymeric coatings, stainless steel nitinol, machining rod stock, polyester fabrics, hydrogels and a gel.
  • 13. The device of claim 1, wherein the interface adapted to lie between the conductive element and the surface of the tissue.
  • 14. The device of claim 1, wherein the interface encircles the conductive element and the fluid component.
  • 15. The device of claim 1, wherein the interface is conductive.
  • 16. The device of claim 1, wherein the interface and the conductive element are the same.
  • 17. The device of claim 1, wherein the conductive element is a wire, the wire located within the fluid component.
  • 18. The device of claim 16, wherein the fluid component is a nonporous coating.
  • 19. The device of claim 18, wherein the interface is a micro-porous section of the non-porous coating.
  • 20. The device of claim 17, wherein the interface is a rigid structure.
  • 21. The device of claim 17, wherein the interface is a fluid saturated gel.
  • 22. The device of claim 21, wherein the interface and the fluid component are the same.
  • 23. The device of claim 1 further comprising: means for flowing the fluid component through the interface.
  • 24. The device of claim 1 further comprising: an infusion pump in communication with the fluid component for flowing the fluid component through the interface.
  • 25. The device of claim 1, wherein the maneuvering mechanism is a hemostat-type tool.
  • 26. A device for ablating organic tissue comprising: a support member comprising a slot;a conductive wire element, wherein at least a portion of the conductive wire element runs through at least a portion of the slot, wherein at least a portion of the conductive wire element is configured to contact a surface of tissue to be ablated; anda maneuvering mechanism comprising a first jaw member and a second jaw member, wherein the first jaw member is movably coupled to the second jaw member, the first and second jaw members configured to receive a portion of tissue to be ablated between the first and second jaw members, wherein the first or second jaw member comprises the conductive wire element and the support member, wherein the conductive wire element comprises a coil with a lumen.
  • 27. The device of claim 26, wherein the coil is a spring with a lumen.
  • 28. The device of claim 26, wherein the maneuvering mechanism is a hemostat-type tool.
  • 29. A device for creating ablations of variable length, comprising: a conductive element having a channel formed therein;the channel operatively adapted to receive irrigating fluid;a removable non-conductive interface in communication with the conductive element; anda maneuvering mechanism comprising a first jaw member and a second jaw member, wherein the first jaw member is movably coupled to the second jaw member, the first and second jaw members configured to receive a portion of tissue to be ablated between the first and second jaw members, wherein the first or second jaw member comprises the conductive element.
  • 30. The device of claim 29 further comprising: a support element in communication with the conductive element.
  • 31. The device of claim 30, wherein the support element comprises a slot.
  • 32. The device of claim 29, wherein the conductive element is a slotted tube.
  • 33. The device of claim 29, wherein the maneuvering mechanism is a hemostat-type tool.
  • 34. A device for creating ablations of variable length, comprising: a non-porous tube operatively adapted to receive irrigating fluid therein;a conductive element in communication with the tube;a removable non-conductive interface in communication with the conductive element; anda maneuvering mechanism comprising a first jaw member and a second jaw member, wherein the first jaw member is movably coupled to the second jaw member, the first and second jaw members configured to receive a portion of tissue to be ablated between the first and second jaw members, wherein the first or second jaw member comprises the conductive element.
  • 35. The device of claim 34, wherein the non-conductive interface is a portion of the non-porous tube.
  • 36. The device of claim 35, wherein the non-conductive interface is micro-porous.
  • 37. The device of claim 34, wherein the non-conductive interface is rigid.
  • 38. The device of claim 34, wherein the maneuvering mechanism is a hemostat-type tool.
  • 39. A device for creating ablations of variable length, comprising: a non-porous tube operatively adapted to receive a hydrogel;a conductive element in communication with the tube;a removable non-conductive interface in communication with the conductive element; anda maneuvering mechanism comprising a first jaw member and a second jaw member, wherein the first jaw member is movably coupled to the second jaw member, the first and second jaw members configured to receive a portion of tissue to be ablated between the first and second jaw members, wherein the first or second jaw member comprises the conductive element.
  • 40. The device of claim 39, wherein the tube is slotted.
  • 41. The device of claim 39, wherein the maneuvering mechanism is a hemostat-type tool.
  • 42. A method of ablating organic tissue, comprising: providing a device comprising: a conductive element having a channel formed therein, the channel operatively adapted to receive irrigating fluid;a removable non-conductive interface in communication with the conductive element; anda maneuvering mechanism comprising a first jaw member and a second jaw member, wherein the first jaw member is movably coupled to the second jaw member, the first and second jaw members configured to receive a portion of tissue to be ablated between the first and second jaw members, wherein the first or second jaw member comprises the conductive element;removing a portion of the interface to expose a portion of the conductive element;placing the tissue between the first and second jaw members;delivering irrigating fluid to the channel; andablating the tissue with the exposed portion of the conductive element.
  • 43. The method of claim 42, wherein the interface is perforated.
  • 44. The method of claim 42, wherein the interface is disposable.
  • 45. The method of claim 42, wherein the interface is reusable.
  • 46. The method of claim 42, wherein the interface is a removable tip.
  • 47. A method of ablating tissue comprising: providing an ablation device comprising: a support member comprising a slot;an ablation element comprising a lumen, wherein at least a portion of the ablation element runs through at least a portion of the slot, wherein at least a portion of the ablation element is configured to contact a surface of tissue to be ablated; anda maneuvering mechanism comprising a first jaw member and a second jaw member, wherein the first jaw member is movably coupled to the second jaw member, the first and second jaw members configured to receive a portion of tissue to be ablated between the first and second jaw members, wherein the first or second jaw member comprises the ablation element and the support member;placing the tissue between the first and second jaw members; andablating the tissue with the ablation element.
  • 48. The method of claim 47 wherein the first jaw member comprises the ablation element.
  • 49. The method of claim 48 wherein the second jaw member comprises a second ablation element.
  • 50. The method of claim 49 wherein the first and second ablation elements form bipolar electrodes.
  • 51. The method of claim 49 wherein the second jaw member further comprises a second support member comprising a second slot, wherein at least a portion of the second ablation element runs through at least a portion of the second slot, wherein at least a portion of the second ablation element is configured to contact a surface of tissue to be ablated.
  • 52. The method of claim 47 wherein at least a portion of the ablation element is conductive.
  • 53. The method of claim 52 wherein the ablation element comprises a coil.
  • 54. The method of claim 52 wherein the ablation element comprises a spring.
  • 55. The method of claim 52 wherein the ablation element comprises a wire.
  • 56. The method of claim 52 wherein the ablation element comprises a tube.
  • 57. The method of claim 47 wherein the ablation device further comprises a removable non-conductive interface in communication with the ablation element.
  • 58. The method of claim 57 further comprising removing at least a portion of the interface to expose at least a portion of the ablation element.
  • 59. The method of claim 57 wherein at least a portion of the interface is selected from the group consisting of silicone, PTFE, PET, polyurethane, polymeric coatings, polyester fabrics, hydrogels and a gel.
  • 60. The method of claim 57 wherein the interface at least encircles a portion of the ablation element.
  • 61. The method of claim 57 wherein at least a portion of the interface is micro-porous.
  • 62. The method of claim 57 wherein at least a portion of the interface is perforated.
  • 63. The method of claim 47 wherein the tissue is organ tissue.
  • 64. The method of claim 63 wherein the organ tissue is liver tissue.
  • 65. The method of claim 63 wherein the organ tissue is heart tissue.
  • 66. The method of claim 65 wherein the heart tissue is epicardial tissue.
  • 67. The method of claim 65 wherein the heart tissue is endocardial tissue.
  • 68. The method of claim 47, wherein the maneuvering mechanism is a hemostat-type tool.
Parent Case Info

This patent application is a continuation of U.S. patent application Ser. No. 10/268,816, filed Oct. 10, 2002, now U.S. Pat. No. 6,916,318, which is a continuation of U.S. patent application Ser. No. 09/558,975, filed Apr. 27, 2000, now U.S. Pat. No. 6,488,680, the entire contents of which are specifically incorporated herein by reference.

US Referenced Citations (460)
Number Name Date Kind
623022 Johnson Apr 1899 A
3736936 Basiulis et al. Jun 1973 A
3807403 Stumpf et al. Apr 1974 A
3823575 Parel Jul 1974 A
3823718 Tromovitch Jul 1974 A
3827436 Stumpf et al. Aug 1974 A
3830239 Stumpf Aug 1974 A
3859986 Okada et al. Jan 1975 A
3862627 Hans, Sr. Jan 1975 A
3886945 Stumpf et al. Jun 1975 A
3907339 Stumpf et al. Sep 1975 A
3910277 Zimmer Oct 1975 A
3913581 Ritson et al. Oct 1975 A
3924628 Droegemueller et al. Dec 1975 A
4018227 Wallach Apr 1977 A
4022215 Benson May 1977 A
4061135 Widran et al. Dec 1977 A
4063560 Thomas et al. Dec 1977 A
4072152 Linehan Feb 1978 A
4082096 Benson Apr 1978 A
4207897 Lloyd et al. Jun 1980 A
4248224 Jones Feb 1981 A
4275734 Mitchiner Jun 1981 A
4278090 van Gerven Jul 1981 A
4377168 Rzasa et al. Mar 1983 A
4519389 Gudkin et al. May 1985 A
4567890 Ohta et al. Feb 1986 A
4598698 Siegmund Jul 1986 A
4601290 Effron et al. Jul 1986 A
4664110 Schanzlin May 1987 A
4671274 Sorochenko Jun 1987 A
4736749 Lundback Apr 1988 A
4779611 Grooters et al. Oct 1988 A
4802475 Weshahy Feb 1989 A
4815470 Curtis et al. Mar 1989 A
4872346 Kelly-Fry et al. Oct 1989 A
4916922 Mullens Apr 1990 A
4917095 Fry et al. Apr 1990 A
4936281 Stasz Jun 1990 A
4946460 Merry et al. Aug 1990 A
5013312 Parins et al. May 1991 A
5029574 Shimamura et al. Jul 1991 A
5044165 Linner et al. Sep 1991 A
5078713 Varney Jan 1992 A
5080102 Dory Jan 1992 A
5080660 Buelina Jan 1992 A
5100388 Behl et al. Mar 1992 A
5108390 Potocky et al. Apr 1992 A
5147355 Freidman et al. Sep 1992 A
5178133 Pena Jan 1993 A
5207674 Hamilton May 1993 A
5217860 Fahy et al. Jun 1993 A
5222501 Ideker et al. Jun 1993 A
5224943 Goddard Jul 1993 A
5228923 Hed Jul 1993 A
5231995 Desai Aug 1993 A
5232516 Hed Aug 1993 A
5254116 Baust et al. Oct 1993 A
5263493 Avitall Nov 1993 A
5269291 Carter Dec 1993 A
5275595 Dobak, III Jan 1994 A
5277201 Stern Jan 1994 A
5281213 Milder et al. Jan 1994 A
5281215 Milder Jan 1994 A
5295484 Marcus et al. Mar 1994 A
5309896 Moll et al. May 1994 A
5316000 Chapelon et al. May 1994 A
5317878 Bradshaw et al. Jun 1994 A
5318525 West et al. Jun 1994 A
5322520 Milder Jun 1994 A
5323781 Ideker et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5324284 Imran Jun 1994 A
5324286 Fowler Jun 1994 A
5334181 Rubinsky et al. Aug 1994 A
5334193 Nardella Aug 1994 A
5348554 Imran et al. Sep 1994 A
5353783 Nakao et al. Oct 1994 A
5354258 Dory Oct 1994 A
5361752 Moll et al. Nov 1994 A
5383876 Nardella Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5396887 Imran Mar 1995 A
5397304 Truckai Mar 1995 A
5400770 Nakao et al. Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5403309 Coleman et al. Apr 1995 A
5403311 Abele et al. Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5417709 Slater May 1995 A
5421819 Edwards et al. Jun 1995 A
5423807 Milder Jun 1995 A
5423811 Imran et al. Jun 1995 A
5427119 Swartz et al. Jun 1995 A
5431649 Mulier et al. Jul 1995 A
5433708 Nichols et al. Jul 1995 A
5435308 Gallup et al. Jul 1995 A
5435805 Edwards et al. Jul 1995 A
5437651 Todd et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443470 Stern et al. Aug 1995 A
5450843 Moll et al. Sep 1995 A
5452582 Longsworth Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5462545 Wang et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5469853 Law et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470309 Edwards et al. Nov 1995 A
5472876 Fahy Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478330 Imran et al. Dec 1995 A
5484400 Edwards et al. Jan 1996 A
5486193 Bourne et al. Jan 1996 A
5487385 Avitall Jan 1996 A
5487787 Truckai et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5497774 Swartz et al. Mar 1996 A
5498248 Milder Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5505730 Edwards Apr 1996 A
5516505 McDow May 1996 A
5520682 Baust et al. May 1996 A
5522870 Ben-Zion Jun 1996 A
5536267 Edwards et al. Jul 1996 A
5542915 Edwards et al. Aug 1996 A
5545171 Sharkey et al. Aug 1996 A
5545195 Lennox et al. Aug 1996 A
5545200 West et al. Aug 1996 A
5549661 Kordis et al. Aug 1996 A
5554110 Edwards et al. Sep 1996 A
5555883 Avitall Sep 1996 A
5556377 Rosen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5558673 Edwards et al. Sep 1996 A
5560362 Silwa, Jr. et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571088 Lennox et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573532 Chang et al. Nov 1996 A
5575766 Swartz et al. Nov 1996 A
5575788 Baker et al. Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5578007 Imran Nov 1996 A
5582589 Edwards et al. Dec 1996 A
5582609 Swanson et al. Dec 1996 A
5584872 La Fontaine et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5590657 Cain et al. Jan 1997 A
5591125 Edwards et al. Jan 1997 A
5595183 Swanson et al. Jan 1997 A
5599294 Edwards et al. Feb 1997 A
5599295 Rosen et al. Feb 1997 A
5607389 Edwards et al. Mar 1997 A
5607462 Imran Mar 1997 A
5609151 Mulier et al. Mar 1997 A
5617854 Munsif Apr 1997 A
5630794 Lax et al. May 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643197 Brucker et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5656029 Imran et al. Aug 1997 A
5658278 Imran et al. Aug 1997 A
5667488 Lundquist et al. Sep 1997 A
5671747 Connor Sep 1997 A
5672153 Lax et al. Sep 1997 A
5673695 McGee et al. Oct 1997 A
5676662 Fleischhacker et al. Oct 1997 A
5676692 Sanghvi et al. Oct 1997 A
5676693 Lafontaine Oct 1997 A
5678550 Bassen et al. Oct 1997 A
5680860 Imran Oct 1997 A
5681277 Edwards et al. Oct 1997 A
5681278 Igo et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5687737 Branham et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5690611 Swartz et al. Nov 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697925 Taylor Dec 1997 A
5697927 Imran et al. Dec 1997 A
5697928 Walcott et al. Dec 1997 A
5713942 Stern Feb 1998 A
5716389 Walinsky et al. Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5718701 Shai et al. Feb 1998 A
5720718 Rosen et al. Feb 1998 A
5720775 Lanard Feb 1998 A
5722402 Swanson et al. Mar 1998 A
5722403 McGee et al. Mar 1998 A
5725524 Mulier et al. Mar 1998 A
5730074 Peter Mar 1998 A
5730127 Avitall Mar 1998 A
5730704 Avitall Mar 1998 A
5733280 Avitall Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5749846 Edwards et al. May 1998 A
5755760 Maguire et al. May 1998 A
5769846 Edwards et al. Jun 1998 A
5782828 Chen et al. Jul 1998 A
5785706 Bednarek Jul 1998 A
5788636 Curley Aug 1998 A
5792140 Tu et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5735290 Nelson et al. Sep 1998 A
5800428 Nelson et al. Sep 1998 A
5800482 Pomeranz et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836947 Fleischman et al. Nov 1998 A
5840030 Ferek-Petric et al. Nov 1998 A
5844349 Oakley et al. Dec 1998 A
5846187 Wells et al. Dec 1998 A
5846191 Wells et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5849028 Chen Dec 1998 A
5871469 Eggers et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5871525 Edwards et al. Feb 1999 A
5873845 Cline et al. Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5873877 McGaffigan et al. Feb 1999 A
5876399 Chia et al. Mar 1999 A
5879295 Li et al. Mar 1999 A
5879296 Ockuly et al. Mar 1999 A
5881732 Sung et al. Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5885278 Fleischman Mar 1999 A
5893848 Negus et al. Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5897553 Mulier Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899898 Arless et al. May 1999 A
5899899 Arless et al. May 1999 A
5902289 Swartz et al. May 1999 A
5904711 Flom et al. May 1999 A
5906580 Kline-Schoder et al. May 1999 A
5906587 Zimmon May 1999 A
5906606 Chee et al. May 1999 A
5906613 Mulier et al. May 1999 A
5908029 Knudson et al. Jun 1999 A
5913854 Maguire et al. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5916214 Cosio et al. Jun 1999 A
5919188 Shearon et al. Jul 1999 A
5921924 Avitall Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5925038 Panesca et al. Jul 1999 A
5927284 Borst et al. Jul 1999 A
5928191 Houser et al. Jul 1999 A
5931810 Grabek Aug 1999 A
5931848 Saadat Aug 1999 A
5944715 Goble et al. Aug 1999 A
5951546 Lorentzen Sep 1999 A
5954661 Greenspon et al. Sep 1999 A
5957922 Imran Sep 1999 A
5961514 Long et al. Oct 1999 A
5964727 Edwards et al. Oct 1999 A
5971980 Sherman Oct 1999 A
5971983 Lesh Oct 1999 A
5993447 Blewett et al. Nov 1999 A
6004269 Crowley et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6010500 Sherman et al. Jan 2000 A
6012457 Lesh Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6015407 Fosse et al. Jan 2000 A
6016811 Knopp et al. Jan 2000 A
6017338 Brucker et al. Jan 2000 A
6022334 Edwards et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6032077 Pomeranz Feb 2000 A
6041260 Stern et al. Mar 2000 A
6042556 Beach et al. Mar 2000 A
6056745 Panescu et al. May 2000 A
6063081 Mulier May 2000 A
6068653 La Fontaine May 2000 A
6071279 Whayne et al. Jun 2000 A
6086585 Hovda et al. Jul 2000 A
6086586 Hooven Jul 2000 A
6088894 Oakley Jul 2000 A
6090084 Hassett et al. Jul 2000 A
6090106 Goble et al. Jul 2000 A
6096037 Mulier Aug 2000 A
6102886 Lundquist et al. Aug 2000 A
6113592 Taylor Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117132 Long et al. Sep 2000 A
6119041 Pomeranz et al. Sep 2000 A
6120496 Whayne et al. Sep 2000 A
6120501 Long et al. Sep 2000 A
6129726 Edwards et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6161543 Cox et al. Dec 2000 A
6162220 Nezhat Dec 2000 A
6165174 Jacobs et al. Dec 2000 A
6168594 La Fontaine et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6193714 McGaffigan et al. Feb 2001 B1
6206847 Edwards et al. Mar 2001 B1
6210411 Hofmann et al. Apr 2001 B1
6217528 Koblish et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6228082 Baker et al. May 2001 B1
6231518 Grabek et al. May 2001 B1
6235024 Tu May 2001 B1
6237605 Vaska et al. May 2001 B1
6238347 Nix et al. May 2001 B1
6238391 Olsen et al. May 2001 B1
6238393 Mulier May 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245064 Lesh et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6254600 Willink et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6264654 Swartz et al. Jul 2001 B1
6270471 Hechel et al. Aug 2001 B1
6277112 Underwood et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6302880 Schaer Oct 2001 B1
6305378 Lesh Oct 2001 B1
6311692 Vaska et al. Nov 2001 B1
6312383 Lizzi et al. Nov 2001 B1
6314962 Vaska et al. Nov 2001 B1
6314963 Vaska et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6328736 Mulier Dec 2001 B1
6332881 Carner et al. Dec 2001 B1
6358248 Mulier Mar 2002 B1
6361531 Hissong Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6371955 Fuimaono et al. Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6385472 Hall et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6409722 Hoey Jun 2002 B1
6413254 Hissong et al. Jul 2002 B1
6419648 Vitek et al. Jul 2002 B1
6419653 Edwards et al. Jul 2002 B2
6425867 Vaezy et al. Jul 2002 B1
6430426 Avitall Aug 2002 B2
6440130 Mulier Aug 2002 B1
6443952 Mulier Sep 2002 B1
6447507 Bednarek et al. Sep 2002 B1
6461314 Pant et al. Oct 2002 B1
6461956 Patterson Oct 2002 B1
6464661 Edwards et al. Oct 2002 B2
6464700 Koblish et al. Oct 2002 B1
6471697 Lesh Oct 2002 B1
6471698 Edwards et al. Oct 2002 B1
6474340 Vaska et al. Nov 2002 B1
6475216 Mulier Nov 2002 B2
6477396 Mest et al. Nov 2002 B1
6484727 Vaska et al. Nov 2002 B1
6488680 Francischelli Dec 2002 B1
6502575 Jacobs et al. Jan 2003 B1
6514250 Jahns Feb 2003 B1
6522930 Schaer et al. Feb 2003 B1
6527767 Wang et al. Mar 2003 B2
6537248 Mulier Mar 2003 B2
6537272 Hoey Mar 2003 B2
6558382 Jahns May 2003 B2
6584360 Francischelli Jun 2003 B2
6585732 Mulier Jul 2003 B2
6605084 Acker et al. Aug 2003 B2
6607529 Jones et al. Aug 2003 B1
6610054 Edwards et al. Aug 2003 B1
6610055 Swanson et al. Aug 2003 B1
6610060 Mulier Aug 2003 B2
6613048 Mulier Sep 2003 B2
6645199 Jenkins et al. Nov 2003 B1
6648883 Francischelli Nov 2003 B2
6656175 Francischelli Dec 2003 B2
6663627 Francischelli Dec 2003 B2
6692450 Coleman Feb 2004 B1
6692491 Phan Feb 2004 B1
6699240 Francischelli Mar 2004 B2
6702810 McClurken et al. Mar 2004 B2
6702811 Stewart et al. Mar 2004 B2
6706038 Francischelli Mar 2004 B2
6706039 Mulier Mar 2004 B2
6716211 Mulier Apr 2004 B2
6730079 Lovewell May 2004 B2
6736810 Hoey May 2004 B2
6755827 Mulier Jun 2004 B2
6764487 Mulier Jul 2004 B2
6773433 Stewart et al. Aug 2004 B2
6776780 Mulier Aug 2004 B2
6807968 Francischelli Oct 2004 B2
6814712 Edwards et al. Nov 2004 B1
6827715 Francischelli Dec 2004 B2
6849073 Hoey Feb 2005 B2
6852091 Edwards et al. Feb 2005 B2
6855141 Lovewell Feb 2005 B2
6858028 Mulier Feb 2005 B2
6887238 Jahns May 2005 B2
6899711 Stewart et al. May 2005 B2
6911019 Mulier Jun 2005 B2
6916318 Francischelli Jul 2005 B2
6936046 Hissong Aug 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949098 Mulier Sep 2005 B2
6960205 Jahns Nov 2005 B2
6962589 Mulier Nov 2005 B2
7201731 Lundquist et al. Apr 2007 B1
20030045872 Jacobs Mar 2003 A1
20030144656 Ocel Jul 2003 A1
20030191462 Jacobs Oct 2003 A1
20030216724 Jahns Nov 2003 A1
20040015106 Coleman Jan 2004 A1
20040015219 Francischelli Jan 2004 A1
20040044340 Francischelli Mar 2004 A1
20040049179 Francischelli Mar 2004 A1
20040078069 Francischelli Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040087940 Jahns May 2004 A1
20040092926 Hoey May 2004 A1
20040138621 Jahns Jul 2004 A1
20040138656 Francischelli Jul 2004 A1
20040143260 Francischelli Jul 2004 A1
20040186465 Francischelli Sep 2004 A1
20040215183 Hoey Oct 2004 A1
20040220560 Briscoe Nov 2004 A1
20040236322 Mulier Nov 2004 A1
20040267326 Ocel Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050010203 Edwards et al. Jan 2005 A1
20050033280 Francischelli Feb 2005 A1
20050084804 Truskett et al. Apr 2005 A1
20050090815 Francischelli Apr 2005 A1
20050143729 Francischelli Jun 2005 A1
20050165392 Francischelli Jul 2005 A1
20050209564 Bonner Sep 2005 A1
20050222562 Lovewell Oct 2005 A1
20050267454 Hissong Dec 2005 A1
20060009756 Francischelli Jan 2006 A1
20060009759 Christian Jan 2006 A1
Foreign Referenced Citations (5)
Number Date Country
916360 May 1999 EP
2327352 Jan 1999 GB
WO9725917 Jul 1997 WO
WO 9903414 Jan 1999 WO
WO0180755 Nov 2001 WO
Related Publications (1)
Number Date Country
20050143729 A1 Jun 2005 US
Continuations (2)
Number Date Country
Parent 10268816 Oct 2002 US
Child 11061425 US
Parent 09558975 Apr 2000 US
Child 10268816 US