Not applicable.
Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The disclosure relates to a method and apparatus for tracking objects.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98.
In the applications of various public surveillance systems, the limitation of the field of view of a camera results in some areas being “blind” or unmonitored by the surveillance system. However, utilizing additional cameras increases the costs of the surveillance systems. Thus, U.S. Pat. No. 6,359,647 disclosing a predictive location determination algorithm and U.S. Pat. No. 7,242,423 disclosing the concept of linked zones utilize multiple tracking cameras in indoor or outdoor settings to efficiently monitor objects and reduce the blind areas.
The calculation load of the mentioned system with multiple tracking cameras is generally divided into three parts. First, a moving object is tracked in accordance with coordinates of the object, which is analyzed by a back-end control station with an image processing algorithm. Second, the coordinates of the object are forwarded to the processor of a front-end camera to control the camera's carrier to face the object. Third, when the object exits the field of view of the camera, the back-end control station forwards the coordinates of the object to another camera in order to continuously track the object.
However, the modes of analyzing the coordinates of an object by the image processing algorithm performed by a back-end control station need to utilize more complex calculations and require more time to obtain the position of the object. Moreover, there is no standard communication protocol among cameras. The weighting information has to be forwarded to the back-end main station (PC or server) for recalculating to complete the handoff procedures between cameras. Therefore, these types of systems with multiple tracking cameras require a station with high processing performance to continuously track a moving object and to complete the handoff procedure in real time.
Accordingly, there is a need to reduce the calculation load, to establish a forwarding protocol among cameras and to implement a front-end embedded system, so as to meet industrial requirements.
A method and apparatus for tracking objects are disclosed. This method utilizes an ultrasonic distance sensor to measure the distance between the sensor and an object. By using the trigonometric function with the distances and the parameters of the sensor's location, the location of the object is continuously obtained.
One embodiment discloses an object tracking method, comprising the steps of: identifying an object using a first object tracking apparatus; adjusting a first rotation direction of the first object tracking apparatus to pinpoint the object; measuring a distance between the object and the first object tracking apparatus; and obtaining a location of the object in accordance with the distance and the first rotation direction.
Another embodiment an object tracking apparatus comprises an image, a distance sensor and a rotation mechanism. The image capture element is used for detecting an object. The distance sensor fixed together with the image capture element is used for measuring a distance between the object and the distance sensor. The rotation mechanism is used for adjusting a first rotation angle of the image capture element and the distance sensor.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the invention.
Steps S103-S106 are repeated to track a target, which moves continuously or a target, which moves intermittently within the surveillance range of the object tracking apparatus. When the target enters the overlapping surveillance area of the first object tracking apparatus and a second object tracking apparatus which is next to the first object tracking apparatus (step S107), the first object tracking apparatus forwards values of rotation angles (a horizontal rotation angle and a vertical rotational angle) to the second object tracking apparatus (step S108). The second object tracking apparatus adjusts its monitoring direction rapidly to track the target in accordance with the set of rotation angles.
In addition to the above-mentioned method, another embodiment is described as follows to enable those skilled in the art to practice the disclosure.
In this embodiment, the center of the bottom of the target 203 is defined as the center of the target 203. However, the definition of the center of a target is modifiable under different circumstances. After locating the center of the target 203, the ultrasonic distance sensor 32 measures the straight-line distance between the target 203 and the ultrasonic distance sensor 32. In a field of view (FOV) determining unit 304, an angle calculating device or an angle calculating means 306 obtains the location of the target 203 in accordance with the measured straight-line distance and known parameters (the locations of object tracking apparatuses 201 and 202 and the horizontal rotational direction of the stepper motor rotation mechanism 33). When the target 203 enters the overlapped surveillance area of the object tracking apparatuses 201, 202, the object tracking apparatus 201 immediately forwards values of rotation angles to the object tracking apparatus 202.
According to the set of rotation angles, the object tracking apparatus 202 adjusts its monitoring direction rapidly to pinpoint the center of the target 203 for continuous tracking of the target 203. As shown in
According to the known distance D1, the horizontal rotation angle φ1, the known height Z1, Z2 and the separation distance Xall, the method by which the angle calculating means 306 obtains the values φ2 and θ2 is as follows: By using Z1 and D2, L1 can be obtained by the following equations:
By using φ1 and L1, Y1 can be obtained by the following equation:
Y1=L1 sin φ1. (3)
Therefore,
Y1=Y2=Y3=L1 sin φ1. (4)
The horizontal rotation angle needed for the object tracking apparatus 202 to pinpoint the center of the target is
The relationships among L2, φ2 and X2 are
Finally, according to L2 and Z2, θ2 can be obtained by the following equations:
The values of the abovementioned trigonometric calculations can be obtained with a look-up table.
Accordingly, when the target 203 enters the overlapping surveillance area of the object tracking apparatuses 201, 202, the φ2 and θ2 derived by the object tracking apparatus 201 are forwarded to the object tracking apparatus 202. Whenever the target 203 moves back to the surveillance area of the object tracking apparatus 201 or forward to the surveillance area of the object tracking apparatus 202, the object tracking system can seize the location and the movement trajectory of the target 203 and thereby track the target 203 continuously.
Object tracking systems of prior arts rely on back-end computers to perform large calculations for obtaining the location of the target 203. If fluorescent lamps are used in the surveillance areas, the flicker frequencies of fluorescent lamps causes background noises in video images. When the target 203 moves, the calculation load and task difficulty are increased because of the background noises. In contrast to prior art, a tracking/positioning method is proposed in accordance with the embodiment, which utilizes an ultrasonic distance sensor to measure the distance between the sensor and a target. By using the trigonometric function with the distances and the parameters of the sensor's location, the location of the target is continuously obtained. Further, the embodiment of the disclosure reduces the calculation loads of the tracking algorithms. The embodiment of the disclosure also reduces the quantity of forwarding data needed for object tracking apparatuses to track an object and can be more easily implemented in a front-end embedded system.
The above-described exemplary embodiments are intended to be illustrative only. Those skilled in the art may devise numerous alternative embodiments without departing from the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
097149605 | Dec 2008 | TW | national |