Claims
- 1. In a data processing system having a fast clock and a slow clock, wherein the slow clock has a frequency that is an integer submultiple of the fast clock, a method for synchronizing a data signal in the slow clock domain with the fast clock, wherein the data signal in the slow clock domain is stable at a time displaced from a change of state of the slow clock, said method comprising the steps of:
- (a) generating a clock base signal at a frequency that is an integer submultiple of the slow clock and that is phase synchronized with the fast clock;
- (b) generating a sync pulse signal responsive to the clock base signal, said sync pulse signal having a frequency that is an integer multiple of the clock base signal and that is phase synchronized with the fast clock for any of a range of stable phase relationships between the fast clock and the slow clock, so as to be displaced by a predetermined time from the clock base signal;
- (c) generating a data signal in the fast clock domain by gating the slow clock domain data signal with the sync pulse signal while both the fast and slow clocks remain unchanged.
- 2. The method of claim 1 wherein the slow clock frequency is one of a plurality of predetermined submultiples of the fast clock that is selected by a clock divisor signal and wherein the method further comprises the step of snooping within the data processing system to capture the clock divisor signal.
- 3. A system for synchronizing a data signal in a slow clock domain with a fast clock wherein the slow clock has a frequency that is an integer submultiple of the fast clock and wherein the data signal in the slow clock domain is stable at a time displaced from a change of state of the slow clock, said system comprising:
- (a) means for generating a clock base signal at a frequency that is an integer submultiple of the slow clock and that is phase synchronized with the fast clock;
- (b) means for generating a sync pulse signal responsive to the clock base signal, said sync pulse signal having a frequency that is an integer multiple of the clock base signal and that is phase synchronized with the fast clock for any of a range of stable phase relationships between the fast clock and the slow clock, so as to be displaced by a predetermined time from the clock base signal;
- (c) means for generating a data signal in the fast clock domain by gating the slow clock domain data signal with the sync pulse signal while the fast and slow clocks remain unchanged.
- 4. A system for synchronizing a data signal in a slow clock domain with a fast clock wherein the slow clock has a frequency that is an integer submultiple of the fast clock and wherein the data signal in the slow clock domain is stable at a time displaced from a change of state of the slow clock, said system comprising:
- (a) a first signal generator that receives the fast clock and the slow clock and that generates a clock base signal therefrom that has a frequency that is an integer submultiple of the slow clock and that is phase synchronized with the fast clock;
- (b) a synchronizing state machine coupled to the first signal generator that generates a sync pulse signal responsive to the clock base signal, said sync pulse signal having a frequency that is an integer multiple of the clock base signal and that is phase synchronized with the fast clock for any of a range of stable phase relationships between the fast clock and the slow clock, so as to be displaced by a predetermined time from the clock base signal;
- (c) a second signal generator coupled to the synchronizing state machine, that receives the slow clock domain data signal and that generates a data signal in the fast clock domain by gating the slow clock domain data signal with the sync pulse signal while the fast and slow clocks remain unchanged.
- 5. A data processing system comprising:
- (a) a central processing unit;
- (b) a first interface bus operating at a fast clock frequency;
- (c) a second interface bus operating at a slow clock frequency that is an integer submultiple of the fast clock frequency;
- (d) a first signal generator that receives the fast clock and the slow clock and that generates a clock base signal therefrom that has a frequency that is an integer submultiple of the slow clock and that is phase synchronized with the fast clock;
- (e) a synchronizing state machine coupled to the first signal generator that generates a sync pulse signal responsive to the clock base signal, said sync pulse signal having a frequency that is an integer multiple of the clock base signal and that is phase synchronized with the fast clock for any of a range of stable phase relationships between the fast clock and the slow clock, so as to be displaced by a predetermined time from the clock base signal;
- (f) a second signal generator coupled to the synchronizing state machine, that receives a data signal in the slow clock domain, wherein the data signal in the slow clock domain is stable at a time displaced from a change of state of the slow clock, and that generates a data signal in the fast clock domain by gating the slow clock domain data signal with the sync pulse signal while the fast and slow clocks remain unchanged.
- 6. The data processing system of claim 5 further comprising a slow clock generating unit coupled to the first interface bus for receiving a clock divisor signal from the central processing unit and generating the slow clock at a frequency that is the fast clock frequency divided by a value of the clock divisor signal.
- 7. The data processing system of claim 6 further comprising a capture circuit coupled to the first interface bus for capturing the clock divisor signal as it is transmitted from the central processing unit.
- 8. The data processing system of claim 7 further comprising a latch coupled to the capture circuit for latching the clock divisor signal upon receipt of an acknowledgment signal from the slow clock generating unit that it received the clock divisor signal.
Parent Case Info
This is a continuation/of application Ser. No. 08/176,399 filed Dec. 30, 1993
US Referenced Citations (12)
Continuations (1)
|
Number |
Date |
Country |
Parent |
176399 |
Dec 1993 |
|