The invention relates to analog broadcast services. More particularly, the invention relates to systems, methods, and apparatuses for transmitting and receiving data from an analog audio signal for automatic creation of an album of audio content.
Broadcast transmission has been a staple in communication and reaching a large number of people for many years. In the United States alone, there a hundreds of radio and television broadcasters transmitting modulated signals, such as amplitude modulation (AM) signals, frequency modulation (FM) signals, very high frequency (VHF) signals, and ultra high frequency (UHF) signals for transmission of audio and/or video content. Many different types of devices exist that can receive analog audio signals, such as an FM signal, and produce music and/or other audio content through a speaker. Examples of such terminal devices include radios, computers, and cellular telephones. Today, terminal devices allow users the ability to record a broadcast analog transmission that is received by the terminal device.
A Digital transmission often includes information regarding the transmission as such is necessary for the receiver device to be able to properly process the incoming digital data. This information is often referred to as metadata. Typically, metadata for digital music includes the artist and title of the song. However, for analog transmissions, information about the analog transmission is not sent in parallel with the analog transmission itself. Typically, if any information regarding an analog transmission is associated with the analog transmission, it is done upon arrival at the receiver device and/or manually by a user.
It would be an advancement in the art to provide a method and system for transmitting digital data, e.g., metadata, in parallel with an analog audio stream, thereby allowing a user to automatically record analog audio transmissions and have information about the audio transmissions be associated automatically. To overcome limitations in the art described above, and to overcome other limitations that will be apparent upon reading and understanding the present specification, the present invention is directed to a system and method for transmitting and receiving an analog transmission coupled with a digital data signal.
According to one aspect of the present invention, a combined signal including a digital data component and an analog component is transmitted and received by a terminal. The combined signal is separated into the digital data component and the analog component. The analog component is digitized and then cut based upon the digital data component. Metadata from the digital data component is associated with the digitized analog component to create an album of audio content. The album may be stored or sent to an audio player for output. The digital data component may include cutting information and information data. The analog component may be an analog frequency modulation signal and the digital component may be a subcarrier signal in accordance with the Data Radio Channel (DARC) standard.
Another aspect of the present invention includes a terminal with a receiver configured to receive a combined analog signal and subcarrier signal, a processor for controlling operation of the terminal, the processor configured to process the received subcarrier signal and analog signal by software programmed to generate an album of audio content, a digital player configured to output the album of audio content, a storage medium configured to store the album of audio content, a display configured to show information relating to the album, and an interface configured to allow a user to interface with the terminal.
Still another aspect of the present invention includes a broadcast system for transmitting a transmission including a digital data component and an analog component. The system may include a signal insertion engine configured to combine an analog component with a digital data component and a transmitter configured to transmit the combined analog component and digital data component. The digital data component may include metadata and cutting information and the digital data component may be a subcarrier signal in accordance with the DARC standard.
A more complete understanding of the present invention and the advantages thereof may be acquired by referring to the following description in consideration of the accompanying drawings, in which like reference numbers indicate like features, and wherein:
In the following description of the various embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration various embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention.
Signal insertion engine 205 adds the digital data 224 to the analog audio stream 222. In accordance with at least one aspect of the present invention, the digital data 224 is in a subcarrier signal. The signal insertion engine 205 sends the subcarrier signal in parallel with the analog audio stream. One example of the subcarrier signal system described herein is a Data Radio Channel (DARC) system. DARC is a subcarrier system for VHF/FM radio that is compatible with Radio Data System (RDS) and Radio Broadcast Data System (RBDS) technologies. As such, aspects of the present invention may use a DARC, RDS, and/or RBDS standard. DARC has mainly been used in Japan in conjunction with radio and infrared beacons for the operation of the Vehicle Information and Communication System (VICS). In addition, it has been used in Sweden, Norway, Austria, Switzerland, South Korea and to some extent the United States. DARC occupies a bandwidth of 35 kHz centered on a subcarrier 76 kHz within the FM multiplex broadcast signal.
The gross data rate of DARC is 16 kbps. This data rate is more than 10 times the data rate capability of RDS/RBDS technology. The DARC injection level changes with the level of the audio program modulation, i.e., it is dynamic and depends precisely on the level of the stereo difference signal. DARC has been standardized by the European Telecommunication Standard Institute (ETSI) in ETS 300 751: “Radio broadcasting systems; System for Wireless Infotainment Forwarding and Teledistribution (SWIFT)”. The system characteristics of DARC standard are generally described in ITU-R Recommendation BS 1194 −1[1, 2]: Systems for Multiplexing Frequency Modulation (FM) Sound Broadcasting with a Sub-carrier Data Channel Having a relatively Large Transmission capacity for Stationary and Mobile Reception.
Any DARC broadcast network allows the transmission of electronic data files on the FM radio networks at an effective data throughput of about 10 kbps. The additional 6 kbps may be utilized for error correction purposes. In a similar manner to RDS (Radio Data System) and RBDS (Radio Broadcast Data System) networks, a DARC standard network is based on existing FM infrastructure. The use of existing FM infrastructure leads to a low cost data broadcast network that can be deployed to quickly cover an entire country. Data files are exchanged between the information provider server and the DARC network server, which is controlled by the transmission network operator. The network server transmits the files to the distribution network and then towards the transmitter stations. As with RDS/RBDS networks, transmitter stations are equipped with specific DARC encoders, also called Transmitter Station Equipment (TSE). One function of the TSE is to insert the data stream in the FM baseband multiplex signal into a standardized form conforming to the International Telecommunication Union (ITU) broadcast specifications.
The electronic data files are thus multiplexed to the FM baseband signal on a sub-carrier, compatible with the RDS/RBDS subcarrier. DARC technology offers a higher bit rate than RDS/RBDS technology and DARC technology is specifically adapted to mobile and portable applications. In most cases, DARC technology operates in a severe multipath propagation environment as encountered in mountainous regions and urban areas with many high-rise buildings.
In Europe, the DARC technology was standardized in 1997 by ETSI as ETS 300751 [3], endorsed by the Joint Technical Committee (JTC) which involves the collaboration of ETSI, the European Broadcasting Union (EBU), and the European Committee for Electrotechnical Standardisation (CENELEC). The DARC system has been aimed at a niche market in Europe, i.e., the provision of a radio data channel to small portable data receivers (made by Casio, Sharp, Sony and most recently the Swedish company Sectra) and PCs, with the receiver being implemented on a PC Card (PCMCIA) all using Japanese Integrated Circuits from Oki (MSM 9500 series) or Sanyo. Sony has its own chip (CXA 1960). These integrated circuits (IC) are now very inexpensive and cost only three times as much as RDS/RBDS decoder chips.
With reference to
Referring to
As described above with reference to
The cutting engine 247 cuts the digitized audio stream 258 into entities within a cut digitized audio stream 264 based on the cutting information 260. As described above with reference to
Referring to
Any audio entry within the storage medium 273 and/or the cut digitized audio stream with associated metadata 282 can be sent to an audio player 275 for output to a speaker and/or display device. Audio player 275 may include a display screen and a speaker where the audio entry, e.g., song, is outputted to the speaker and the metadata information is outputted to the display screen. In accordance with at least one aspect of the present invention, a user with such a system as described with reference to
With reference to
Audio entity 310-1 is the first audio entry 310 listed in the storage medium 273. As shown, audio entity 310-1 includes metadata that identifies the title of song 1, the artist that performs the song, the group that performs the songs (if different from and/or necessary to distinguish from the artist), the name of the album from which song 1 originates, the length of song 1, the track number of song 1 from its corresponding album, the genre of song 1, the year song 1 was recorded and/or released, the radio station from which song 1 was retrieved, the date song 1 was recorded, the filename for the entity, and/or any other information that may be desired by a user for sorting, storing, and/or identifying song 1. Any number N of audio entities 310 may be stored in storage medium 273. The number of audio entities that may be stored is only limited to the capacity of storage medium 273. Further, it should be understood by those skilled in the art that the storage capacity of storage medium 273 may be changed and/or the contents of storage medium 273 may be transferred to a different storage medium for storage and/or retrieval purposes.
Broadcast station 405 combines the analog content and digital content for transmission on an analog frequency. One illustrative method and system for combining the signals is described above with reference to
For a user, the digital data is sent with no additional transmission cost associated with it. The user can record a song while listening to it and can even record while not listening. For a radio station using aspects of the present invention, end users are more receptive to stay “tuned” to that radio station as it offers more services to the user. Further, in order to receive unbroken files, the user may have to stay tuned to that particular radio station. In addition, the radio station can increase advertisement revenue by transmitting vouchers and/or other advertisement material since the user is not paying for the transmission. Because the recording has been done from an analog source, a user and/or station does not need to conform and/or be concerned with any potential digital rights management (DRM) issues that pertain to digital transmissions.
The process continues to step 508 where the analog audio stream is digitized. Once digitized, the audio stream can be saved in digital format while maintaining analog quality. At step 510, the process determines the exact starting point and ending point of each audio entity in the digitized audio stream for cutting the digitized audio stream along these points. The process may determine these points from the digital data signal containing cutting information for each entity of the digitized audio stream. With the digitized audio stream cut, at step 512, the process continues by associating metadata and/or other information obtained from the digital data signal with a corresponding audio entity. As described above, this metadata and/or other information may be an artist name, a title of song, or names of teams competing in a sports broadcast, such as the Super Bowl® of the National Football League® or Stanley Cup Finals® of the National Hockey League®
At step 514, a determination is made as to whether more entities exist that need to have metadata and/or other information associated with them. If so, the process returns to step 512 where the next audio entity is associated with its corresponding metadata. At step 516, the audio entities with associated metadata are stored in a storage medium. It should be understood by those skilled in the art that any entity that does not have corresponding digital data information to be associated with it may still be recorded and stored as an audio entity in the storage medium. The process concludes at step 518 where a user can retrieve the listing of audio entities to an audio player or other device for outputting the audio content and associated metadata. Further, although not shown in
The voucher shown in
Other methods for transmitting and receiving a voucher/coupon may be used. For example, a voucher may be transmitted in parallel to an audio advertisement or even independent from the audio signal. The voucher is broadcasted via the digital RDS/RBDS/DARC standard signal. At the terminal 409 of the user, the digital signal is detected and shown on the display area 620. The audio advertisement is played through a speaker 640 of the terminal 409 while the voucher is displayed on the display area 620. A user may preprogram her terminal 409 to allow for audio advertisements to be received and played on her terminal 409 but not to display vouchers on the display area 620. Alternatively, she may preprogram her terminal 409 to allow for vouchers to be displayed on the display area 620 of her terminal 409 but not to output the audio advertisement through the speaker 640.
As shown in
In another embodiment, the voucher may be an animated image including some or all of the features described herein. For example, the voucher may be an animated image of the product and further include textual entry, such as textual entry 52, and a barcode, such as barcode 654. In still another embodiment, the voucher may be a still image having a direct link to a server using the Global System for Mobile Communications/General Packet Radio Service/Third generation Mobile System (GSM/GPRS/3G) back-channel of the terminal 409. Under this embodiment, a verification may be made that the user is actually listening to and or watching the advertisement. For example, an audio, textual, and/or video output may inform the user that she will now see the voucher on the display area 620, and if she answers a question within a specified time period, she will receive a discount off a product from the store sending the voucher. In another example, an audio, textual, and/or video output may inform the user that she will now see the voucher on the display area 620, and if she enters an input on her interface area 630, she will receive a discount from the store. The input entry may be configured to activate the GSM/GPRS/3G back-channel of the terminal 409.
Terminal 409 is shown to be in contact with a mobile operator 660. The mobile operator 660 is shown in contact with a music portal 670 and the music portal is shown in contact with a music library 675. There are a number of different methods for connection and/or communication between reference elements 409, 660, 670, and 675. For example, terminal 409 may be in contact with music portal 670 through mobile operator 660 by means of a short message service (SMS) or a uniform/universal resource locator (URL) service available on many mobile terminals. Music portal 670 coordinates the interface to the terminal 409 and the music library 675. Music portal 670 may request specific data from the music library 675 based upon the name of the song received in the SMS message form terminal 409. Music library 675 retrieves the additional information, such as the name of the artist that performs the song, the album name, the track number, the length of the song, the date of release, etc. and sends that information to the terminal 409 through the music portal 670.
Mobile operator 660 also may be a service provider or broker that coordinates requests to purchase products and/or services. For example, a user at mobile terminal 409 hears a song being transmitted from transmitter 407 by a broadcast station. Upon hearing the song, the user may desire to obtain a copy of the song. By user of her mobile terminal 409, the user can request to obtain a copy of the song being played. The mobile operator 660 receives the request and coordinates the purchase of the song by contacting the music portal 670 and/or music library 675. The mobile operator 660 obtains enough information about the song from the music portal 670 and/or music library 675 to coordinate the purchase of the song. Mobile operator 660 may coordinate the purchase through obtaining an authorization, such as a purchase ticket, to download a copy of the song form a source, such as directly from the broadcast station or a database on the Internet.
At step 688, the mobile terminal generates an SMS message and sends the message to a music portal, such as music portal 670. Such an action to select to purchase may be triggered by a press on a keypad of the mobile terminal. The mobile terminal may then generate the SMS message and send the message in step 688. At step 690, the music portal retrieves data from a music library, such as music library 675. The music library may contain a number of types of information associated with a song. The music library may receive the title of the song from the music portal and retrieve information re the artist name, track length, album name, year of release, etc. and send that information/metadata to the music portal. At step 692, the music portal transmits the retrieved metadata/information to the mobile terminal. The mobile terminal may then display the retrieved metadata/information at step 694. A determination may then be made to confirm whether the user still desires to purchase the song at step 695. For example, the user may see the artists name and realize that she does not want to purchase the song. If confirmation to purchase is not received, the process ends 699. If confirmation to purchase is received, the process proceeds to step 696.
At step 696, the mobile terminal generates and sends an SMS message to the music portal of the confirmation. At step 697, the music portal sends a purchase ticket to the mobile terminal. The purchase ticket may be a SMS message containing a URL and an authorization code to download the song. At step 698, the user of the mobile terminal can choose to download the purchased song immediately via a General Packet Radio Service (GPRS) system or at a later time on an Internet connection from a different terminal, such as a home PC. The user could also send the purchase ticket to another individual as a gift and that individual can retrieved the purchased song and/or program in the same manner.
At step 830, another determination is made as to whether the new FM audio transmission matches any criteria of the user settings. For example, if the user only wishes to record a certain radio program and the new FM audio transmission does not include the specified radio program, there is no match at step 830. If a match is not found, the process starts again. However, if a match is found in step 830, the process proceeds to step 840 where the audio transmission is recorded and stored in accordance with the user settings.
One skilled in the art will understand that although the Figures make reference to an analog FM transmission of an audio stream, the present invention is not so limited to analog FM transmissions and is directed to any type of analog transmission for communication purposes.
One or more aspects of the invention may be embodied in computer-executable instructions, such as in one or more program modules, executed by one or more computers, set top boxes, mobile terminals, or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The computer executable instructions may be stored on a computer readable medium such as a hard disk, optical disk, removable storage media, solid state memory, RAM, etc. As will be appreciated by one of skill in the art, the functionality of the program modules may be combined or distributed as desired in various embodiments. In addition, the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA), and the like.
Although the invention has been defined using the appended claims, these claims are exemplary in that the invention may be intended to include the elements and steps described herein in any combination or sub combination. Accordingly, there are any number of alternative combinations for defining the invention, which incorporate one or more elements from the specification, including the description, claims, and drawings, in various combinations or sub combinations. It will be apparent to those skilled in the relevant technology, in light of the present specification, that alternate combinations of aspects of the invention, either alone or in combination with one or more elements or steps defined herein, may be utilized as modifications or alterations of the invention or as part of the invention. It may be intended that the written description of the invention contained herein covers all such modifications and alterations.
Number | Name | Date | Kind |
---|---|---|---|
4703465 | Parker | Oct 1987 | A |
5406626 | Ryan | Apr 1995 | A |
5410344 | Graves et al. | Apr 1995 | A |
5524051 | Ryan | Jun 1996 | A |
5590195 | Ryan | Dec 1996 | A |
5751806 | Ryan | May 1998 | A |
5809472 | Morrison | Sep 1998 | A |
5815671 | Morrison | Sep 1998 | A |
5956629 | Morrison | Sep 1999 | A |
5963916 | Kaplan | Oct 1999 | A |
5986200 | Curtin | Nov 1999 | A |
6167253 | Farris et al. | Dec 2000 | A |
6188398 | Collins-Rector et al. | Feb 2001 | B1 |
6192340 | Abecassis | Feb 2001 | B1 |
6195692 | Hsu | Feb 2001 | B1 |
6199076 | Logan et al. | Mar 2001 | B1 |
6202062 | Cameron et al. | Mar 2001 | B1 |
6208335 | Gordon et al. | Mar 2001 | B1 |
6248946 | Dwek | Jun 2001 | B1 |
6260192 | Rosin et al. | Jul 2001 | B1 |
6314094 | Boys | Nov 2001 | B1 |
6330334 | Ryan | Dec 2001 | B1 |
6389467 | Eyal | May 2002 | B1 |
6430537 | Tedesco et al. | Aug 2002 | B1 |
6470378 | Tracton et al. | Oct 2002 | B1 |
6490432 | Wegener et al. | Dec 2002 | B1 |
6502194 | Berman et al. | Dec 2002 | B1 |
6539395 | Gjerdingen et al. | Mar 2003 | B1 |
6563880 | Hunsinger et al. | May 2003 | B1 |
6567660 | Wegener | May 2003 | B1 |
6587127 | Leeke et al. | Jul 2003 | B1 |
6608994 | Wegener et al. | Aug 2003 | B1 |
6609097 | Costello et al. | Aug 2003 | B2 |
6622007 | Linden | Sep 2003 | B2 |
20020054597 | O'Toole et al. | May 2002 | A1 |
20030009765 | Linden et al. | Jan 2003 | A1 |
20030063125 | Miyajima et al. | Apr 2003 | A1 |
20030069032 | Jarvi et al. | Apr 2003 | A1 |
20040073916 | Petrovic et al. | Apr 2004 | A1 |
20040097194 | Karr et al. | May 2004 | A1 |
20040102213 | Karr et al. | May 2004 | A1 |
20040102214 | Karr et al. | May 2004 | A1 |
20040102215 | Karr et al. | May 2004 | A1 |
20040220926 | Lamkin et al. | Nov 2004 | A1 |
20040242163 | Karr et al. | Dec 2004 | A1 |
20050223039 | Kim et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
2192958 | Nov 2002 | CA |
0688480 | Dec 1995 | EP |
0689742 | Jan 1996 | EP |
0 854 645 | Jul 1998 | EP |
1037419 | Sep 2000 | EP |
1037419 | Sep 2000 | EP |
1059749 | Dec 2000 | EP |
1059749 | Dec 2000 | EP |
1107624 | Jun 2001 | EP |
1107624 | Jun 2001 | EP |
1126643 | Aug 2001 | EP |
1126643 | Aug 2001 | EP |
1187379 | Mar 2002 | EP |
1187379 | Mar 2002 | EP |
2000172484 | Jun 2000 | JP |
WO 8303181 | Sep 1983 | WO |
WO 9935830 | Jul 1999 | WO |
WO 0174059 | Oct 2001 | WO |
WO 0223773 | Mar 2002 | WO |
WO 0223773 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060003694 A1 | Jan 2006 | US |