This application relates to the field of printing presses, and in particular to the transport of signatures.
In a web printing press, a web or webs may be printed in various printing units. The webs then may enter a folder superstructure. There the webs may be slit into ribbons, which are then superimposed to form a ribbon bundle before passing to a former. The ribbon bundle in the folder superstructure may be drawn over a roller at the top of the former called an RTF by driven nip rolls located after the nose of the former. The ribbon bundle then may pass to folder where the ribbon bundle is cut into signatures.
The signatures can then be transported between a plurality of upper and lower transport tapes for further processing. The upper and lower transport tapes are driven by rollers. During transport, and particularly when the transport direction of the signatures is changed as they pass over roller(s), skew is introduced into the signatures. In general, the skew develops due to the difference in the path length of the inner sheet verses the outer sheet as it passes around a roller.
Commonly owned U.S. Published Patent Application 2008/0150208, entitled “Compressible nip rolls for Multiribbon transport” discusses the use of microcellular rolls for main nips located at the bottom of formers and commonly owned U.S. application Ser. No. 12/587,972, filed Oct. 15, 2009 and entitled “Compressible Roll Top of Former for Multiribbon Transport” discusses the use of microcellular rolls as the nip rollers top of formers (RTF). In both cases, a continuous web passes through the microcellular rolls.
In accordance with a first embodiment of the present invention, an apparatus for transporting folded signatures is provided which includes a first roller and a second roller forming a first nip with the first roller. The first and second rollers each have a compressible outer layer, and are rotatable about respective axes. Preferably, the compressible outer layer comprises a microcellular foam. The apparatus also includes a plurality of first transport tapes passing through the first nip and a plurality of second transport tapes passing through the first nip. The plurality of second transport tapes are wrapped at least partially around the second roller so that a signature transported between the first and second transport tapes and through the first nip undergoes a change in transport direction as it is transported at least partially around the second roller. Preferably, the signatures enter the first nip perpendicular to a plane passing through the axes of the first and second rollers.
In accordance with a second embodiment of the present invention, an apparatus for transporting folded signatures is provided which includes a first roller and a second roller forming a first nip with the first roller, as well as a third roller and a fourth roller forming a second nip with the third roller. The first, second, third and fourth rollers each having a compressible outer layer, and are rotatable about respective axes. Preferably, the compressible outer layer comprises a microcellular foam. The apparatus also includes a plurality of first transport tapes wrapped at least partially around the first and third rollers and a plurality of second transport tapes wrapped at least partially around the second and third rollers so that a signature transported between the first and second transport tapes and through the first nip and the second nip undergoes a change in transport direction as it is transported at least partially around the third roller as it exits the second nip. The signatures may also undergo a change in direction as they exit the first nip. Preferably, the signatures enter the first nip perpendicular to a plane passing through the axes of the first and second rollers, and wherein the signatures enter the second nip perpendicular to a plane passing through the axes of the third and fourth rollers.
In accordance with a third embodiment of the present invention, a folding and transport apparatus is provided which includes a former which imparts a longitudinal fold to a continuous web passing over the former, a pair of cutting cylinders positioned below the former to cut the longitudinally folded web into signatures; and a transport tape assembly for transporting the longitudinally folded signatures. The transport tape assembly is positioned to receive the longitudinally folded signatures with a spine of the signatures substantially parallel with a direction of travel of the signatures. The transport tape assembly includes a first roller and a second roller forming a first nip with the first roller; and a third roller and a fourth roller forming a second nip with the third roller. The first, second, third and fourth rollers each having a compressible outer layer, and are rotatable about respective axes. Preferably, the compressible outer layer comprises a microcellular foam. The tape transport assembly also includes a plurality of first transport tapes wrapped at least partially around the first and third rollers and a plurality of second transport tapes wrapped at least partially around the second and third rollers so that signatures transported between the first and second transport tapes and through the first nip and the second nip undergo a change in transport direction as it is transported at least partially around the third roller after exiting the second nip. The signatures may also undergo a change in direction as they exit the first nip. Preferably, the signatures enter the first nip perpendicular to a plane passing through the axes of the first and second rollers, and wherein the signatures enter the second nip perpendicular to a plane passing through the axes of the third and fourth rollers.
In accordance with a fourth embodiment of the present invention, a method of transporting a signature in a transport direction is provided, comprising: moving signatures in a transport direction between opposing transport tapes with a spine of the signatures parallel to the transport direction. The signatures have an open edge parallel to the transport direction, opposite the spine. The method further comprises passing the signatures, and the opposing transport tapes through a first and second rotating compressible rollers forming a first nip; and wrapping the opposing transport tapes, having the signatures therebetween, around at least a portion of the second roller to change the transport direction of the signatures without introducing skew. Preferably, the signatures enter the first nip perpendicular to a plane passing through the axes of the first and second rollers.
The present invention will be further described with respect the following Figures, in which:
a and 1b show a former arrangement including a pair of cutting cylinders as is known in the prior art.
Typically, in a web printing press, a continuous web of paper passes through the printing units of the printing press, is slit into a plurality of ribbons, and the ribbons thereafter may be folded longitudinally in a former. The continuous former folded ribbons may then be cut and into signatures and folded in a folder. The folded signatures can then be transported for further processing using transport tapes. In the case of many folders, there is a folded edge on the leading side of a signature. When such a folded signature is transported by transport tapes, this leading folded edge reduces the signatures sensitivity to skew.
In the case of former folders, however, there is usually an open edge on the signatures direction of travel. This open edge is extremely sensitive to skew when the signature turns around a roll.
In accordance with the embodiments of the present invention, a compressible nip formed by pair of compressible rollers is used to drive the transport tapes through the nip. These tapes preferably enter the nip normal to (in other words at a 90 degree angle to) a plane (or centerline) drawn between the centers (i.e. axes) of the opposing nip rolls and wrap partially one of the nip rolls in order to change direction. The exit angle can be any desired angle relative to the centerline (e.g. 10 degrees, 100 degrees, 50 degrees) that provides a change in direction of the signatures. The direction of wrap is maintained by the tension in the tapes. The speed of the tapes is controlled by the transport characteristics of the compressible nip material. Preferably, the compressible material is microcellular material. When the tapes are in the nip, the nip keeps the tapes traveling the same speed. When signatures are placed between the transport tapes, they travel at the same speed as the tapes. When the tapes and signatures exit the nip at the exit angle, they do so without introducing skew into the signature. In the context of the present invention signature exit “without introducing skew” is defined as signature skew of 0.03 inches or less, and preferably 0.01 inches or less.
As illustrated in
In accordance with further embodiments of the present invention, a relief or groove can be provided in the microcellular material on the roller surface to accommodate each transport tape. The relief or groove on each roller surface should be less than one half combined thickness of the signatures and upper and lower transport tapes so that traction is maintained between the rollers and the tapes.
U.S. patent application Ser. No. 12/587,972, incorporated herein by reference, describes a nip top of former (NTF) with microcellular foam rollers forming the NTF nip. In that application, it is described that when the entry angle is ninety degrees, there are minimal tension differences between the sheets in the ribbon bundle. It also describes that the ribbon bundle can exit the nip at an angle other than zero. However, in the case of the NTF, there is a continuous ribbon exiting the nip and tension in that ribbon allows the ribbon path to follow an exit angle out of the nip. If signatures, instead of a continuous ribbon, were fed into the nip, there would be no mechanism available to ensure that the signatures exit the nip at a pre-defined angle. In accordance with the embodiments of the present invention, the signatures enter a microcellular signature transport nip between transport tapes, thereby avoiding the skew that would be introduced with conventional, non-compressible, transport nip rollers.
In accordance with further embodiments of the present invention, a folding and transport apparatus can be provided including a former in which the NTF can be formed with microcellular foam rollers, and further including the transport apparatus described above including transport tapes and microcellular nip rollers.
Although the embodiments of the present invention have been described above with respect to processing a signature with an open edge leading because an open edge leading product is more prone to skew in conventional applications than a folded edge leading product, the embodiments of the present invention can also be used in connection with folded edge leading products, and would serve to reduce the skew in those products in the same manner described above with regard to open edge leading products.
In the preceding specification, the invention has been described with reference to specific exemplary embodiments and examples thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative manner rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
612957 | Sheldon | Oct 1898 | A |
3937453 | Hickey et al. | Feb 1976 | A |
4484982 | Majaniemi | Nov 1984 | A |
4746107 | Schneider et al. | May 1988 | A |
4863421 | Loebach | Sep 1989 | A |
5080338 | Belanger et al. | Jan 1992 | A |
5904094 | Bredenberg | May 1999 | A |
6497084 | Janen | Dec 2002 | B1 |
6556798 | Rimai et al. | Apr 2003 | B2 |
6588739 | Weis | Jul 2003 | B1 |
7765908 | Hearn | Aug 2010 | B1 |
20060130961 | Byrne et al. | Jun 2006 | A1 |
20080150208 | Elkinson et al. | Jun 2008 | A1 |
20080200323 | Selle et al. | Aug 2008 | A1 |
20090203510 | Kurihara et al. | Aug 2009 | A1 |
20110088578 | Douillard et al. | Apr 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120322643 A1 | Dec 2012 | US |