Method and apparatus for treating subcutaneous histological features

Information

  • Patent Grant
  • 8853600
  • Patent Number
    8,853,600
  • Date Filed
    Friday, November 9, 2012
    12 years ago
  • Date Issued
    Tuesday, October 7, 2014
    10 years ago
Abstract
A system and method for treating subcutaneous histological features without affecting adjacent tissues adversely employs microwave energy of selected power, frequency and duration to penetrate subcutaneous tissue and heat target areas with optimum doses to permanently affect the undesirable features. The frequency chosen preferentially interacts with the target as opposed to adjacent tissue, and the microwave energy is delivered as a short pulse causing minimal discomfort and side effects. By distributing microwave energy at the skin over an area and adjusting power and frequency, different conditions, such as hirsuitism and telangiectasia, can be effectively treated.
Description
FIELD OF THE INVENTION

This invention relates to effecting pathological changes in subcutaneous histological features so as to eliminate unsightly or potentially harmful vascular and cellular conditions, without side effects and with fewer steps and less discomfort than has heretofore been possible.


BACKGROUND OF THE INVENTION

Radiation therapy is an accepted treatment for a wide variety of medical conditions. High intensity radiant energy sources in the visible band, such as lasers, are now being widely used for both internal and extracorporeal procedures. While the microwave band, between 300 MHz and 30 GHz affords the capability of penetrating deeper than visible light while interacting differently with body tissue it has heretofore been employed primarily only in a variety of dissimilar medical procedures.


Microwave energy exerts its effect on tissue through controlled regional heating (hyperthermia) of affected features through interaction between the wave energy and magnetically polarizable tissue matter. By using microwaves to establish a regional hyperthermia, it is possible to preferentially increase the temperature of diseased or unwanted histological features to levels which are pathologically effective. At the same time, a necessary objective is to maintain adjacent tissue at acceptable temperatures, i.e., below the temperature at which irreversible tissue destruction occurs. Such microwave induced hyperthermia is well known in the field of radiology where it is used in the treatment of individuals with cancerous tumors.


A number of specific methods for treating histological features by the application of microwave radiation are described in the medical literature. For example, a technique for treating brain tumors by microwave energy is disclosed in an article entitled “Resection of Meningiomas with Implantable Microwave Coagulation” in Bioelectromagnetics, 17 (1996), 85-88. In this technique, a hole is drilled into the skull and a catheter is invasively inserted into the hole to support a coaxial radiator or antenna. Microwave energy is then applied to the antenna to cause the brain tumor to be heated to the point where the center of the tumor shows coagulative necrosis, an effect which allows the meningioma to be removed with minimal blood loss. Another technique in which microwave energy is utilized to treat prostate conditions is disclosed by Hascoet et al. in U.S. Pat. No. 5,234,004. In this technique, a microwave antenna in a urethral probe connected to an external microwave generating device generates microwaves at a frequency and power effective to heat the tissues to a predetermined temperature for a period of time sufficient to induce localized necrosis. In a related technique disclosed by Langberg in U.S. Pat. No. 4,945,912, microwave energy is used to effect cardiac ablation as a means of treating ventricular tachycardia. Here, a radiofrequency heating applicator located at the distal end of a coaxial line catheter hyperthermically ablates the cardiac tissue responsible for ventricular tachycardia. As with the described methods of tumor treatment, this method of cardiac ablation operates by preferentially heating and destroying a specifically targeted area of tissue while leaving surrounding tissue intact.


While the general principle of propagating microwave energy into tissue for some therapeutic effect is thus known, such applications are usually based on omnidirectional broadcasting of energy with substantial power levels. The potential of microwave energy for use with subcutaneous venous conditions and skin disorders has not been addressed in similar detail, probably because of a number of conflicting requirements as to efficacy, safety, ease of administration and side effects.


As a significant number of individuals suffer from some type of subcutaneous but visible abnormality, therapeutic techniques which effectively address these conditions can be of great value. Such features which are potentially treatable by microwave energy include conditions such as excessive hair growth, telangiectasia (spider veins) and pigmented lesions such as cafe-au-lait spots and port wine stains (capillary hemangiomas). Of these conditions, excessive hair growth and spider veins are by far the most common, affecting a large percentage of the adult population.


Unwanted hair growth may be caused by a number of factors including a genetic predisposition in the individual, endrocrinologic diseases such as hypertrichosis and androgen-influenced hirsuitism as well as certain types of malignancies. Individuals suffering from facial hirsuitism can be burdened to an extent that interferes with both social and professional activities and causes a great amount of distress. Consequently, methods and devices for treating unwanted hair and other subcutaneous histological features in a manner that effects a permanent pathological change are very desirable.


Traditional treatments for excessive hair growth such as depilatory solutions, waxing and electrolysis suffer from a number of drawbacks. Depilatory solutions are impermanent, requiring repeated applications that may not be appropriate for sensitive skin. Although wax epilation is a generally safe technique, it too is impermanent and requires repetitive, often painful repeat treatments. In addition, wax epilation has been reported to result in severe folliculitis, followed by permanent keloid scars. While electrolysis satisfactorily removes hair from individuals with static hair growth, this method of targeting individual hairs is both painful and time consuming. In addition, proper electrolysis techniques are demanding, requiring both accurate needle insertion and appropriate intensities and duration. As with wax epilation, if electrolysis techniques are not performed properly, folliculitis and scarring may result.


Recently developed depilatory techniques, utilizing high intensity broad band lights, lasers or photochemical expedients, also suffer from a number of shortcomings. In most of these procedures, the skin is illuminated with light at sufficient intensity and duration to kill the follicles or the skin tissue feeding the hair. The impinging light targets the skin as well as the hair follicles, and can burn the skin, causing discomfort and the potential for scarring. Further, laser and other treatments are not necessarily permanent and may require repeated applications to effect a lasting depilation.


Like hair follicles, spider veins are subcutaneous features. They exist as small capillary flow paths, largely lateral to the skin surface, which have been somewhat engorged by excessive pressure, producing the characteristic venous patterns visible at the skin surface. Apart from the unsightly cosmetic aspect, telangiecstasia can further have more serious medical implications. Therefore, methods and devices for treating spider veins and other subcutaneous histological features in a manner that effects a permanent pathological change to the appropriate tissues are highly desirable.


The classical treatment for spider veins is sclerotherapy, wherein an injection needle is used to infuse at least a part of the vessel with a sclerotic solution that causes blood coagulation, and blockage of the blood path. With time, the spider veins disappear as the blood flow finds other capillary paths. Since there can be a multitude of spider veins to be treated over a substantial area, this procedure is time-consuming, tedious, and often painful. It also is of uncertain effectiveness in any given application and requires a substantial delay before results can be observed.


Another procedure for the treatment of shallow visible veins, which is similar to techniques used in depilation, involves the application of intense light energy for a brief interval. This technique exposes the skin surface and underlying tissue to concentrated wave energy, heating the vein structure to a level at which thermocoagulation occurs. In particular, these energy levels are so high that they cause discomfort to some patients, and they can also be dangerous to those in the vicinity, unless special precautions are taken. In addition, some patients can be singed or burned, even though the exposure lasts only a fraction of a second.


Due to the serious problems that the subcutaneous abnormalities can create in individuals, there is a general need to be able to treat such features in a manner that effects beneficial pathological change without adverse side effects or discomfort. An optimal therapeutic technique should effect a permanent pathological change without requiring repeated applications to reach the desired effect. Moreover, these procedures should be noninvasive, should cover a substantial target area that is not limited to a single hair follicle or spider vein, and should make optimum use of the energy available. Finally, pathological changes should occur only in the targeted feature, and not in intervening or underlying layers.


SUMMARY OF THE INVENTION

The present invention overcomes the deficiencies in previously described methods for treating subcutaneous features by delivering a dosage of microwave energy that is maintained for only a short duration but at an energy level and at a wavelength chosen to penetrate to the depth of a chosen histological feature. The subcutaneous features are destroyed or pathologically altered in a permanent fashion by the hyperthermic effect of the wave energy while the surrounding tissue is left intact.


In accordance with the invention, the effective delivery of microwave energy into the subcutaneous feature can be maximized in terms of both the percentage of energy transmitted into the body and a preferential interaction with the target feature itself. The microwave energy is specifically targeted to the chosen depth and the targeted feature is heated internally to in excess of about 55° C., to a level which thromboses blood vessels and destroys hair follicles. The ability to target a wide area containing a number of features simultaneously enables a single procedure to supplant or reduce the need for repetitive applications.


Methods in accordance with the invention utilize certain realizations and discoveries that have not heretofore been appreciated in relation to wave energy-tissue interactions at a substantial depth (up to 5 mm below the skin surface). The wavelengths that are selected are preferentially absorbed by a targeted feature such as a blood vessel more readily than by skin surface and tissue. Thus, a chosen frequency, such as 14 GHz, penetrates through surface tissue to the chosen depth of the target feature, but not significantly beyond, and the energy heats the target more than adjacent tissue. Dynamic thermal characteristics are also taken into account, because transfer of thermal energy from small target features such as minute heated blood vessels to the surrounding tissue (the “thermal relaxation time”) is much faster than that for larger vessels. The duration of a dosage, typically in the range of 100 milliseconds, is varied to adjust for this size factor.


Immediately prior to, concurrently with, or after the application of penetrating microwave energy, the skin surface is advantageously cooled. This cooling may be effected in a number of ways such as through the delivery, as rapidly expanding gas, of known coolants into a small space between the microwave emitter and the skin surface. The use of coolant enables the surgeon not only to minimize patient discomfort and irritation, but also to adjust energy dosages in terms of intensity and duration, because heat extraction at the surface also affects heating to some depth below the surface. The surgeon can also employ air cooling to minimize irritation while assuring results over a larger subcutaneous area and with fewer applications.


While it is advantageous to cool the skin surface with a separate medium in the target area immediately prior to or during wave energy application, it is also shown that the wave energy emitting device itself can be used to draw thermal energy off the skin surface. Again, the skin is heated minimally, giving the patient little, if any discomfort, and avoiding skin irritation. Comfort may be ensured for sensitive patients by a topical anesthetic, or by a conductive gel or other wave energy complementary substance introduced between the applicator and the skin surface.


The energy applied is generally in excess of about 10 Joules, and the duration is typically in the range of 10 to 1,000 milliseconds, with about 100 milliseconds being most used. The total energy delivered is typically in the range of 10-30 Joules, although the energy delivered as well as frequency may be changed in accordance with the nature of the targeted features, the target volume and depth. In a depilation process, for example, 10 to 20 Joules will usually suffice when a compact applicator is used, while a higher input level, such as 20 to 30 Joules, is used for a telangiectasia treatment.


A system in accordance with the invention for use in such procedures may employ a tunable power generator, such as a tunable power source operable in the microwave range from 2.45 GHz to 18 GHz, and means for gating or otherwise controlling the power output to provide selected pulse durations and energy outputs. The system also can incorporate power measurement sensors for both forward power and reflected power or circuits for measuring impedance directly. Thereby, tuning adjustments can be made to minimize reflection. Power is delivered through a manipulatable line, such as a flexible waveguide or coaxial line, to a small and conveniently positionable applicator head which serves as the microwave launcher or emitter. The applicator head may advantageously include, in the wave launching section, a dielectric insert configured to reduce the applicator cross-section, and to provide a better match to the impedance of the skin surface. Furthermore, the dielectric insert is chosen so as to distribute the microwave energy with more uniform intensity across the entire cross section, thus eliminating hot spots and covering a larger area.


If the dielectric is of a material, such as boron nitride or beryllium, oxide, which is a good thermal conductor, it can be placed in contact with the skin and thermal energy can be conducted away from the skin as microwave energy is transferred. Different clinical needs can be met by making available a number of different dielectric element geometries fitting within an interchangeable mount. The applicator head may further include a pressure limiting mechanism to insure that the head does not compress vessels as the procedure is being carried out.


In addition to the range of capabilities thus afforded, the surgeon can use ultrasound or other inspection techniques to identify the locations of the subcutaneous features for the precise mapping of target sites. Using an indexing or aiming device or element on the applicator head, energy can be applied a minimum number of times at precise locations to encompass a maximum number of targets. Because skin and tissue characteristics vary, pretesting target characteristics and varying the frequency or phase applied can increase efficiency and reduce the possibility of side effects.


In another application in accordance with the invention, the skin target area may be more readily visualized by using a microwave launcher positionable within an end unit in one of two alternate positions. In one position, the target area can be viewed and the launcher indexed for movement into precise proximity to the target area. In yet another example, a rectangular waveguide of standard size and therefore larger cross-section is used, with air cooling of the skin surface. For depilation, a peel-off, attachable label locating a number of delineated contiguous target areas can be placed on the skin. When the applicator has been energized at each target area, the label sheet can be peeled off, removing hair residue with it.


The applications of the process and method are not limited to conditions such as spider veins and unwanted hair, but further encompass pigmented lesions and related abnormalities, as well as other temporary and permanent skin disorders.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the invention may be had by reference to the following specification, taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a combined block diagram and perspective view of a system in accordance with the invention;



FIG. 2 is a side view, partially in section, of a microwave applicator for use in the system of FIG. 1;



FIG. 3 is a fragmentary view of the beam launching end of a microwave applicator in relation to a graphical representation of electric field strength across the applicator;



FIG. 4 is a simplified, perspective view of a section of subcutaneous structure, depicting different layers therein in relation to blood vessels and hair follicles;



FIG. 5 is an enlarged sectional view of a hair structure from root to shaft;



FIG. 6 is a simplified depiction of method steps in accordance with the invention;



FIG. 7 is a graphical depiction of loss factor curves showing the comparative absorption of microwaves in blood and tissue at different frequencies;



FIG. 8 is a graphical depiction of the temperature changes at and below the skin surface during practice of methods in accordance with the invention;



FIG. 9 is a graphical depiction of the variation in thermal relaxation time for different blood vessel diameters;



FIG. 10 is a simplified perspective view of a different microwave applicator used in conjunction with a removable positioning sheet; and



FIG. 11 is a perspective, partially broken away, view of an alternative applicator head including internal cooling and a viewing system.





DETAILED DESCRIPTION OF THE INVENTION

A system in accordance with the invention; referring now to FIG. 1, is depicted in an example intended for use in hair removal, the treatment of spider veins and other skin disorders. This configuration includes a hand-held applicator that is suitable for potential use at any frequency within a suitable range, as well as for measurement of skin or tissue properties. Such a system can be used for treating any of a variety of skin disorders, including hirsuitism, telangiectasia, pigmented lesions and the like. It will be apparent to those skilled in the art that where such degrees of versatility and usage in different possible applications are not required, a simpler and less expensive system will often suffice. In addition, if a manually moveable applicator head is not required, the system can be simplified in this respect as well. In the most rudimentary example, a monofrequency unit with means for adjusting dosage driving a fixed applicator head may be adequate.


Referring to FIG. 1, in a system 10 in accordance with the invention microwave energy of a selected frequency can be generated by any one of a number of conventional devices, such as a variable frequency synthesizer 14 that covers a range from about 2 GHz to about 20 GHz. A number of other conventional microwave generators are tunable in the range of 2.45 GHz to 18 GHz, for example, but here a suitable combination includes the frequency synthesizer 14 and a traveling wave tube system 12 having internal power and a high power output amplifier. Where operating conditions are well-defined and wide tunability is not needed, a conventional low cost source such as a magnetron may be used. The output of the traveling wave tube system 12 is gated open for selected intervals by control pulse circuits 16, which can be set, in this example, for any interval from 10 to 1000 milliseconds. Thus, the selected frequency is delivered as a pulse burst to provide from 50 W to as much as 4 KW output, the power level most often being of the order of a few hundred watts. In transmission to the operative site, the power bursts are directed through a power sensor 18, which diverts both forward and reverse propagated energy samples to a power meter 20. Readings at the power meter 20 enable the surgeon to fine tune power, phase or frequency settings to improve impedance matching and energy efficiency.


Preinspection of the target site is dependent on the nature of the target. Although visual inspection is sometimes alone sufficient for target area selection, as with hirsuitism, target veins at depth below the surface can often better be identified, located, and dimensioned by conventional analytical instruments, such as those using ultrasound imaging. As is described hereafter, the power, duration and frequency applied can also be adjusted in relation to the thermal relaxation characteristics of a target blood vessel, which in turn is dependent on size and location.


A microwave transmission line 24, here including a flexible rectangular waveguide or a flexible coaxial section 26 that may be manually manipulated, supplies the microwave energy through a phase shifter or other kind of tuner 27 to a hand applicator 30 shown here as positioned against a limb 32 exposed within a surgical drape 34. The handpiece 30, shown in greater detail in FIGS. 2 and 3, is essentially a rectangular waveguide device having a stepped or other impedance matching section 36 coupled to the flexible coaxial line 26. The handpiece 30 includes a converging tapered body 38 having an open aperture end 40 serving as the wave launching terminus. Internal to the tapered waveguide section 38 is a dielectric insert 44 here formed of two high dielectric (K=16) tapered strips 46, 47 held in place between low dielectric constant (K=2.5) spacers 48 of a virtually microwave transparent material such as “Rexolite”. This configuration of dielectrics, as seen in FIG. 3, spreads the electric field distribution toward the sidewalls, enlarging the target area that is effectively acted upon by the wave energy and eliminating any hot spot tendency within the target area. In addition, the dielectric insert 44 provides a better impedance match to the skin, reducing reflective losses, which can further be minimized by adjustments at the tuner 27. The dielectric 44 also reduces the cross-sectional area and size of the waveguide, thereby making the handpiece 30 easier to handle. In addition, the internal taper matches the waveguide impedance to the different impedance of the dielectric loaded section, so as to minimize reflection.


The flexible coaxial line 26 allows a surgeon to move the applicator 30 to place its open end manually wherever desired on the body surface 32. At the frequency range of 12-18 GHz, a standard WR 62 waveguide section with 0.622″×0.311″ orthogonal dimensions can be employed at the output end of the impedance matching section 36. The tapered section 38, loaded by the dielectric 44 in this example, reduces the waveguide dimension to 0.250″×0.150″ at the output terminal face 40. The end face 40, however, is set off from the limb or other body surface 32 against which it is juxtaposed by an encompassing and intervening spacer element 54, best seen in FIGS. 2 and 3. The spacer element 54 includes an interior shoulder 56 extending around the periphery of the end 40 of the tapered section 38, defining a standoff volume of a height of about 0.020″ (0.5 mm). A coolant can thus be injected via a side conduit 58 from a pressurized coolant gas source 60 (FIG. 1), via a coupling conduit 62 extending through a solenoid controlled valve 64. The pulse control 16 opens the valve 64 in timed relation to the microwave pulse to be delivered from the traveling wave tube system 12. This timing relation can be controlled, so that the target skin area can be precooled prior to delivery of the microwave pulse, cooled concurrently with the delivery or cooled after the start of the delivery of the microwave pulse. Furthermore, a temperature sensor 68, shown only generally in FIG. 1, may be disposed within the standoff volume, in contact with the skin or otherwise, to sense the lowering of temperature at the target surface. In this example, the coolant is a pressured gas, such as 1,1,1,2 tetrafluoroethane, held under high pressure in liquefied or gaseous phase. When injected by actuation of the valve 64, the gas expands vigorously within the standoff volume, rapidly lowering the temperature because of the expansion effect. Since the boiling point of the tetrafluoroethane is approximately −26° C. at 1 atm, it is extremely effective in extracting thermal energy from the target area, even for the short bursts of the order of a fraction of a second that are involved in the present procedure. The temperature sensor 68 may be a Luxtron fiber optic device for measuring temperature, or it may be a thermistor which is coupled in a circuit that triggers the microwave pulse when the coolant has adequately lowered the temperature at the skin surface or in the standoff volume. Other coolants, including air, can alternatively be used to reduce the skin surface temperature within the standoff volume during the procedure.


Other alternative approaches may be utilized to minimize discomfort and, separately or additionally, provide improved efficiency. A compound that is complementary to the delivery of the microwave energy, in the sense of neither being reflective or absorptive, and therefore not appreciably heated, can be placed on the skin prior to microwave pulse application. For example, a topical anesthetic having short term effectivity may be all that is needed to reduce the discomfort of some patients to an acceptable level. Other patients may require no coolant or topical anesthetic whatsoever. Another alternative is to employ a surface gel or other substance that improves impedance matching between the microwave pulse launching device and the surface tissues.


The microwave delivery system provided by the applicator 30 delivers microwave energy over an advantageously broad field distribution into a subcutaneous surface area as best understood by reference to FIG. 3. The dielectric loading introduced by the spaced apart dielectric elements 46, 47, which diverge toward the output end as the sidewalls converge in the tapered section 38, alters the normal horizontal electric field distribution from its normal half sine wave characteristic so that there is substantial field strength at the two sidewalls and no high central energy peak. A single, appropriately shaped, dielectric element can be used to modify the field distribution to like effect. By thus spreading the energy across the target area, there is both elimination of localized energy concentrations (and therefore localized heating) and a larger effective treatment area. As seen in the graphical portion of FIG. 3, in the solid line, the calculated electric field at the skin surface when the outlet end 40 of the microwave launcher is 0.5 mm off the surface, is more than twice that at the edges. This differential is reduced when the field distribution is modeled at a depth of 0.5 mm below the skin surface. In both instances, there is a degree of dispersion outside the perimeter of the applicator face 40 because of the setoff spacing, but this aids in equalizing the power distribution and poses no radiation danger.


In accordance with the present invention, advantage is taken of the results of an analysis of the interaction of microwaves with biological tissues at different frequencies. The complex permittivity ∈* of any given matter, including biological matter, in a steady state field is conventionally analyzed using the following equation:

∈*=∈0(∈′−j∈″),

in which ∈0 is the dielectric constant of free space and the real component, ∈′, is the dielectric constant, while the imaginary component, ∈″ is the loss factor. As seen in FIG. 7, the loss factor (∈″) of blood, in the range of 2 to 20 GHz, shown by tests to be substantially higher than that of skin tissue. Further analysis has ascertained that by considering both relative and absolute factors, the most advantageous conditions exist at about 14 GHz. From published work, the dielectric constant of skin is known to be about 22 at 10 GHz and to decrease with increasing frequency to a value of 12 at 18 GHz. The loss factor for skin reaches a peak of 18 at 9 GHz and decreases with increasing frequency to a value of 12 at 14 GHz. The loss factor ∈″ for skin is approximately one-half that for blood in the frequency range between 14 GHz and 20 GHz, and above 10 GHz the loss factor for blood increases somewhat more than for skin, as seen in FIG. 7. Therefore, the heat generated per unit volume in blood and to some extent in differentiable cellular structures other than skin, can be expected to be twice that of skin. Consequently, differential heating results when microwave energy penetrates subcutaneous regions. Because these subcutaneous regions are of depths up to 5 mm, they are directly within the range of interest that includes hair follicles and roots, telangiectasia, pigmented lesions, and other histological features that are visible through the epidermis and/or dermis, or actually protrude at the skin.


The structure of skin is somewhat idealistically and simplistically depicted in FIG. 4, in order to show the physical relation and relative proportions (although not to scale) between the epidermis and dermis layers that lie above subcutaneous tissue, and to further represent histological features of interest in the structure. Sweat glands, nerve endings, corpuscular structures and sebaceous glands are not included for clarity. The hair shafts, most deeply embedded at their roots at 4 to 5 mm depth in the dermis, extend outwardly through the dermis and the relatively more robust epidermal layer. Relatively large arteries and veins branch into the arteriole and venule vessels which feed and derive blood, respectively, as the smallest capillaries that normally are invisible from the skin surface, and that form the termini of the blood paths. When these capillaries, either or both arterioles and venules, become engorged for some reason, as in the telangiectasia condition, they form the lateral and visible pattern, known collectively as spider veins, at a depth of 0.1 to 1.0 mm below the surface of the epidermis. Typically of the order of 0.2 mm in diameter, the spider veins can actually sometimes protrude at the surface, and be larger in diameter as well. Reticular or feeder veins can lie as much as 5 mm in depth below the surface, and are substantially larger, of the order of 1.0 to 2.0 mm in diameter, being large enough to be identified by a non-invasive inspection technique, such as imaging with ultrasound. The reticular or feeder veins sometimes create the overpressure condition causing engorgement of the spider veins.



FIG. 5 shows further details, again somewhat idealized, of an enlarged hair shaft, extending outwardly from a root into the growing cellular structure of the follicle and the follicle casing that transforms into the hair shaft body that passes through the epidermis. The hair follicle is nourished by at least one artery that feeds the papillae structure at the root and is encompassed in a crown of associated matrix cells. Attack on the cellular follicle structure or on the papillae or the arterioles or venules to and from the papillae can result in permanent destruction of the hair shaft.


With these considerations in mind, appreciation of the operation of the system of FIG. 1 can more readily be gained. The surgeon can use a suitable frequency for a chosen histological feature within the range of the frequency synthesizer 14. It is assumed here that the frequency chosen is about 14 GHz. The traveling wave tube system 12 is set to generate approximately 100 to 300 watts, the control pulse circuits 16 being set to open the solenoid valve 64 prior to getting a short pulse from the microwave system 12. It has been found that a 100 millisecond pulse is satisfactory for both efficacy and safety, although other durations can be used with wattage adjustments to compensate. The output from the traveling wave tube system 12 is directed through the power sensor 18, the transmission line 24, the flexible section 26, through the tuner 27 and to the applicator 30. If the operator desires, short test pulses of low amplitude can first be sent to obtain readings of the reflected power at the power meter 20, and fine tuning adjustments can be made at the tuner 27, in a conventional manner. In addition, the operator can use ultrasound or another non-invasive diagnostic system to analyze the substructure to identify the position of target features, such as reticular veins and arteries, both as to size and location. The procedure initially to be described, however, pertains to depilation, so that the target area is not only readily visible, but is also substantially uniform in depth and structure, as per FIG. 5.


When the control pulse circuits 16 operate, they first provide a control impulse to open the solenoid valve 64, in this example, and then turn on the traveling wave tube system 12 for the selected interval. Because the valve requires a few milliseconds (e.g., 20 to 35) to operate and a few milliseconds are also needed for the pressurized coolant from the source 60 to pass through the outer conduit 62 and the side conduit 58 in the spacer 54, it is preferred to delay the microwave pulse until cooling has actually begun or is contemporaneously begun. Alternatively, as previously noted, a temperature sensor 68 that detects a temperature drop at the skin surface may be used to either trigger the microwave pulse or to preclude its operation until after the coolant has become effective.


For depilation, pulses in the range of 10 to 20 Joules in terms of total work output have been shown to effect permanent depilation without significant discomfort or significant adverse side effects. Tests were run using the dielectric loaded applicator 30 having a 0.250″×0.150″ output area (5 mm×3 mm, or 15 mm2), and employing a pulse duration of 100 milliseconds in all instances. A substantial number of experiments were run on test rabbits with this applicator, varying only the power applied so as to change the total energy in Joules. The results were examined by a pathologist and the accompanying Tables 1 and 2, appended following the specification, show the results of his examination.


The system of FIG. 1 was also employed in a number of tests on rabbits to determine the changes occurring in veins and arteries under different pathological changes, and side effects on tissues and vessels with a protocol using cooling as well as no cooling to determine if pigmentation has an effect are shown in appended Table 3. These tests showed no significant difference in pigmentation versus non-pigmentation; indicating that coloration, and/or the presence of melanin, is not a significant factor in absorption of microwave energy. A different protocol was followed in amassing results shown in appended Table 4, which represents an analysis by a pathologist blinded to the dosages used. Cooling was not used in this example. These results with test rabbits show that pigmentation is not a significant factor and that at 16 Joules dosage and above, there is effective occlusion of target veins and arteries with minimal changes or only mild induration of tissues. The indication of dermal fibrosis again is not indicative of scar development.


Pathological examination of these animal studies consistently demonstrated destruction of hair follicles over a wide range of microwave energy levels. The destruction extended to the base of the follicle, which is significant to permanent hair removal. The amount of hair destruction within the target area varies in accordance with the total amount of energy, but destruction is substantially complete at 14 Joules and higher. Furthermore, until the energy delivered is in excess of 20 Joules, the appearance of the skin is normal in all cases and the epidermis is histologically intact. Minor indications of dermal fibrosis are not indicative of clinical scar formation. Minor vascular changes, such as intimal fibrosis of small arteries, constitute neither damaging nor permanent conditions. Consequently, a dosage in the range of 14 to 20 Joules is found both to be effective and to be free of deleterious side effects.


The effects of delivery of microwave energy, with surface cooling, are illustrated graphically in FIG. 8, which indicates temperature changes at both the surface of animal skin tissue (0.75 mm thick) and 1.5 mm below the surface, in water, under conditions of delivery of up to 12 Joules total energy level over 100 milliseconds duration, accompanied by cooling using expanded tetrafluorethane gas. As shown, the baseline temperature for the test animal skin is approximately 32° C., and that for the body at a depth of 1.5 mm is approximately 37° C. Applying the microwave energy with cooling, the skin surface temperature rose very slightly, but was essentially unchanged. Beneath the skin surface, however, the temperature rise at 1.5 mm depth was at a substantially higher rate, reaching approximately 60° C. at 100 milliseconds. Higher temperatures would of course be reached with the application of higher energy levels. It is posited that even such a temperature is sufficient to cause cellular degradation of the hair follicles near the root, and it may well also thermocoagulate blood in the feeder artery, in the papillae at the hair root, or in the cell matrix surrounding the papillae. Although the hair follicles are not conductive, they may be particularly susceptible to the impinging microwave energy because they are thin dielectric elements which can cause energy concentration and therefore greater heating. Whether one or more effects are observable, permanent destruction has been shown by pathological examination, as in the annexed tables.


The microwave energy does not significantly penetrate beyond the depth of the targeted histological features because of attenuation, the limitation on total energy delivered and the lower loss factor in tissue.


Where the histological defects are benign vascular lesions, as with the telangiectasia condition, different tests and operating conditions may be employed, as shown in the steps of FIG. 6, to which reference is now made. While spider veins can cover a substantial area, and visual targeting may be sufficient, it is often desirable to analyze the target area in greater detail. Thus, ultrasound examination may be utilized to identify and estimate the size of reticular veins feeding a substantial area of spider veins, as an optional first step 80, which can precede marking of the target surface 82 in any appropriate way. Again, the dielectric constant, skin impedance or other characteristics may be tested in a preliminary step 84, prior to choosing operative frequency in step 86. Fine tuning, phase adjustment or another impedance matching option 88 may be employed to reduce reflective losses and increase efficiency. Given the size and location of the target vascular feature, thereafter, the power level and pulse duration may be selected in a step 90.


The pulse duration is a significant parameter in relation to the vessel diameter, since the smaller the vessel diameter, the shorter is the thermal relaxation time. Even though the loss factor of blood is higher than that of the tissue, dissipation of heat to surrounding tissue is much faster with a small blood vessel and consequently shorter term heating is needed. As seen in FIG. 9, thermal relaxation time increases monotonically with vessel diameter, and thus a longer duration pulse is needed, perhaps at the same or a greater power, if the vessel diameter is of a larger size. Given the power level and pulse duration, the operator can select one of the cooling options, which also includes no cooling whatsoever, in step 92. Typical anesthetics or other anesthetics may be employed at the same time, as shown by optional step 94.


Consequently, when the microwave pulse is delivered, the subcutaneous target is heated to the range of 55° C. to 70° C., sufficient to thrombose the vascular structure and terminate flow permanently. The specific nature contributing factors to disappearance of the vessels with time may be one or more factors, including thermocoagulation of the blood itself, heating of the blood to a level which causes thrombosis of the vessel or some other effect. The net result, however, is that a fibrous structure forms in the vessel which clogs and terminates flow, so that the resultant fibrous structure is reabsorbed with time, as new capillary flow paths are found. In any event, heating in the 55° C. to 70° C. is sufficient to effect (step 96) the permanent pathological change that is desired (step 98).


An alternative applicator that covers a larger area and is employed with a peelable indicia label as shown in FIG. 10. The standard WR 62 waveguide for transmission of microwave energy at 14 GHz has, as previously mentioned, interior dimensions of 0.622″×0.311″. An applicator 100 employing such a waveguide section 101 is used directly, without internal dielectric loading, to cover a substantially larger target area while employing air cooling. The waveguide section 101, coupled via a flexible waveguide and an impedance matching transition (not shown), if necessary, to a microwave feed system 102 has side wall ports 104 coupled to an external coolant source 105 which may deliver coolant through a control device 106 triggered, in relation to the microwave pulse, as previously described. Under some circumstances, when air is used as the coolant, it may simply be delivered continuously into the waveguide, the end of which can be blocked off by a microwave transmission window so that only the launching end and the skin surface are cooled. For use in a depilation procedure, the skin surface of a patient to be treated is covered with a sheet 108 having numbered guide indicia 109 for marking successive applicator 100 positions. These positions overlap because of the fact that the energy concentration is in the central region of the waveguide 101, at the normal maximum amplitude of the electric field in the TE10 mode. The peel off label sheet 108 is covered on its skin-adhering side by a separable adhesive. Consequently, when the applicator 100 is moved between successive overlapping index positions marked 1,1,2,2 etc. at the side and corner of each position, the internal areas that are pathologically affected within each location are essentially contiguous, until the entire applicator 100 has been moved through all positions on the sheet 108, with dosages applied to all of the areas. Hair follicles having been destroyed in those areas, the procedure is terminated and the sheet 108 is peeled off, with the destroyed hair follicles and shafts adhering to it.


With the arrangement of FIG. 10, a longer microwave pulse duration or more wattage is needed for increasing the number of Joules because of the broader beam distribution, which means that, heating is at a slower rate (e.g., in the approximate proportion of 0.7° C. rise in skin temperature per joule for the large applicator versus 2.4° C. per joule for the dielectric filled smaller applicator). The skin temperature rise was reduced by a factor of 2 when using air at a temperature of between 0° C. and −5° C.


It should be noted, furthermore, that a standard open rectangular waveguide can be loaded with dielectric elements in a manner which enables size to be reduced without restricting coolant flow.


Another alternative that may be used, but is not shown in the figures, relates to a modification of the spacer element that is employed in the example of FIGS. 2 and 3. One can configure the spacer element with two alternative but adjacent positions for the applicator open (emitter) end, and arrange the applicator so that the emitter end can be shifted between the two positions. In a first or reserve position of the applicator, the target surface can be viewed through the spacer element, and positional adjustments can be made. This part of the spacer element is then used as a frame for visualizing the operative target on the skin surface when the applicator is in the reserve position. As soon as the target area is properly framed, the applicator is simply shifted from the reserve position to the operative position, in proper alignment with the target area, and the procedure can begin.


A different approach to a useful applicator is shown in FIG. 11, to which reference is now made. This also illustrates a different means for cooling the skin surface, as well as for viewing the target area. In this example, the applicator 120 comprises an open-ended wave propagation segment 122 fed via a transition section 124 from a coaxial line 126. The unit may be physically manipulated by an attached handle 128. The open end of the waveguide 122 is filled by a dielectric element 130 which is not only of suitable electrical dielectric properties but a good heat conductor as well, such as boron nitride or beryllium oxide. The dielectric insert 130 extends beyond the open end of the waveguide, into contact with a skin surface that is to be exposed to microwave radiation. The interior end of the dielectric 130 is urged in the direction toward the skin surface by a non-conductive, non-absorptive microwave leaf spring 134 of selected force and compliance. Thus, the dielectric insert 130 presses on the skin surface with a yieldable force, selected to assure that contact is maintained but that any protruding veins or arteries are not closed simply by the force of the applicator 120. This applicator 120 and dielectric insert 130 are externally cooled by an encompassing sleeve 136 through which coolant is passed via internal conduits 137, 138 that communicate with an external supply (not shown) via external conduits 141, 142. Consequently, heat is extracted from the surface of the skin via the contacting dielectric 130 itself.


In addition, a target mark placed on the skin surface by the surgeon may be viewed by a system including a fiber optic line 145 that extends through the dielectric 130 and leads via a flexible fiber optic line 147 to an image viewing system 149.


In use, this applicator 120 of FIG. 11 covers a substantial chosen area, with the viewing and cooling features that simplify placement and minimize discomfort. The movable dielectric insert 130 can be a replaceable element, with different shapes of dielectrics being submitted where different conditions apply. It will be appreciated that other expedients may be utilized for shaping the microwave beam, including lens and diffuser systems.


Although a number of forms and modifications in accordance with the invention have been described, it will be appreciated that the invention is not limited thereto, but encompasses all forms and expedients in accordance with the appended claims.









TABLE 1







ANIMAL STUDY PROTOCOL NP970305


Applicator Tip: 0.250″ × 0.150″; Cooling











Dose
Description
Histologic Description












Rabbit
(Joules)
of Skin
Tissue
Hair Follicles
Vasculature















B9
13
skin intact;
some
few hair follicles
vessels patent




decreased
fibrosis;




density of
mild edema




hair


B10
15.2
skin intact;
dermal
relative absence
vessels patent




decreased
fibrosis
of hair follicles




density of




hair


B11
19.6
skin intact;
normal
paucity of hair
vessels patent




decreased

follicles




density of




hair
















TABLE 2







ANIMAL STUDY PROTOCOL NP970505


Applicator Tip: 0.250″ × 0.150″; Cooling











Dose
Description
Histologic Description












Rabbit
(Joules)
of Skin
Tissue
Hair Follicles
Vasculature















B1/R
22.4
skin intact;
tissue
absent,
veins patent;




hairless
viable,
squamous
arteries





dermal
metaplasia
patent;





fibrosis

increased







intimal







fibroblasts


B1/L
22.4
skin intact;
tissue
hair follicle
veins patent,




hairless
viable,
destruction
arteries





dermal

patent,





fibrosis

intimal







fibrosis


B2/R
20.0
skin shiny;
tissue
hair follicle
possible




hairless
viable,
destruction
fibrous cord





dermal

in small vein;





fibrosis

arteries not







seen in these







sections


B2/L
20.0
skin intact,
tissue
hair follicle
veins patent;




shiny and
viable,
destruction
arteries




hairless
dermal

patent,





fibrosis

increased







intimal







fibroblasts,







mild edema


B3/R
24.1
skin shiny
tissue
hair follicle
veins patent;




and
viable,
destruction;
arteries not




hairless,
dermal
squamous
seen in these




fine
fibrosis,
metaplasia
sections




granularity
small area





of necrosis





on opposite





side of ear





(no cooling)


B3/L
23.6
three
subacute
absence of hair
vessels not




indurated
granulation
follicles
seen in these




areas,
tissue

sections




crusting of




epidermis,




hairless




single




punched




out area


B4/R
23.7
skin shiny
tissue
absence of hair
fibrous cord




and
viable,
follicles
in small vein;




hairless;
dermal

arteries not




fine
fibrosis

seen in these




granularity


sections


B4/L
23.6
four
tissue
hair follicle
congestion of




indurated
viable,
destruction
small caliber




areas
dermal

veins; intimal





fibrosis

fibrosis,







narrowing of







small arteries


B5/R
20.7
skin intact;
tissue
absence of hair
vein possibly




hairless
viable,
follicles,
narrowed;





dermal
squamous
arteries





fibrosis
metaplasia
patent,







intimal







fibrosis


B5/L
21.4
skin intact,
tissue
absence of hair
veins patent;




hairless,
viable,
follicles
arteries




tiny hole
dermal

patent,





fibrosis

intimal







fibrosis


B6/R
22.0
skin intact,
tissue
absence of hair
veins patent;




hairless,
viable,
follicles,
narrowed




fine
dermal
squamous
small artery




granularity
fibrosis
metaplasia
with intimal







fibrosis


B6/L
22.0
punched
dermal
hair follicle
arteries and




out area
fibrosis
destruction,
veins patent






squamous






metaplasia


B7/R
19.2
skin intact,
minimally
focal area of hair
veins patent;




hairless
affected
follicle
partial






destruction
thrombois of







small artery


B7/L
20.5
skin intact,
dermal
focal paucity of
veins patent;




hairless
fibrosis
hair follicles,
arteries






squamous
patent,






metaplasia
minimal







intimal







fibrosis


B8/R
19.0
skin intact,
focal areas
focal destruction
veins patent;




hairless
of dermal
of hair follicles
occlusion of





fibrosis

small artery







with fibrous







cord


B8/L
21.4
skin intact,
dermal
destruction of
veins patent;




hairless
fibrosis,
hair follicles
arteries not





small zone

seen in these





of nodular

sections





fibrosis


B9/R
23.0
skin intact,
small zone
relative absence
veins patent;




hairless
of dermal
of hair follicles,
arteries patent





fibrosis
squamous






metaplasia


B9/L
23.0
skin intact,
dermal
destruction of
veins patent;




hairless
fibrosis
hair follicles,
arteries patent






squamous
with mild






metaplasia
intimal







fibrosis


B10/R
24.6
skin intact,
mild
destruction of
veins patent;




hairless
fibrosis
hair follicles
arteries patent







with mild







intimal







fibrosis


B10/L
24.7
skin intact,
dermal
destruction of
veins patent;




hairless
fibrosis
hair follicles
partial







thrombosis of







small artery


B11/R
22.4
skin intact,
minimal
minimal changes
veins patent;




hairless
changes

arteries patent


B11/L
21.5
skin intact,
dermal
destruction of
veins patent;




hairless
fibrosis
hair follicles,
arteries patent






squamous






metaplasia


B12/R
20.6
skin intact,
dermal
destruction of
veins patent;




hairless
fibrosis
hair follicles,
arteries patent






squamous






metaplasia,






remnants of






follicles seen


B12/L
19.6
skin intact,
zone of
destruction of
veins patent;




hairless
dermal
hair follicles
arteries patent





fibrosis
















TABLE 3







ANIMAL STUDY PROTOCOL NP970603


Applicator Tip: 0.250″ × 0.150″













Dose




Rabbit
Pigmented
(Joules)
Cooling
Appearance of Skin














A1
No
5.3
No
skin intact - back and ear





Yes
skin intact - back and ear


A2
Yes
5.6
No
skin intact - back and ear





Yes
skin intact - back; tiny dot






left ear


B1
No
9.4
No
back - minimal pallor 2/3






sites; skin on ear intact





Yes
skin intact - back and ears


B2
Yes
9.3
No
skin on back obscured by hair






growth; skin on ear intact





Yes
skin on back obscured by hair






growth; skin on ear intact


C1
No
14.3
No
back - slight abrasion 2/3






sites, small scab 3; skin on






ear intact





Yes
skin intact - back and ear


C2
Yes
14.8
No
skin on back obscured by hair






growth; skin on ear intact





Yes
skin on back obscured by hair






growth; skin on ear intact


D1
No
18.4
No
back - scabs all 3 sites;






ear - tiny scab





Yes
back - slight pallor 2/3






sites, minimal change at site






3; ear - minimal change


D2
Yes
18.6
No
back - small, raised areas at






all 3 sites; ear - small






raised area





Yes
skin intact - back and ear
















TABLE 4







ANIMAL STUDY PROTOCOL NP970208


No Cooling















Histology-
Histology-
Histology-
Clinical-
Clinical-


Rabbit
Joules
Tissue
Vein
Artery
Tissue
Vessels





D1/R
10.4
Viable,
Patent
Narrowed
Intact
Vein sl.




dermal



Purple




fibrosis






D1/L
10.4
Viable,
Partial
>occlusion
Intact
Narrowing




dermal
occlusion
than vein






edema






D2/R
10.4
Viable,
Sl. altered,
Sl. altered,
Small area
Patent, sl.




dermal
but patent
but patent
of
darkening




fibrosis


blanching



D2/L
10.4
Viable,
Patent
Tiny, vessel
Small area
Patent, sl.




dermal

collapsed
of
darkening




fibrosis


blanching



C1/R
12.0
Viable,
Micro-
Patent
Sl.
Vein segmentally




dermal
thrombosis

blanching
narrowed




fibrosis






C1/L
12.0
Viable,
Ghosted,
Narrowed
Sl.
Vein




dermal
without
and focally
blanching
narrowed




fibrosis
endothelium,
thrombosed

segmentally





but








patent.








Venular








congestion





C2/R
12.0
Viable,
Organization
Not
Mild
Vein




dermal
with
described
blanching
narrowed




fibrosis
evidence of


segmentally





recanalization





C2/L
11.6
Viable,
Thrombosis
Not
Mild
Vein




dermal
with
described
blanching
narrowed




fibrosis
organization


segmentally


B1/R
14.0
Viable,
Patent; not
Not well
Mild
Vessel seen




dermal
well seen in
visualized
blanching





fibrosis
areas of








fibrosis





B1/L
13.7
Viable,
Ghosted,
Patent
Mild
Vessel seen




dermal
necrotic,

blanching





fibrosis
contains








blood





B2/R
14.0
Viable,
Patent
Lumina
Mild
Vessel seen




dermal

narrowed by
blanching





fibrosis

intimal








hyperplasia




B2/L
13.6
Viable,
Occlusion
Not
Minimal
Vein




dermal
focally
described
changes
narrowed




fibrosis



segmentally


A7/R
16.0
Viable,
Focally
Focally
Minimal
Mild




dermal
occluded
occluded
changes
blushing




fibrosis



around








vein


A7/L
16.3
Viable,
Partial
>occlusion
Mild
Blushing




dermal
occlusion,
than vein
induration
around




fibrosis
congestion


vein





of venules





A6/R
15.5
Viable,
Patent
Focal
Minimal
Veins seen




dermal

occlusion
changes





fibrosis






A6/L
15.5
Viable,
Focally
Focally
Mild
Vein segmentally




dermal
absent
absent
blanching
narrowed




fibrosis






A5/R
17.4
Viable,
Thrombosis
Thrombosis
Mild
Vein




dermal
with
with
blanching
narrowed




fibrosis
organization
organization




A5/L
17.5
Viable,
Occlusion
Not
Mild to
Vein




scale crust
(organzation)
described
moderate
narrowed




present,


induration





dermal








fibrosis








Claims
  • 1. A handheld applicator configured to direct therapeutic microwave energy toward an epidermal surface, comprising: a housing having a distal end adapted to be placed on a skin surface;a rectangular microwave waveguide disposed in the housing and extending towards the distal end of the housing, the microwave waveguide having an open aperture end configured to deliver microwave energy, the open aperture end being positioned within the housing so as to be set off from the skin surface when the distal end of the housing is placed on the skin surface;a dielectric element disposed in the housing and extending beyond the open aperture end of the microwave waveguide, the dielectric element being configured to spread an electric field distribution of delivered microwave energy exiting the microwave waveguide;a coolant source disposed in the housing and configured to dispense a coolant to cool the skin surface; anda temperature sensor disposed on or in the housing and configured to sense a temperature change at the skin surface.
  • 2. The applicator of claim 1 wherein at least a portion of the dielectric element is arranged to contact the skin surface.
  • 3. The applicator of claim 1 wherein the dielectric element is adapted to improve an impedance match between the applicator and the skin surface.
  • 4. The applicator of claim 1 wherein the microwave waveguide comprises a WR 62 waveguide.
  • 5. A handheld applicator configured to direct therapeutic microwave energy toward an epidermal surface, comprising: a housing having a distal end adapted to be placed on a skin surface;a rectangular microwave waveguide disposed in the housing and extending towards the distal end of the housing, the microwave waveguide having an open aperture end configured to deliver microwave energy, the open aperture end being positioned within the housing so as to be set off from the skin surface when the distal end of the housing is placed on the skin surface;a dielectric element disposed in the housing and configured to spread an electric field distribution of delivered microwave energy exiting the microwave waveguide, wherein at least a portion of the dielectric element is arranged to contact the skin surface;a coolant source disposed in the housing and configured to dispense a coolant to cool the skin surface; anda temperature sensor disposed on or in the housing and configured to sense a temperature change at the skin surface.
  • 6. The applicator of claim 5 wherein the dielectric element extends beyond the open aperture end of the microwave waveguide.
  • 7. The applicator of claim 5 wherein the dielectric element is adapted to improve an impedance match between the applicator and the skin surface.
  • 8. The applicator of claim 5 wherein the microwave waveguide comprises a WR 62 waveguide.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation of pending U.S. application Ser. No. 13/280,032, filed Oct. 24, 2011; which is a continuation of U.S. application Ser. No. 09/637,923, filed Aug. 14, 2000, now U.S. Pat. No. 8,073,550; which is a divisional of U.S. application Ser. No. 08/904,175, filed Jul. 31, 1997, now U.S. Pat. No. 6,104,959; all of which are incorporated herein by reference.

US Referenced Citations (456)
Number Name Date Kind
2407690 Southworth Sep 1946 A
3307553 Liebner Mar 1967 A
3527227 Fritz Sep 1970 A
3693623 Harte et al. Sep 1972 A
3845267 Fitzmayer Oct 1974 A
4069827 Dominy Jan 1978 A
4095602 Leveen Jun 1978 A
4108147 Kantor Aug 1978 A
4140130 Storm, III Feb 1979 A
4174713 Mehl Nov 1979 A
4190053 Sterzer Feb 1980 A
4190056 Tapper et al. Feb 1980 A
4197860 Sterzer Apr 1980 A
4228809 Paglione Oct 1980 A
4375220 Matvias Mar 1983 A
4378806 Henley-Cohn Apr 1983 A
4388924 Weissman et al. Jun 1983 A
4397313 Vaguine Aug 1983 A
4397314 Vaguine Aug 1983 A
4446874 Vaguine May 1984 A
4528991 Dittmar et al. Jul 1985 A
4589424 Vaguine May 1986 A
4597379 Kihn et al. Jul 1986 A
4614191 Perler Sep 1986 A
4617926 Sutton Oct 1986 A
4641649 Walinsky et al. Feb 1987 A
4669475 Turner Jun 1987 A
4672980 Turner Jun 1987 A
4690156 Kikuchi et al. Sep 1987 A
4702262 Andersen et al. Oct 1987 A
4744372 Kikuchi et al. May 1988 A
4747416 Kikuchi et al. May 1988 A
4800899 Elliott Jan 1989 A
4825880 Stauffer et al. May 1989 A
4841989 Kikuchi et al. Jun 1989 A
4841990 Kikuchi et al. Jun 1989 A
4860752 Turner Aug 1989 A
4881543 Trembly et al. Nov 1989 A
4891483 Kikuchi et al. Jan 1990 A
4945912 Langberg Aug 1990 A
4974587 Turner et al. Dec 1990 A
5059192 Zaias Oct 1991 A
5097846 Larsen Mar 1992 A
5101836 Lee Apr 1992 A
5107832 Guibert et al. Apr 1992 A
5143063 Fellner Sep 1992 A
5186181 Franconi et al. Feb 1993 A
5190518 Takasu Mar 1993 A
5198776 Carr Mar 1993 A
5226907 Tankovich Jul 1993 A
5234004 Hascoet et al. Aug 1993 A
5246438 Langberg Sep 1993 A
5272301 Finger et al. Dec 1993 A
5295955 Rosen et al. Mar 1994 A
5301692 Knowlton Apr 1994 A
5305748 Wilk Apr 1994 A
5315994 Guibert et al. May 1994 A
5316000 Chapelon et al. May 1994 A
5364336 Carr Nov 1994 A
5364394 Mehl Nov 1994 A
5383917 Desai et al. Jan 1995 A
5385544 Edwards et al. Jan 1995 A
5405346 Grundy et al. Apr 1995 A
5407440 Zinreich et al. Apr 1995 A
5409484 Erlich et al. Apr 1995 A
5421819 Edwards et al. Jun 1995 A
5425728 Tankovich Jun 1995 A
5433740 Yamaguchi Jul 1995 A
5441532 Fenn Aug 1995 A
5443487 Guibert et al. Aug 1995 A
5462521 Brucker et al. Oct 1995 A
5474071 Chapelon et al. Dec 1995 A
5503150 Evans Apr 1996 A
5507741 L'Esperance, Jr. Apr 1996 A
5507790 Weiss Apr 1996 A
5509929 Hascoet et al. Apr 1996 A
5522814 Bernaz Jun 1996 A
5531662 Carr Jul 1996 A
5540681 Strul et al. Jul 1996 A
5549639 Ross Aug 1996 A
5553612 Lundback Sep 1996 A
5569237 Beckenstein Oct 1996 A
5571154 Ren Nov 1996 A
5575789 Bell et al. Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5586981 Hu Dec 1996 A
5595568 Anderson et al. Jan 1997 A
5660836 Knowlton Aug 1997 A
5662110 Carr Sep 1997 A
5669916 Anderson Sep 1997 A
5683381 Carr et al. Nov 1997 A
5683382 Lenihan et al. Nov 1997 A
5690614 Carr et al. Nov 1997 A
5707403 Grove et al. Jan 1998 A
5724966 Lundback Mar 1998 A
5733269 Fuisz Mar 1998 A
5735844 Anderson et al. Apr 1998 A
5742392 Anderson et al. Apr 1998 A
5743899 Zinreich Apr 1998 A
5755753 Knowlton May 1998 A
5769879 Richards et al. Jun 1998 A
5776127 Anderson et al. Jul 1998 A
5782897 Carr Jul 1998 A
5810801 Anderson et al. Sep 1998 A
5810804 Gough et al. Sep 1998 A
5814996 Winter Sep 1998 A
5824023 Anderson Oct 1998 A
5830208 Muller Nov 1998 A
5836999 Eckhouse et al. Nov 1998 A
5868732 Waldman et al. Feb 1999 A
5879346 Waldman et al. Mar 1999 A
5891094 Masterson et al. Apr 1999 A
5897549 Tankovich Apr 1999 A
5904709 Arndt et al. May 1999 A
5919218 Carr Jul 1999 A
5928797 Vineberg Jul 1999 A
5931860 Reid et al. Aug 1999 A
5949845 Sterzer Sep 1999 A
5971982 Betsill et al. Oct 1999 A
5979454 Anvari et al. Nov 1999 A
5983124 Carr Nov 1999 A
5983900 Clement et al. Nov 1999 A
6015404 Altshuler et al. Jan 2000 A
6024095 Stanley, III Feb 2000 A
6026331 Feldberg et al. Feb 2000 A
6026816 McMillan et al. Feb 2000 A
6030378 Stewart Feb 2000 A
6036632 Whitmore, III et al. Mar 2000 A
6047215 McClure et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
6077294 Cho et al. Jun 2000 A
6080146 Altshuler et al. Jun 2000 A
6093186 Goble Jul 2000 A
6097985 Kasevich et al. Aug 2000 A
6104959 Spertell Aug 2000 A
6106514 O'Donnell, Jr. Aug 2000 A
6113559 Klopotek Sep 2000 A
6113593 Tu et al. Sep 2000 A
6126636 Naka Oct 2000 A
6139569 Ingle et al. Oct 2000 A
6149644 Xie Nov 2000 A
6162212 Kreindel et al. Dec 2000 A
6162218 Elbrecht et al. Dec 2000 A
6171301 Nelson et al. Jan 2001 B1
6175768 Arndt et al. Jan 2001 B1
6181970 Kasevich Jan 2001 B1
6183773 Anderson Feb 2001 B1
6187001 Azar et al. Feb 2001 B1
6197020 O'Donnell, Jr. Mar 2001 B1
6208903 Richards et al. Mar 2001 B1
6210367 Carr Apr 2001 B1
6214034 Azar Apr 2001 B1
6223076 Tapper Apr 2001 B1
6231569 Bek et al. May 2001 B1
6235016 Stewart May 2001 B1
6241753 Knowlton Jun 2001 B1
6245062 Berube et al. Jun 2001 B1
6264652 Eggers et al. Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6277104 Lasko et al. Aug 2001 B1
6277111 Clement et al. Aug 2001 B1
6277116 Utely et al. Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283956 McDaniel Sep 2001 B1
6283987 Laird et al. Sep 2001 B1
6287302 Berube Sep 2001 B1
6290699 Hall et al. Sep 2001 B1
6293941 Strul et al. Sep 2001 B1
6306128 Waldman et al. Oct 2001 B1
6306130 Anderson et al. Oct 2001 B1
6319211 Ito et al. Nov 2001 B1
6322584 Ingle et al. Nov 2001 B2
6325769 Klopotek Dec 2001 B1
6330479 Stauffer Dec 2001 B1
6334074 Spertell Dec 2001 B1
6347251 Deng Feb 2002 B1
6350263 Wetzig et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6361531 Hissong Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6383176 Connors et al. May 2002 B1
6387103 Shadduck May 2002 B2
6402739 Neev Jun 2002 B1
6409720 Hissong et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6413253 Koop et al. Jul 2002 B1
6413254 Hissong et al. Jul 2002 B1
6413255 Stern Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6428532 Doukas et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6436094 Reuter Aug 2002 B1
6436127 Anderson et al. Aug 2002 B1
6443914 Costantino Sep 2002 B1
6443946 Clement et al. Sep 2002 B2
6451013 Bays et al. Sep 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6457476 Elmer et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6468235 Ito et al. Oct 2002 B2
6470216 Knowlton Oct 2002 B1
6471662 Jaggy et al. Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6475179 Wang et al. Nov 2002 B1
6475211 Chess et al. Nov 2002 B2
6480746 Ingle et al. Nov 2002 B1
6485484 Connors et al. Nov 2002 B1
6485703 Cotéet al. Nov 2002 B1
6500141 Irion et al. Dec 2002 B1
6508813 Altshuler Jan 2003 B1
6514250 Jahns et al. Feb 2003 B1
6517532 Altshuler et al. Feb 2003 B1
6529778 Prutchi Mar 2003 B2
6558382 Jahns et al. May 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6577903 Cronin et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
6585733 Wellman Jul 2003 B2
6595934 Hissong et al. Jul 2003 B1
6600951 Anderson Jul 2003 B1
6605080 Altshuler et al. Aug 2003 B1
6607498 Eshel Aug 2003 B2
6626854 Friedman et al. Sep 2003 B2
6628990 Habib et al. Sep 2003 B1
6629974 Penny et al. Oct 2003 B2
6645162 Friedman et al. Nov 2003 B2
6648904 Altshuler et al. Nov 2003 B2
6652518 Wellman et al. Nov 2003 B2
6653618 Zenzie Nov 2003 B2
6662054 Kreindel et al. Dec 2003 B2
6663659 McDaniel Dec 2003 B2
6676654 Balle-Petersen et al. Jan 2004 B1
6676655 McDaniel Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6692450 Coleman Feb 2004 B1
6723090 Altshuler et al. Apr 2004 B2
6725095 Fenn et al. Apr 2004 B2
6736810 Hoey et al. May 2004 B2
6743222 Durkin et al. Jun 2004 B2
6763836 Tasto et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6807446 Fenn et al. Oct 2004 B2
6808532 Andersen et al. Oct 2004 B2
6821274 McHale et al. Nov 2004 B2
6823216 Salomir et al. Nov 2004 B1
6824542 Jay Nov 2004 B2
6856839 Litovitz Feb 2005 B2
6861954 Levin Mar 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6878147 Prakash et al. Apr 2005 B2
6881212 Clement et al. Apr 2005 B1
6887239 Elstrom et al. May 2005 B2
6887260 McDaniel May 2005 B1
6888319 Inochkin et al. May 2005 B2
6897238 Anderson May 2005 B2
6916316 Jay Jul 2005 B2
6918908 Bonner et al. Jul 2005 B2
6939344 Kreindel Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6955672 Cense et al. Oct 2005 B2
6974415 Cerwin et al. Dec 2005 B2
6976984 Cense et al. Dec 2005 B2
6997923 Anderson et al. Feb 2006 B2
7006874 Knowlton et al. Feb 2006 B2
7022121 Stern et al. Apr 2006 B2
7029469 Vasily Apr 2006 B2
7033352 Gauthier et al. Apr 2006 B1
7044959 Anderson et al. May 2006 B2
7056318 Black Jun 2006 B2
7066929 Azar et al. Jun 2006 B1
7074218 Washington et al. Jul 2006 B2
7081111 Svaasand et al. Jul 2006 B2
7089054 Palti Aug 2006 B2
7107997 Moses et al. Sep 2006 B1
7115123 Knowlton et al. Oct 2006 B2
7118590 Cronin Oct 2006 B1
7122029 Koop et al. Oct 2006 B2
7128739 Prakash et al. Oct 2006 B2
7135033 Altshuler et al. Nov 2006 B2
7136699 Palti Nov 2006 B2
7141049 Stern et al. Nov 2006 B2
7151964 Desai et al. Dec 2006 B2
7153256 Riehl et al. Dec 2006 B2
7153285 Lauman et al. Dec 2006 B2
7163536 Godara Jan 2007 B2
7175950 Anderson et al. Feb 2007 B2
7189230 Knowlton Mar 2007 B2
7192429 Trembly Mar 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7217265 Hennings et al. May 2007 B2
7220254 Altshuler et al. May 2007 B2
7220778 Anderson et al. May 2007 B2
7229436 Stern et al. Jun 2007 B2
7234739 Saitoh et al. Jun 2007 B2
7238182 Swoyer et al. Jul 2007 B2
7241291 Kreindel et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7250047 Anderson et al. Jul 2007 B2
7252628 Van Hal et al. Aug 2007 B2
7258674 Cribbs et al. Aug 2007 B2
7267675 Stern et al. Sep 2007 B2
7276058 Altshuler et al. Oct 2007 B2
7290326 Dutton Nov 2007 B2
7309335 Altshuler et al. Dec 2007 B2
7311674 Gingrich et al. Dec 2007 B2
7329273 Altshuler et al. Feb 2008 B2
7329274 Altshuler et al. Feb 2008 B2
7331951 Eshel et al. Feb 2008 B2
7344587 Khan et al. Mar 2008 B2
7347855 Eshel et al. Mar 2008 B2
7351252 Altshuler et al. Apr 2008 B2
7354448 Altshuler et al. Apr 2008 B2
7367341 Anderson et al. May 2008 B2
7377917 Trembly May 2008 B2
7399297 Ikadai et al. Jul 2008 B2
7422586 Morris et al. Sep 2008 B2
7422598 Altshuler et al. Sep 2008 B2
7431718 Ikadai Oct 2008 B2
7470270 Azar et al. Dec 2008 B2
7479101 Hunter et al. Jan 2009 B2
7481807 Knudsen et al. Jan 2009 B2
7491171 Barthe et al. Feb 2009 B2
7524328 Connors et al. Apr 2009 B2
7530356 Slayton et al. May 2009 B2
7530958 Slayton et al. May 2009 B2
7540869 Altshuler et al. Jun 2009 B2
7544204 Krespi et al. Jun 2009 B2
7565207 Turner et al. Jul 2009 B2
7568619 Todd et al. Aug 2009 B2
7588547 Deem et al. Sep 2009 B2
7599745 Palti Oct 2009 B2
7601128 Deem et al. Oct 2009 B2
7613523 Eggers et al. Nov 2009 B2
7630774 Karni et al. Dec 2009 B2
7643883 Kreindel Jan 2010 B2
7682321 Naldoni Mar 2010 B2
7713234 Karanzas May 2010 B2
7722535 Randlov et al. May 2010 B2
7722600 Connors et al. May 2010 B2
7722656 Segal May 2010 B1
7736360 Mody et al. Jun 2010 B2
7740600 Slatkine et al. Jun 2010 B2
7740651 Barak et al. Jun 2010 B2
7749260 Da Silva et al. Jul 2010 B2
7758524 Barthe et al. Jul 2010 B2
7758537 Brunell et al. Jul 2010 B1
7762964 Slatkine Jul 2010 B2
7763060 Baumann Jul 2010 B2
7771421 Stewart et al. Aug 2010 B2
7799019 Turovskiy et al. Sep 2010 B2
7805201 Palti Sep 2010 B2
7815570 Eshel et al. Oct 2010 B2
7815633 Zanelli et al. Oct 2010 B2
7824394 Manstein Nov 2010 B2
7828734 Azhari et al. Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7842029 Anderson et al. Nov 2010 B2
7854754 Ting et al. Dec 2010 B2
7857773 Desilets et al. Dec 2010 B2
7857775 Rosenberg et al. Dec 2010 B2
7862564 Goble Jan 2011 B2
7864129 Konishi Jan 2011 B2
7891362 Domankevitz et al. Feb 2011 B2
7905844 Desilets et al. Mar 2011 B2
8073550 Spertell Dec 2011 B1
8367959 Spertell Feb 2013 B2
8394092 Brannan Mar 2013 B2
8401668 Deem et al. Mar 2013 B2
8406894 Johnson et al. Mar 2013 B2
20010005775 Samson Jun 2001 A1
20010016761 Rudie et al. Aug 2001 A1
20010050083 Marchitto et al. Dec 2001 A1
20020062124 Keane May 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020156471 Stern et al. Oct 2002 A1
20020165529 Danek Nov 2002 A1
20020193851 Silverman et al. Dec 2002 A1
20030004082 Masschelein et al. Jan 2003 A1
20030130575 Desai Jul 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20030158566 Brett Aug 2003 A1
20030212393 Knowlton et al. Nov 2003 A1
20030216728 Stern et al. Nov 2003 A1
20040000316 Knowlton et al. Jan 2004 A1
20040002705 Knowlton et al. Jan 2004 A1
20040049251 Knowlton Mar 2004 A1
20040092875 Kochamba May 2004 A1
20040186535 Knowlton Sep 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040230260 Macfarland et al. Nov 2004 A1
20040243182 Cohen et al. Dec 2004 A1
20040243200 Turner et al. Dec 2004 A1
20040249426 Hoenig et al. Dec 2004 A1
20050010271 Merchant Jan 2005 A1
20050137654 Hoenig et al. Jun 2005 A1
20050215987 Slatkine Sep 2005 A1
20050251117 Anderson et al. Nov 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050288666 Bertolero et al. Dec 2005 A1
20060020309 Altshuler et al. Jan 2006 A1
20060036300 Kreindel Feb 2006 A1
20060111744 Makin et al. May 2006 A1
20060112698 Cazzini et al. Jun 2006 A1
20060129209 McDaniel Jun 2006 A1
20060151485 Cronin Jul 2006 A1
20060161228 Lach Jul 2006 A1
20060167498 Dilorenzo Jul 2006 A1
20060184205 Schuler et al. Aug 2006 A1
20060189964 Anderson et al. Aug 2006 A1
20060206110 Knowlton et al. Sep 2006 A1
20060259102 Slatkine Nov 2006 A1
20060264926 Kochamba Nov 2006 A1
20060265034 Aknine et al. Nov 2006 A1
20060271028 Altshuler et al. Nov 2006 A1
20060276860 Ferren et al. Dec 2006 A1
20070010810 Kochamba Jan 2007 A1
20070016032 Aknine Jan 2007 A1
20070020355 Schlebusch et al. Jan 2007 A1
20070049918 Van Der Weide et al. Mar 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070078290 Esenaliev Apr 2007 A1
20070078502 Weber et al. Apr 2007 A1
20070088413 Weber et al. Apr 2007 A1
20070179482 Anderson Aug 2007 A1
20070179535 Morrissey et al. Aug 2007 A1
20070233226 Kochamba et al. Oct 2007 A1
20070237620 Mühlhoff et al. Oct 2007 A1
20070255355 Altshuler et al. Nov 2007 A1
20070255362 Levinson et al. Nov 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20070270925 Levinson Nov 2007 A1
20080077201 Levinson et al. Mar 2008 A1
20080077202 Levinson Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080269851 Deem et al. Oct 2008 A1
20080319437 Turner et al. Dec 2008 A1
20090221999 Shahidi Sep 2009 A1
20090299361 Flyash et al. Dec 2009 A1
20090299364 Batchelor et al. Dec 2009 A1
20090318917 Leyh et al. Dec 2009 A1
20100016782 Oblong Jan 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100114086 Deem et al. May 2010 A1
20100211059 Deem et al. Aug 2010 A1
20100268220 Johnson et al. Oct 2010 A1
20110028898 Clark, III et al. Feb 2011 A1
20110040299 Kim et al. Feb 2011 A1
20110196365 Kim et al. Aug 2011 A1
20110313412 Kim et al. Dec 2011 A1
20120265277 Unetich Oct 2012 A1
20130035680 Ben-Haim et al. Feb 2013 A1
20130072925 Ben-Haim et al. Mar 2013 A1
20130072930 Ben-Haim et al. Mar 2013 A1
20130150844 Deem et al. Jun 2013 A1
20130166003 Johnson et al. Jun 2013 A1
Foreign Referenced Citations (32)
Number Date Country
0139607 Apr 1990 EP
0370890 Nov 1995 EP
1346753 Sep 2003 EP
61-364 Jan 1986 JP
62-149347 Sep 1987 JP
S-63177856 Jul 1988 JP
2001-514921 Sep 2001 JP
2006-289098 Oct 2006 JP
WO 8902292 Mar 1989 WO
WO 9207622 May 1992 WO
WO 9623447 Aug 1996 WO
WO 9641579 Dec 1996 WO
WO 9946005 Sep 1999 WO
WO 0024463 May 2000 WO
WO 0158361 Aug 2001 WO
WO 2004034925 Apr 2004 WO
WO 2005060354 Jul 2005 WO
WO 2005099369 Oct 2005 WO
WO 2005112807 Dec 2005 WO
WO 2006089227 Aug 2006 WO
WO 2006090217 Aug 2006 WO
WO 2006117682 Nov 2006 WO
WO 2006122136 Nov 2006 WO
WO 2007015247 Feb 2007 WO
WO 2007030367 Mar 2007 WO
WO 2007038567 Apr 2007 WO
WO 2007050572 May 2007 WO
WO 2007106339 Sep 2007 WO
WO 2007108516 Sep 2007 WO
WO 2007131112 Nov 2007 WO
WO 2007140469 Dec 2007 WO
WO 2012072250 Jun 2012 WO
Non-Patent Literature Citations (171)
Entry
Abraham et al.; Monopolar radiofrequency skin tightening; Facial Plast Surg Clin N Am; 15(2); pp. 169-177; May 2007.
Absar et al.; Efficacy of botulinum toxin type A in the treatment of focal axillary hyperhidrosis; Dermatol Surg; 34(6); pp. 751-755; Jun. 2008.
Acculis; Microwave Ablation for Healthcare Professionals; 2 pgs.; accessed Jun. 24, 2008; (http://www.acculis.com/mta).
Aesthera US—How it Works; 2 pgs.; accessed Jul. 8, 2008 (http://www.aesthera.com/go/aestheralUS/patients/how—it—works/index.cfm).
Allergan Pharmaceuticals; Botox® (product insert); 16 pgs.; Oct. 2006.
Alster et al.; Improvement of neck and cheek laxity with a non-ablative radiofrequency device: a lifting experience; Dermatol Surg; 30(4); pp. 503-507; Apr. 2004.
Ananthanarayanan et al.; 2.5 GHz microwave thermal ablation for performing thermosensitive polymer-chemotherapy for cancer; Antennas and Propagation Society Int. Symp. (APSURSI), 2010 IEEE; Toronto, ON, Canada; pp. 1-4; Jul. 11-17, 2010.
Arneja et al.; Axillary hyperhidrosis: a 5-year review of treatment efficacy and recurrence rates using a new arthroscopic shaver technique; Plast. Reconstr. Surg.; vol. 119; pp. 562-567; Feb. 2007.
Ashby et al.; Cryosurgery for Axillary Hyperhidrosis; British Medical Journal Short Reports; London; pp. 1173-1174; Nov. 13, 1976.
Atkins et al.; Hyperhidrosis: A Review of Current Management; Plast Reconstr Surg; 110(1); pp. 222-228; Jul. 2002.
Avedro; Keraflex KXL—A new treatment option in European clinical trials; 1 pg.; Sep. 2009; printed Jun. 18, 2012 from website (http://www.nkcf.org/research/research-update/139-kxl-clinical-trials.html).
Ball, P.; Radio sweat gland—90 GHz; Nature; 452(7188); p. 676; Apr. 10, 2008; printed Jun. 18, 2012 from website (http://www.nature.com/news/2008/080409/full/452676a.html).
Basra et al.; The dermatology life quality index 1994R2007: A comprehensive review of validation data and clinical results; Br J Dermatol;159(5); pp. 997R1035; Nov. 2008.
Bechara et al.; Histological and clinical findings in different surgical strategies for focal axillary hyperhidrosis; Dermatol Surg; vol. 34; pp. 1001-1009; Aug. 2008.
Beer et al., Immunohistochemical Differentiation and Localization Analysis of Sweat Glands in the Adult Human Axilla, Plastic and Reconstructive Surgery, vol. 117, No. 6, pp. 2043-2049, May 2006.
Bentel et al.; Variability of the depth of supraclavicular and axillary lymph nodes in patients with breast cancer: is a posterior axillary boost field necessary?; Int J Radiation Oncology Biol Phys; vol. 47(3); pp. 755-758; Jun. 2000.
Bindu et al.; Microwave characterization of breast-phantom materials; Microwave and Optical Tech. Letters; 43(6); pp. 506-508; Dec. 20, 2004.
Bioportfolio; Tenex Health Receives FDA clearance for innovative TX1} tissue removal system; 2 pgs.; release dated Mar. 9, 2011; printed on Jun. 18, 2012 from website (http://www.bioportfolio.com/news/article/519143/Tenex-Health-Receives-Fda-Clearance-For-Innovative-Tx1-Tissue-Removal-System.html).
Blanchard et al.; Relapse and morbidity in patients undergoing sentinel lymph node biopsy alone or with axillary dissection for breast cancer; Arch Surg; vol. 138; pp. 482-488; May 2003.
Brace et al., Microwave Ablation with a Trixial Antenna: Results in ex vivo Bovine Liver, IEEE transactions on Microwave Theory and Techniques, vol. 53, No. 1, pp. 215-220 (Jan. 2005).
BSD Medical Corporation; Hyperthermia therapy contributes to 85 percent survival rate from childhood cancers; 2 pgs.; Jan. 13, 2009; printed Jun. 18, 2009 from website (http://www.irconnect.com/noc/press/pages/news—releases.html?d=157551).
Bu-Lin et al.; A polyacrylamide gel phantom for radiofrequency ablation; Int. J. Hyperthermia; 24(7); pp. 568-576; Nov. 2008.
Burns, Jay A.; Thermage: monopolar radiofrequency; Aesthetic Surg J; 25 (6); pp. 638-642; Nov./Dec. 2005.
Business Wire; miraDry by Miramar Labs Receives FDA 510(k) Clearance; 2pgs.; Feb. 8, 2011; printed Jun. 18, 2012 from website (http://www.businesswire.com/news/home/20110208005595/en/miraDry-Miramar-Labs-Receives-FDA-510-Clearance).
Campbell et al.; Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz; Phys. Med. Biol.; 37(1); pp. 193-210; Jan. 1992.
Candela Corp.; The Candela SeleroPLUS Laser with Dynamic Cooling Device: The Benefits of Anesthesia without the Risks; Nov. 1998.
Chang et al.; A conductive plastic for simulating biological tissue at microwave frequencies; IEEE Trans on Electromagnetic Compatibility; 42(1); pp. 76-81; Feb. 2000.
Christ et al., Characterization of the Electromagnetic Near-Field Absorption in Layered Biological Tissue in the Frequency Range from 30 MHz to 6000 MHz, Phys. Med. Biol. 51, pp. 4951-4965; Oct. 2006.
Christ et al., The Dependence of Electromagnetic Far-Field Absorption on Body Tissue Composition in the Frequency Range from 300 MHz to 6 GHz, IEEE Transactions on Microwave Theory and Techniques, vol. 54, No. 5, pp. 2188-2195 (May 2006).
CK Electronic GmbH; Scientific Measurements of Skin and Hair (product information); 15 pgs.; published after Sep. 2006.
Cobham; Antenna & Radome Design Aids (product list); 1 pg.; Aug. 2001.
Commons et al.; Treatment of axillary hyperhidrosis/bromidrosis using VASER ultrasound; Aesth Plast Surg; vol. 33(3); pp. 312-323; May 2009 (pub'd online Jan. 3, 2009).
Copty et al., Low-power near-field microwave applicator for localized heating of soft matter, Applied Physics Letters, vol. 84, No. 25, pp. 5109-5111 (Jun. 21, 2004).
Covidien; FDA clears Covidien's Evident} microwave ablation system for use in nonresectable liver tumor ablation; 2 pgs.; Dec. 28, 2008; printed Jun. 18, 2012 from website (http://www.medicalnewstoday.com/releases/133800.php).
Darabaneanu et al.; Long-term efficacy of subcutaneous sweat gland suction curettage for axillary hyperhidrosis: a prospective gravimetrically controlled study; Dermatol Surg; 34(9); pp. 1170-1177; Sep. 2008.
De Bruijne et al., Effects of waterbolus size, shape and configuration on the SAR distribution pattern of the Lucite cone applicator, International Journal of Hyperthermia, 22(1): 15-28 (Feb. 2006).
Dewey; Arrhenius relationships from the molecule and cell to the clinic; Int. J. Hyperthermia; 25(1); pp. 3-20; Feb. 2009.
Diederich et al.; Pre-clinical Evaluation of a Microwave Planar Array Applicator for Superficial Hyperthermia; International Journal of Hyperthermia; vol. 9, No. 2; pp. 227-246; Jan. 1993.
Drozd et al.; Comparison of Coaxial Dipole Antennas for Applications in the Near-Field and Far-Field Regions; MW Journal, vol. 47, No. 5 (May 2004), http://www.mwjoumal.com/Joumal, accessed Dec. 10, 2007.
Duparc et al.; Anatomical basis of the variable aspects of injuries of the axillary nerve (excluding the terminal branches in the deltoid muscle); Surg Radiol Anat; vol. 19(3); pp. 127-132; May 1997.
Eleiwa et al.; Accurate FDTD simulation of biological tissues for bio-electromagnetic applications; IEEE Proc. SoutheastCon 2001; Clemson, SC; Mar. 30-Apr. 1, 2001; pp. 174-178.
Farace et al.; An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning; Phys. Med. Biol.; 42(11); pp. 2159-2174; Nov. 1997.
Fitzpatrick et al.; Multicenter study of noninvasive radiofrequency for periorbital tissue tightening; Lasers Surg Med; 33(4); pp. 232-242; Mar. 2003.
Gabriel et al.; Dielectric parameters relevant to microwave dielectric heating; Chem Soc Rev; 27(3); pp. 213R224; May-Jun. 1998.
Gabriel et al.; The dielectric properties of biological tissues: I. Literature survey; Phys Med Biol; 41(11); pp. 2231R2249; Nov. 1996.
Gabriel et al.; The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz; Phys Med Biol; 41(11); pp. 2251R2269; Nov. 1996.
Gabriel et al.; The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues; Phys Med Biol; 41(11); pp. 2271R2293; Nov. 1996.
Gabriel, et al.; Comparison of the Dielectric Properties of Normal and Wounded Human Skin Material; Bioelectromagnetics; 8; pp. 23-27; Jan. 1987.
Galloway et al.; Ultrasound imaging of the axillary vein—anatomical basis for central venous access; British ournal of Anaesthesia; 90(5); pp. 589-595; May 2003.
Gandhi et al.; Electromagnetic Absorption in the Human Head and Neck for Mobile Telephones at 835 and 1900 MHz; IEEE Transactions on Microwave Theory and Techniques; 44(10); pp. 1884R1897; Oct. 1996.
Garber, B. B.; Office microwave treatment of enlarged prostate symptoms; 2 pgs.; printed from website (http://www.garber-online.com/microwave-treatment.htm) on Jun. 18, 2012.
Glaser et al.; A randomized, blinded clinical evaluation of a novel microwave device for treatinment of axillary hyperhidrosis; 2010 ASDS/ASCDAS Joint Annual Meeting; Late Breaking Abstract (GD413); Oct. 2010.
Gold et al.; Treatment of Wrinkles and Skin Tightening Using Aluma(TM) Skin Renewal System with FACES (TM)(Functional Aspiration Controlled Electrothermal Stimulation) Technology; Lumens, Inc. (Oct. 2005).
Goldman et al.; Subdermal Nd-YAG laser for axillary hyperhidrosis; Dermatol Surg; 34(6); pp. 756-762; Jun. 2008.
Guidant Corp.; Guidant microwave surgical ablation system; 1 pg.; © 2004; printed Jun. 18, 2012 from website (http://web.archive.org/web/20070306031424/http://www.ctsnet.org/file/vendors/872/pdf/MicrowaveAblationIFU.pdf).
Guy, Arthur; History of Biological Effects and Medical Applications of Microwave Energy; IEEE Transactions on Microwave Theory and Techniques; 32(9); pp. 1182-1200; Sep. 1984.
Guy, Arthur; Therapeutic Heat and Cold, Fourth Ed.; Chapter 5: Biophysics of High-Frequency Currents and Electromagnetic Radiation; pp. 179R236. Williams and Wilkins (publishers); Apr. 1990.
Guy; Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models; IEEE Trans on Microwave Theory and Techniques; MTT-19(2); pp. 205-214; Feb. 1971.
Haedersdal et al.; Evidence-based review of hair removal using lasers and light sources; JEADV; vol. 20; pp. 9-20; Jan. 2006.
Hey-Shipton, et al.; The Complex Permittivity of Human Tissue at Microwave Frequencies; Phys. Med. Biol.; 27(8); pp. 1067-1071; Aug. 1982.
Hisada et al.; Hereditary Hemorrhagic Telangiectasia Showing Severe Anemia which was successfully treated with estrogen; International Medicine; vol. 34; No. 6; pp. 589-592; Jun. 1995.
Hodgkinson, D. J.; Clinical applications of radiofrequency: nonsurgical skin tightening (thermage); Clin Plastic Surg; 36(2); pp. 261-268; Apr. 2009.
Hornberger et al.; Recognition, diagnosis, and treatment of primary focal hyperhidrosis; J Am Acad Dermatol; vol. 51; pp. 274-286; Aug. 2004.
Hu, Da Zhang, Electromagnetic Field in Organism of Skin-Fat-Muscle, China Research Institute of Radiowave Propagation IEEE, pp. 807-812 (Aug. 1998).
Jacobsen et al.; Characteristics of microstrip muscle-loaded single-arm archimedean spiral antennas as investigated by FDTD numerical computations; IEEE Trans. On Biomedical Engineering; 52(2); pp. 321-330; Feb. 2005.
Jacobsen et al.; Characterization of a tranceiving antenna concept for microwave heating and thermometry of superficial tumors; PIER; vol. 18; pp. 105-125; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1998.
Jacobsen et al.; Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease; IEEE Trans. On Biomedical Engineering; 47(11); pp. 1500-1509; Nov. 2000.
Jacobsen et al.; Multifrequency radiometric determination of temperature profiles in a lossy homogeneous phantom using a dual-mode antenna with integral water bolus; IEEE Trans. on Microwave Theory and Techniques; 50(7); pp. 1737-1746; Jul. 2002.
Jacobsen et al.; Nonparametric 1-D temperature restoration in lossy media using tikhonov regularization on sparse radiometry data; IEEE Trans. on Biomedical Engineering; 50(2); pp. 178-188; Feb. 2003.
Jacobsen et al.; Transceiving antenna for homogenious heating and radiometric thermometry during hyperthermia; Electronic Letters; 36(6); pp. 496-497; Mar. 16, 2000.
Johnson et al.; Automatic temperature controller for multielement array hyperthermia systems; IEEE Trans. on Biomedical Engineering; 53(6); pp. 1006-1015; Jun. 2006.
Johnson et al.; Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia; Int J Hyperthermia; 22(6); pp. 475R490; Sep. 2006.
Juang et al.; Construction of a conformal water bolus vest applicator for hyperthermia treatment of superficial skin cancer; Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS; San Francisco, CA, USA; Sep. 1-5, 2004; pp. 3467-3470.
Kaminer et al.; First clinical use of a novel microwave device for treatment of axillary hyperhidrosis; 2010 ASDS Annual Meeting; Poster #12; Oct. 2010.
Kawoos et al., Issues in Wireless Intracranial Pressure Monitoring at Microwave Frequencies, PIERS Online, vol. 3, No. 6, pp. 927-931; 2007 (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date).
Kilmer et al.; A randomized, blinded clinical study of a microwave device for treatment of axillary hyperhidrosis; 31st ASLMS Annual Conference; Late-Breaking Abstract; Apr. 1-3, 2011.
Kirn, T. F.; Researchers seek to quantify thermage efficacy; Dermatologic Surgery; p. 36; Jan. 2007.
Kirsch et al.; Ultrastructure of collagen thermally denatured by microsecond domain pulsed carbon dioxide laser; Arch Dermatol; 134; pp. 1255-1259; Oct. 1998.
Kobayashi, T.; Electrosurgery Using Insulated Needles: Treatment of Axillary Bromhidrosis and Hyperhidrosis; Journal of Dermatologic Surgery & Oncology; 14(7) pp. 749-752; Jul. 1988.
Krusen, Frank (M.D.); Samuel Hyde Memorial Lecture: Medical Applications of Microwave Diathermy: Laboratory and Clinical Studies. Proceedings of the Royal Society of Medicine; 43(8); pp. 641-658, May 10, 1950.
Kumaradas et al.; Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method; Phys. Med. Biol.; 48(1); pp. 1-18; Jan. 7, 2003.
Lagendijk et al; Hyperthermia dough: a fat and bone equivalent phantom to test microwave/radiofrequency hyperthermia heating systems; Phys. Med. Biol.; 30(7); pp. 709-712; Jul. 1985.
Land et al.; A quick accurate method for measuring the microwave dielectric properties of small tissue samples; Phys. Med. Biol.; 37(1); pp. 183-192; Jan. 1992.
Lane et al.; Pressure-Induced Bullae and Sweat Gland Necrosis Following Chemotherapy Induction; The American Journal of Medicine; vol. 117; pp. 441-443; Sep. 15, 2004.
Larson et al.; Microwave treatments for enlarged prostate cause blood pressure surges, study shows; 2 pgs.; Apr. 11, 2008; printed on Jun. 18, 2012 from website (http://web.archive.org/web/20080415000815/http://www.sciencedaily.com/releases/2008/04/080408105820.htm).
Lawrence et al.; Selective Sweat Gland Removal with Minimal Skin Excision in the Treatment of Axillary Hyperhidrosis: A Retrospective Clinical and Histological Review of 15 Patients; British Joumal of Dermatology; British Association of Dermatologists; 155(1), pp. 115-118; Jul. 2006.
Lehmann et al.; Therapeutic Heat; Therapeutic Heat and Cold, Fourth Ed.; Chapter 9; pp. 417-581; Williams & Wilkins (publishers), Baltimore, MD; Apr. 1990.
Lowe et al.; Botulinum toxin type A in the treatment of primary axillary hyperhidrosis: A 52-week multicenter double-blind, randomized, placebo-controlled study of efficacy and safety; J Am Acad Dermatol; vol. 56; pp. 604-611; Apr. 2007.
Lowe et al.; Microwave delivery system for lower leg telangiectasia; Journal of Cutaneous Laser Therapy; 2(1); pp. 3-7; Mar. 2000.
Lumenis Inc.; Aluma RF Skin Renewal System (product information); copyright 2007 (PB-1013670); 8 pgs.; Oct. 2007 (printed version).
Lupin et al.; A Multi-Center Evaluation of the miraDry System to Treat Subjects with Axillary Hyperhidrosis; 31st ASLMS Annual Conference; Abstract # 79; Apr. 1-3, 2011.
Maccarini et al.; Advances in microwave hyperthermia of large superficial tumors; Microwave Symposium Digest, IEEE MTT-S International; pp. 1797-1800; Jun. 2005.
Maccarini et al.; Electromagnetic optimization of dual mode antennas for radiometry controlled heating of superficial tissue; Proceedings of SPIE; vol. 5698; Bellingham, WA; pp. 71-81; Jan. 2005.
Maccarini et al.; Optimization of a dual concentric conductor antenna for superficial hyperthermia applications; Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS; San Francisco, CA, USA; Sep. 1-5, 2004; pp. 2518-2521.
Mazzurana et al.; A semi-automatic method for developing an anthropomorphic numerical model of dielectric anatomy by MRI; Phys. Med. Biol.; 48(19); pp. 3157-3170; Oct. 7, 2003.
Medgadget; MedGadget's MedTech Monday: Treating excessive underarm sweat with microwaves; 1 pg.; Feb. 14, 2011; printed Jun. 18, 2012 from website (https://www.massdevice.com/blogs/massdevice/medgadgets-medtech-monday-treating-excessive-underarm-sweat-with-microwaves).
Medwaves, Inc.; MedWaves, Inc. sponsors investigational studies to evaluate its patented microwave thermal coagulation-ablation system for treatment of tumors in liver and lung; 4 pgs.; Sep. 18, 2009; printed Jun. 18, 2012 from website (http://www.ereleases.com/pamedwaves-sponsors-investigational-studies-evaluate-patented-microwave-thermal-coagulationablation-system-treatment-tumors-liver-lung-25870).
Michel et al.; Design and Modeling of Microstrip—Microslot Applicators with Several Patches and Apertures for Microwave Hyperthermia; Microwave and Optical Technology Letters; vol. 14, No. 2; pp. 121-125; Feb. 5, 1997.
Mrozowski et al.; Parameterization of media dispersive properties for FDTD; IEEE Trans on Antennas and Propagation; 45(9); pp. 1438-1439; Sep. 1997.
Nagaoka et al.; Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry; Phys. Med. Biol.; 49(1); pp. 1-15; Jan. 7, 2004.
Neuman; SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators; Int. J. Hyperthermia; 18(3); pp. 180-193; May-Jun. 2002.
Park et al.; A Comparative Study of the Surgical Treatment of Axillary Osmidrosis by Instrument, Manual, and Combined Subcutaneous Shaving Procedures; 41(5); pp. 488-497; Nov. 1998.
Paulides et al.; A Patch Antenna Design for Application in a Phased-Array Head and Neck Hyperthermia Applicator; IEEE Transactions on Biomedical Engineering; 54(11); pp. 2057-2063; Nov. 2007.
Peyman et al.; Cole-cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies; Phys Med Biol; 55(15); pp. N413RN419; Jul. 2010.
Popovic et al.; Dielectric spectroscopy of breast tissue—improved model of the precision open-ended coaxial probe; Proc of the 25th Ann Int Conf of the IEEE EMBS; Cancun, Mexico; pp. 3791-3793; Sep. 17-21, 2003.
Popovic et al.; Response characterization of the precision open-ended coaxial probe for dielectric spectroscopy of breast tissue; 2003 IEEE—Anntennas and Propagation Soc. Int. Symp.; vol. 4; pp. 54-57; Jun. 22-27, 2003.
Pozar, David M.; Electromagnetic Theory (Introduction); Microwave Engineering, Second Edition; John Wiley & Sons, Inc.; p. 1; Aug. 1997.
Rappaport, C.; Treating Cardiac Disease with Catheter-Based Tissue Heating; IEEE Microwave Magazine; 3(1); pp. 57-64; Mar. 2002.
Riddle et al.; Complex permittivity measurements of common plastics over variable temperatures; IEEE Trans on Microwave Theory and Techniques; vol. 51(3); pp. 727-733; Mar. 2003.
Rolfsnes et al.; Design of spiral antennas for radiometric temperature measurement; Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS; San Francisco, CA, USA; Sep. 1-5, 2004; pp. 2522-2525.
Rosen et al.; Microwaves treat heart disease; IEEE Microw Mag; 8(1); pp. 70R75; Feb. 2007.
Ross et al.; A pilot study of in vivo immediate tissue contraction with CO2 skin laser resurfacing in a live farm pig; Dermatol Surg; 25(11); pp. 851R856; Nov. 1999.
Ross et al.; Comparison of carbon dioxide laser, erbium: Yag laser, dermabrasion, and dermatome A study of thermal damage, wound contraction, and woundhealing in a live pig model: Implications for skin. resurfacing; J Am Acad Dermatol; 42(1); pp. 92R105; Jan. 2000.
Ross et al.; Use of a novel erbium laser in a yucatan minipig: A study of residual thermal damage, ablation, and wound healing as a function of pulse duration; Lasers Surg Med; 30(2); pp. 93R100; Feb. 2002.
Rossetto et al.; Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators; IEEE Trans. on Biomedical Engineering; 46(11); pp. 1310-1319; Nov. 1999.
Saito et al.; Clinical Trials of Interstitual Microwave Hyperthermia by Use of Coaxial-Slot Antenna With Two Slots; IEEE Trans. on Microwave Theory and Techniques; vol. 52; No. 8; pp. 1987-1991; Aug. 2004.
Sherar et al.; Helical antenna arrays for interstitial microwave thermal therapy for prostate cancer: tissue phantom testing and simulations for treatment; Physics in Medicine and Biology; 46(7); pp. 1905-1918; Jul. 2001.
Shimm, D et al.; Hyperthermia in the Treatment of Malignancies; Therapeutic Heat and Cold Fourth Edition edited by Justin Lehmann M.D., Chapter 14, pp. 674-699, Williams & Wilkins Publishers, Baltimore, MD; Apr. 1990.
Sipahioglu et al.; Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content; Journal of Food Science; 68(1); pp. 234-239; Jan. 2003.
Smith, Stacy; Evolution of a new treatment modality for primary focal hyperhidrosis(poster); Cosmetic Boot Camp 2011; Aspen, CO; Jul. 2011.
Solish et al.; A comprehensive approach to the recognition, diagnosis, and severity-based treatment of focal hyperhidrosis: recommendations of the Canadian hyperhidrosis advisory committee; Dermatol Surg; vol. 33; pp. 908-923; Aug. 2007.
Solish et al.; Prospective open-label study of botulinum toxin type A in patients with axillary hyperhodrosis: effects on functional impairment and quality of life; Dermatol Surg; vol. 31(4); pp. 405-413; Apr. 2005.
Solta Medical, Inc.; Study Published in Facial Plastic Surgery Journal Finds Selective Heating of Fibrous Septae Key to Success and Safety of Thermage(R) ThermaCool(TM) System; Thermage® Press Release; 2 pgs.; Jun. 20, 2005.
Spertell et al.; Review of clinical data on hair removal using the MW 2000 microwave delivery system (promotional material); 2000; MW Medical, Inc.; printed from http://www.hairfacts.com/medpubs/mwave/spertell.html on Jun. 23, 2009; 5 pgs.
Spertell; Presentation at the American Academy of Dermatology; MW Medical, Inc.; Mar. 10, 2000; 21 pgs.
Spertell; The application of microwaves to the treatment of cosmetic skin conditions: a technical summary; MW Medical, Inc.; pp. 1-15; May 25, 1999.
SRLI Technologies; BTC-2000} (product information); printed from website: http://www.srli.com/technologies/BTC2000.html on Nov. 16, 2009; 1 pg.
Stauffer et al.; Combination applicator for simultaneous heat and radiation; Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS; San Francisco, CA, USA; Sep. 1-5, 2004; pp. 2514-2517.
Stauffer et al.; Dual mode antenna array for microwave heating and non-invasive thermometry of superficial tissue disease; SPIE Conf. on Thermal Treatment of Tissue with Image Guidance; San Jose, CA; SPIE; vol. 3594; pp. 139-147; Jan. 1999.
Stauffer et al.; Microwave array applicator for rediometry controlled superficial hyperthermia; Proc. of the SPIE; vol. 4247; pp. 19-29; Jun. 2001.
Stauffer et al.; Phantom and animal tissues for modelling the electrical properties of human liver; Int. J. Hyperthermia; 19(1); pp. 89-101; Jan.-Feb. 2003.
Stauffer et al.; Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants; IEEE Trans. on Biomedical Engineering; 41(1); pp. 17-28; Jan. 1994.
Stauffer et al.; Progress on system for applying simultaneous heat and brachytherapy to large-area surface disease; Proceedings of SPIE; vol. 5698; Bellingham, WA; pp. 82-96; Jan. 2005.
Stauffer et al.; Progress toward radiometry controlled conformal microwave array hyperthermia applicator; Proc. of the 22nd Ann. EMBS Int. Conf.; Chicago, IL; Jul. 23-28, 2000; pp. 1613-1616.
Stauffer, Paul R.; Evolving technology for thermal therapy of cancer; International Journal of Hyperthermia; 21(8); pp. 731-744; Dec. 2005.
Stauffer, Paul R.; Thermal Therapy Techniques for Skin and Superficial Tissue Disease; Critical Reviews; SPIE Optical Engineering Press (Bellingham, WA); vol. CR75; pp. 327-367; Jan. 2000.
Sterzer, Fred, Microwave Medical Devices; IEEE Microwave Magazine, 3(1); pp. 65-70; Mar. 2002.
Stoy et al.; Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data; Phys. Med. Bil.; 27(4); pp. 501-513; Apr. 1982.
Strutton et al.; US prevalence of hyperhidrosis and impact on individuals with axillary hyperhidrosis: Results from a national survey. J Am Acad Dermatol; 51(2); pp. 241R248; Feb. 2004.
Stuchly et al.; Diathermy applicators with circular aperture and corrugated flange; IEEE Trans on Microwave Theory and Techniques; MTT-28(3); pp. 267-271; Mar. 1980.
Stuchly et al.; Dielectric properties of animal tissues in vivo at frequencies 10 MHz-1 GHz; Bioelectromagnetics; 2(2); pp. 93-103; Apr. 1981.
Stuchly et al.; Dielectric properties of animal tissues in vivo at radio and microwave frequencies: comparison between species; Phys. Med. Biol.; 27(7); pp. 927-936; Jul. 1982.
Sullivan et al.; Comparison of measured and simulated data in an annular phased array using an inhomogeneous phantom; IEEE Trans on Microwave Theory and Techniques; 40(3); pp. 600-604; Mar. 1992.
Sullivan et al.; The pig as a model for human wound healing; Wound Repair Regen; 9(2); pp. 66R76; Mar. 2001.
Sunaga et al.; Development of a dielectric equivalent gel for better impedance matching for human skin; Bioelectromagnetics; 24; pp. 214-217; Apr. 2003.
Surowiec et al.; Dielectric properties of breast carcinoma ind the surrounding tissues; IEEE Trans on Biomedical Engineering; 35(4); pp. 257-263; Apr. 1988.
Tavernier et al.; Conductivity and dielectric permittivity of dermis and epidermis in nutrient liquid saturation; Engineering in Medicine and Biology Society; 1992 14th Annual Int. Conf of the IEEE; Paris, France; pp. 274-275; Oct. 29-Nov. 1, 1992.
Thermolase Corp.; 510K Pre-Market Notification (No. K950019) and Product User Manual ThermoLase Model LT100 Q-Switched Nd: YAG, Laser Hair Removal System, Jan. 3, 1995.
Trembly et al.; Combined Microwave Heating and Surface Cooling of the Cornea; IEEE Transactions on Biomedical Engineering; vol. 38; No. 1; pp. 85-91; Jan. 1991.
Urolgix, Inc.; Cooled Thermotherapy + Prostiva RF = Durability + Versatility; 1 pg.; printed Jun. 18, 2012 from website (http://www.urologix.com/).
Uzunoglu et al.; A 432-MHz Local Hyperthermia System Using an Indirectly Cooled, Water-Loaded Waveguide Applicator; IEEE Trans. on Microwave Theory and Techniques; vol. 35, No. 2; pp. 106-111; Feb. 1987.
Valleylab; Cool-tip} RF Ablation System; (http://www.cool-tiprf.com/physics.html) accessed Jun. 24, 2008.
Van Rhoon et al.; A 433 MHz Lucite Cone Waveguide Applicator for Superficial Hyperthermia; International Journal of Hyperthermia; vol. 14, No. 1; pp. 13-27; Jan.-Feb. 1998.
Vander Vorst et al.; RF/microwave interaction with biological tissues; Hoboken, NJ; John Wiley & Sons, Inc.; pp. 264-305; Jan. 2006.
Vardaxis et al.; Confocal laser scanning microscopy of porcine skin: Implications for human wound healing studies; J Anat; 190(04); pp. 601R611; May 1997.
Vrba, et al.; Evanescent-Mode Applicators (EMA) for Superficial and Subcutaneous Hyperthermia; IEEE Trans. on Biomedical Engineering; vol. 40; No. 5; pp. 397-407; May 1993.
Weiss et al.; Monopolar radiofrequency facial tightening: a retrospective analysis of efficacy and safety in over 600 treatments; J Drugs Dermatol; 5(8); pp. 707-712; Sep. 2006.
Wollina et al.; Tumescent suction curettage versus minimal skin resection with subcutaneous curettage of sweat glands in axillary hyperhidrosis; Dermatol Surg; 34(5); pp. 709-716; May 2008.
Wong, G.; miraDry system: technology to help treat excessive underarm sweat; 1 pg.; Feb. 10, 2011; printed on Jun. 18, 2012 from website (http://www.ubergimo.com/2011/02/miradry-system-treat-excessive-underarm-sweat/).
Wonnell et al.; Evaluation of microwave and radio frequency catheter ablation in a myocardium-equivalent phantom model; IEEE Trans. on Biomedical engineering; 39(10); pp. 1086-1095; Oct. 1992.
Yang et al.; A Floating Sleeve Antenna Yields Localized Hepatic Microwave Ablation; IEEE Transactions on Biomedical Engineering; 53(3); pp. 533-537; Mar. 2006.
Zelickson et al.; Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device; Arch Dermatol; 140; pp. 204-209; Feb. 2004.
Zelickson et al.; Ultrastructural effects of an infrared handpiece on forehead and abdominal skin; Dermatol Surg; 32(7); pp. 897-901; Jul. 2006.
Zhou et al.; Resection of Meningiomas with Implantable Microwave Coagualation; Bioelectromagnetics; vol. 17; No. 2; pp. 85-88; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1996.
Kushikata, Nobuharu, Histological Assessment of Biopsy Samples Taken Before and After the mireDry Procedure Performed on a Patient with Axillary Hyperhidrtosis; Case Report; pp. 1-3; Oct. 2011.
Ben-Haim et al.; U.S. Appl. No. 14/017,070 entitled “Applicator and Tissue Interface Module for Dermatological Device,” filed Sep. 3, 2013.
Gabriel; Compilation of the dielectric properties of body tissues at RF and microwave frequencies (Technical Report); Armstrong Laboratory; pp. 1-16; Jan. 1996.
Gandhi et al.; Electromagnetic Absorption in the Human Head from Experimental 6-GHz Handheld Transceivers; IEEE Trans. On Electromagnetic Compatibility; 37(4); pp. 547-558; Nov. 1995.
Klemm et al.; EM energy absorption in the human body tissues due to UWB antennas; Progress in Electromagnetics Research; PIER; 62; pp. 261-280; 2006 (year of pub. sufficiently earlier than effective US filed and any foreign priority date).
Johnson et al.; U.S. Appl. No. 14/194,503 entitled “Systems, apparatus, methods and procedures for the non-invasive treatment of tissue using microwave energy,” filed Feb. 28, 2014.
Wikipedia; ISM band; 5 pages; printed Jul. 22, 2014 from website (http://en.wikipedia.org/wiki/ISM—band).
Related Publications (1)
Number Date Country
20130066406 A1 Mar 2013 US
Divisions (1)
Number Date Country
Parent 08904175 Jul 1997 US
Child 09637923 US
Continuations (2)
Number Date Country
Parent 13280032 Oct 2011 US
Child 13673144 US
Parent 09637923 Aug 2000 US
Child 13280032 US