The present invention broadly relates to well cementing. More particularly the invention relates to servicing apparatus for completing downhole wells from a subterranean reservoir, such as for instance an oil and gas reservoir or a water reservoir.
After a well has been drilled, the conventional practice in the oil industry consists in lining the well with a metal casing. The casing is lowered down the hole and cement is pumped inside the casing and returns through the annulus where it is allowed to set. The lining serves a dual purpose: preventing the borehole walls from collapsing and isolating the various geological strata and thus, avoiding exchange of fluids between them. Furthermore, it can be useful, for different reasons, to fill the well with a permeable screen (meaning not impermeable like a metal casing) such as a perforated tubular, a tubular with other openings, a slotted liner or an expandable screen. Use of such permeable screens allows for example oil to pass the borehole walls from production zones into the centre of the hole whilst retaining debris. But sometimes, for various reasons, the permeable screen and annular space between the screen and wellbore wall have finally to be closed and made “impermeable”. For example, a production zone may be producing water or gas and needs to be shut off for more effective production of the oil being recovered. Also, a zone may be producing sand or collapsing and creating too much debris and needs to be isolated to maintain an efficient operation.
Whenever a permeable screen is present downhole, there is no simple way to cement the annulus. Effectively, conventional technique where cement is pumped inside the permeable screen to be returned through the annulus will not work, because the cement will pass through the first openings of the permeable screen and no cement will be pumped to the other extremity. Further cement would fill the inside of the permeable screen and extra drilling, which is costly and time consuming, will be required after the cement is set. This conventional technique does not apply to other types of fluids and there is no simple way to make a treatment to a zone of the borehole behind a permeable screen.
Some prior arts have intended to solve those limitations but only partially or unsuccessfully. U.S. Pat. No. 5,613,557 discloses an apparatus and related method to seal perforation of a casing to substantially prevent fluid communication between the adjoining earth formation and the inside of the casing. In this example, there is no cement behind the perforations of the casing. A sleeve like member is deployed in the casing by a high energy explosive charge to engage with the inner wall of the casing. The sleeve like member plastically deforms and because of its adhesive and thermosetting properties, ensures a forcible engagement with the casing and minimizes fluid leakage around or through the sleeve member. The sleeve is secured permanently and remains in place. No further communication with the annulus is possible.
Further U.S. Pat. No. 6,253,850 also discloses a method to seal or isolate a selective zone containing this time a slotted liner. In this example, there is no cement behind the slotted liner. An additional expandable liner is deployed within a slotted liner and expands until sealing contact with the original slotted liner. The expandable liner is formed with use of a mechanical device such as a mandrel or an inflatable member, or by a hydropneumatic force, including explosive charge. The expandable liner is also secured permanently and remains in place. No further communication with the annulus is possible.
Hence, it remains the need for a method of treatment of the earth formation behind a perforated casing, a slotted liner or an expandable and permeable screen, which does not change the structure of the perforated casing, the slotted liner or the expandable and permeable screen. More precisely, the aim of the invention is to fill the annular space behind the perforated casing not just making the perforated casing permanently impermeable.
According to one aspect of the invention, the invention provides a method of treatment of a near zone of a well, or a method of treatment of a far zone of a well, or a method of treatment of a near zone and a far zone of a well, wherein inside the well, a wellbore in a formation is filled with a tube which is permeable to a material, the tube forming an annulus with the wellbore, and the zone being localized beyond the tube in the annulus and/or in the formation, and wherein the method comprises the steps: (i) placing inside the tube a setting section surrounded by a sleeve near the zone to treat, the sleeve being expandable and impermeable to the material; (ii) inflating the sleeve so that the sleeve is in contact with the tube near the zone to treat, ensuring for a first zone of the tube impermeability to the material, but leaving a second zone permeable to the material; (iii) pumping a treatment fluid to the zone to treat, the treatment fluid passing into the annulus via the second zone still permeable to the material; and (iv) treating the zone to treat with the treatment fluid.
According to a second aspect of the invention, the invention provides a method to consolidate a near zone of a well, or a method to consolidate a far zone of a well, or a method to consolidate a near zone and a far zone of a well, wherein inside the well, a wellbore in a formation is filled with a tube which is permeable to a material, the tube forming an annulus with the wellbore, and the zone being localized beyond the tube in the annulus and/or in the formation, and wherein the method comprises the steps: (i) placing inside the tube a setting section surrounded by a sleeve near the zone to consolidate, the sleeve being expandable and impermeable to the material; (ii) inflating the sleeve so that the sleeve is in contact with the tube near the zone to consolidate, ensuring for a first zone of the tube impermeability to the material, but leaving a second zone permeable to the material; (iii) pumping a treatment fluid to the zone to consolidate, the treatment fluid passing into the annulus via the second zone still permeable to the material; and (iv) consolidating the zone to treat with the treatment fluid. Preferably, the method to consolidate comprises the steps: (i) placing inside the tube a setting section surrounded by a sleeve near the zone to consolidate, the sleeve being expandable and impermeable to the material; (ii) inflating the sleeve so that the sleeve is in contact with the tube near the zone to consolidate, ensuring for a first zone of the tube impermeability to the material, but leaving a second zone permeable to the material; (iii) pumping a settable fluid to the zone to consolidate, the settable fluid passing into the annulus via the second zone still permeable to the material; (iv) allowing the settable fluid to set; (v) deflating the sleeve so that the sleeve is no more in contact with the tube near the zone to consolidate; and (vi) removing the setting section with the sleeve from the zone to consolidate by putting it out.
According to a third aspect of the invention, the invention provides a method to isolate a near zone of a well, or a method to isolate a far zone of a well, or a method to isolate a near zone and a far zone of a well, wherein inside the well, a wellbore in a formation is filled with a tube which is permeable to a material, the tube forming an annulus with the wellbore, and the zone being localized beyond the tube in the annulus and/or in the formation, and wherein the method comprises the steps: (i) placing inside the tube a setting section surrounded by a sleeve near the zone to isolate, the sleeve being expandable and impermeable to the material; (ii) inflating the sleeve so that the sleeve is in contact with the tube near the zone to isolate, ensuring for a first zone of the tube impermeability to the material, but leaving a second zone permeable to the material; (iii) pumping a treatment fluid to the zone to isolate, the treatment fluid passing into the annulus via the second zone still permeable to the material; and (iv) isolating the zone to treat with the treatment fluid. Preferably, the method to isolate comprises the steps: (i) placing inside the tube a setting section surrounded by a sleeve near the zone to isolate, the sleeve being expandable and impermeable to the material; (ii) inflating the sleeve so that the sleeve is in contact with the tube near the zone to isolate, ensuring for a first zone of the tube impermeability to the material, but leaving a second zone permeable to the material; (iii) pumping a settable fluid to the zone to isolate, the settable fluid passing into the annulus via the second zone still permeable to the material; (iv) allowing the settable fluid to set; (v) deflating the sleeve so that the sleeve is no more in contact with the tube near the zone to isolate; and (vi) removing the setting section with the sleeve from the zone to isolate by putting it out.
There are possible uses of the methods, in one case, the second zone is a void making communication with the zones: this configuration can appear when the zones is at the bottom of the well and when the tube ends leaving direct communication between the inside of the well and the earth formation; this configuration can also appear in the well when an unconsolidated zone is in direct communication with the earth formation. In a second case, the second zone is an element permeable to the material, for example the permeable element can be the tube: this configuration can appear when a part the tube is made impermeable and another part of the same tube is used to ensure flow of the treatment fluid from the inside of the well to the annulus and to the zones.
Preferably, the method according to the invention further comprises the step of deflating the sleeve so that the sleeve is no more in contact with the tube near the zones; also preferably, the invention further comprises the step of removing the setting section surrounded by the sleeve from the zones. The inside of the tube is left unchanged after the zones have been treated or consolidated or isolated.
In a first embodiment, the step of placing the setting section surrounded by a sleeve is done by placing first the sleeve inside the tube and after the setting section inside the sleeve. The sleeve can be lowered in the well first, positioned near the zones; and after the setting section can be positioned inside the sleeve so the step of inflating can begin. In a second embodiment, the step of placing the setting section surrounded by a sleeve is done by placing into the tube the setting section already surrounded by the sleeve. The sleeve can be positioned on the setting section before to be positioned near the zones. Preferably, in a configuration where the well has a longitudinal axis (A), the step of placing the setting section surrounded by a sleeve further comprises the step of deploying the sleeve longitudinally to the axis (A). The sleeve is arranged like a fan on the setting section and can be deployed on its length to cover the part of the tube or all the tube to be impermeabilized.
In one example of realization, the setting section has an upper part and a lower part, the setting section being connected to a delivery section going on surface at the upper part, and being in communication with the inside of the well at the lower part through a delivery opening, and the step of pumping a treatment fluid to the zones is done by: (i) delivering the treatment fluid inside of the well through the delivery section, through the setting section and through the delivery opening; (ii) filling the inside of the well located downhole from the lower part with the treatment fluid, until the treatment fluid passes into the annulus via the second zone still permeable to the material; and (iii) rising said treatment fluid into the zones.
In a second example of realization, the setting section has an upper part and a lower part, the setting section being connected to a delivery section going on surface at the upper part, and being in communication with the inside of the well at the lower part through a delivery opening, and wherein the step of pumping a treatment fluid to the zones is done by: (i) delivering a first fluid inside of the well through the delivery section, through the setting section and through the delivery opening; (ii) filling the inside of the well located downhole from the lower part with the first fluid, until the first fluid realized a plug inside of the well; (iii) delivering the treatment fluid inside of the well through the delivery section, through the setting section and through the delivery opening; (iv) filling the inside of the well located downhole from the lower part and uphole from the plug, with the treatment fluid, until the treatment fluid passes into the annulus via the second zone still permeable to the material; and (v) rising the treatment fluid into the zones. The first fluid can be a viscous bentonite fluid, a delayed-gel fluid, or a reactive fluids system.
In a third example of realization, the setting section has an upper part and a lower part, the setting section being connected to a delivery section going on surface at the upper part, and being in communication with the inside of the well at the lower part through a delivery opening, and wherein the step of pumping a treatment fluid to the zones is done by: (i) deploying a plug inside of the well; (ii) plugging the inside of the well located downhole from the lower part with the plug; (iii) delivering the treatment fluid inside of the well through the delivery section, through the setting section and through the delivery opening; (iv) filling the inside of the well located downhole from the lower part and uphole from the plug, with the treatment fluid, until the treatment fluid passes into the annulus via the second zone still permeable to the material; and rising the treatment fluid into the zones. The plug is a device with an expandable sleeve which acts as a plug when the expandable sleeve is inflated. The plug can be deployed inside the well with the apparatus of the invention or with another apparatus.
In various possible examples of realization, the methods of the invention work when the tube is taken in the list constituted by: perforated casing, perforated tubing, perforated pipe, perforated conduit, slotted liner, screen, expandable casing, expandable screen, tube comprising opening, tube comprising permeable component, and permeable component; when the material is taken in the list constituted by: oil, water, cement, sand, gravel, gas; when the setting section is taken in the list constituted by: coiled tubing, drill pipe; when the delivery section is taken in the list constituted by: coiled tubing, drill pipe; when the sleeve is made of rubber; when the treatment fluid is a settable fluid or a non settable fluid; when the settable fluid is taken in the list constituted by: conventional cement, remedial cement, permeable cement, phosphate cement, special cement, inorganic and organic sealants, remedial resin, permeable resin, geopolymer materials; when the non settable fluid is taken in the list constituted by: acid, washer.
In the case where the treatment fluid is a settable fluid, the method further comprises the steps of: (v) allowing the treatment fluid to set; (vi) deflating the sleeve so that the sleeve is no more in contact with the tube near the zones; and (vii) removing the setting section with the sleeve from the zones by putting it out. In a preferred embodiment, the method further comprises the step of: (viii) drilling the well with a drilling tool.
According to a fourth aspect of the invention, the invention provides an apparatus for treatment of a near and/or a far zone of a well or to consolidate a near and/or a far zone or to isolate a near and/or a far zone, the zone being localized beyond a tube placed inside the well and forming an annulus with a wellbore, the tube being permeable to a material, and the apparatus comprising: (i) a setting section surrounded by a sleeve, the sleeve being expandable and impermeable to the material; (ii) an inflating means for inflating the sleeve, the inflating means ensuring that the sleeve is in contact with a first zone of the tube so that the first zone of the tube becomes impermeable to the material; and (iii) a delivery opening for delivering a treatment fluid to the zone to treat, the delivery opening ensuring that the treatment fluid passes into the annulus via a second zone still permeable to said material.
There are possible configurations of the delivery opening, in a first configuration they ensure that the treatment fluid passes into the annulus via a void making communication with the zones to treat; in a second configuration, they ensure that the treatment fluid passes into the annulus via an element permeable to the material, preferably the permeable element is a part of the tube.
Preferably, the apparatus comprises: a deflector for forcing delivery of the treatment fluid uphole of the delivery opening and/or directed on the second zone. Preferably also, the apparatus comprises: a deflating means for deflating the sleeve, the deflating means ensuring that the sleeve is no more in contact with the tube.
Preferably, the sleeve is attached to the setting section with connecting means at the upper part and/or with connecting means at the lower part. In one embodiment, the connecting means are connected permanently to the setting section; in a second embodiment the connecting means are removable connecting means; in a third embodiment the connecting means are floating means.
The apparatus preferably comprises a longitudinal axis (A′) and the sleeve can be extended longitudinally along the axis (A′) on the setting section. Also the sleeve is arranged like a fan on the setting section and can be deployed on its length to cover the part of the tube or all the tube to be impermeabilized. The sleeve has a length (D) along the axis (A′) varying between 1 meter and 200 meters, preferably, between 2 meters and 100 meters, and more preferably between 5 meters and 50 meters.
In another configuration, the setting section has an upper part and a lower part and the apparatus further comprises a delivery section going on the surface connected to the upper part.
In various possible examples of realization, the apparatus of the invention works when the tube is taken in the list constituted by: perforated casing, perforated tubing, perforated pipe, perforated conduit, slotted liner, screen, expandable casing, expandable screen, tube comprising opening, tube comprising permeable component, and permeable component; when the material is taken in the list constituted by: oil, water, cement, sand, gravel, gas; when the setting section is taken in the list constituted by: coiled tubing, drill pipe; when the delivery section is taken in the list constituted by: coiled tubing, drill pipe; when the sleeve is made of rubber; when the treatment fluid is a settable fluid or a non settable fluid; when the settable fluid is taken in the list constituted by: conventional cement, remedial cement, permeable cement, phosphate cement, special cement, inorganic and organic sealants, remedial resin, permeable resin, geopolymer materials; when the non settable fluid is taken in the list constituted by: acid, washer.
In examples of realization, the inflating means is a device delivering a gas and/or a liquid inside the sleeve; is a check valve delivering mud into the inside of the sleeve; is a pump delivering mud into the inside of the sleeve.
In other examples of realization, the apparatus further comprises a deflating means for deflating the sleeve, the deflating means ensuring that the sleeve is no more in contact with the tube and wherein the deflating means is a device releasing the gas and/or the liquid from the sleeve.
In one embodiment, the apparatus further comprises an additional section sliding on the setting section and wherein: the inflating means is an opening through the setting section and the additional section, the inflating means having an open and a close position depending on position of the setting section versus the additional section, the position being controlled by translation and/or rotation.
In a second embodiment, the apparatus further comprises a deflating means for deflating the sleeve, the deflating means ensuring that the sleeve is no more in contact with the tube and further comprising an additional section sliding on the setting section and wherein: the deflating means is an opening through the setting section and the additional section, the deflating means having an open and a close position depending on position of the setting section versus the additional section, the position being controlled by translation and/or rotation.
In third embodiment, the apparatus further comprises an additional section sliding on the setting section and wherein: the delivery opening is an opening through the setting section and the additional section, the delivery opening having an open and a close position depending on position of the setting section versus the additional section, the position being controlled by translation and/or rotation.
Preferably, the additional section further comprises a weighting element.
In a fourth embodiment, the setting section has an upper part and a lower part and the apparatus further comprises a delivery section going on surface connected to said upper part and a disconnect mechanism to allow the delivery section to be disconnected from the setting section. Preferably, the disconnect mechanism disconnects the delivery section from the setting section when the treatment of the zone to treat is finished. More preferably, the disconnect mechanism comprises a pin end or box end located on the setting section, and respectively a box end or pin end on the delivery section and a sliding sleeve retaining the pin end and box end in connected position. More preferably, the disconnect mechanism is only actuated by the differential pressure existing between the inside of the setting section and the inside of the well.
Further embodiments of the present invention can be understood with the appended drawings:
The present invention involves the use of an expanding sleeve that selectively isolates a portion of a permeable tube such as a perforated casing, or a slotted liner or an expandable and permeable screen, this isolation allowing the further treatment of the annulus zone between the permeable tube and the borehole. The typical applications for which the apparatus and method of the invention can be used include sand control and support of wellbore producing formations, in water, oil and/or gas wells. The apparatus and method of the invention can be used also in all type of geometry of wellbores, as highly deviated and horizontal wellbores.
The method of the invention is a method of treatment of a zone of the well which can be called a non-invasive method. Zone is defined as a part of the well or a region of the well which is delimited, but which can be quite small—from one cubic meter to ten cubic meters—and which can also be quite large—from hundred cubic meters to ten thousand cubic meters—.
Aim of the impermeabilisation of the zone 60A allows the treatment fluid 70 to rise into the zone 60B (
After the zone 60B and/or the zone 60C is treated, the sleeve 50 is deflated (
In a first embodiment, the method and the apparatus according to the invention are deployed at the bottomhole of the well, all the volume of the zone 70A left downhole of the apparatus 40 can be filled with the treatment fluid. After the treatment is finished, the set fluid set remaining in zone 70A can be drilled with a drilling tool lowered into the well from surface.
In a second embodiment, the method and the apparatus according to the invention are deployed anywhere in the well, the volume of the zone 70A left downhole of the apparatus 40 is unknown and considered big. If the treatment fluid 70 has the same density as the fluid 700 already in the well, there is no risk that the treatment fluid fill first the zone 70A. However, if the treatment fluid 70 has not the same density as the fluid 700 already in the well two solutions can be used. One solution can be to pump few barrels of a viscous fluid into a part of said zone 70A, for example viscous fluid can be viscous bentonite pill, a delayed-gel, a reactive fluids system (RFS). If this is not sufficient, a second solution can be to mechanically isolate a part of said zone 70A with a second apparatus. Said second apparatus will be deployed first and will act as a plug so to limit the zone 70A to a smallest volume. An example of such a second apparatus can be found in U.S. Pat. Nos. 3,460,625; 2,922,478 and preferably in the co-pending European patent application from the Applicants under application number 05291785.3. Preferably, said second apparatus is deployed with the apparatus 40 and is positioned downhole compared to the apparatus 40; the second apparatus acts as a plug and the apparatus 40 can be used as described from
In a further step, another zone of the well can be treated with the method according to the invention by deploying the apparatus in said another zone, if for example there are multiple and separated zones in the well or if the zone to be treated is too long to be treated with a single treatment.
The setting section 18 comprises openings 51-52 for inflated/deflated the sleeve. The setting section 18 comprises openings 55 for delivering treatment fluid inside the well. An additional tube 58 is mounted inside the setting section 18 and is weighted on the lower part of the additional tube 58 with optionally a weighting element 57. Further, the delivering openings 55 can have a deflector (not shown on Figures) forcing the delivery uphole and/or on the tube. The additional tube 58 comprises also openings for inflating/deflating the sleeve and for delivering treatment fluid inside the well, but not juxtaposed with the last of the setting section 18. So, the system 57 and 58 slides in the setting section and allows the choice between: inflation of the sleeve, delivering of the treatment fluid, or deflation of the sleeve. In a first position (
This application is a divisional application of the U.S. application Ser. No. 12/295,452, which was derived from PCT Application PCT/EP2007/001556 filed on Feb. 16, 2007, claiming priority from the European Application EP 06290518.7 filed on Mar. 31, 2006, all being incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2922478 | Maly | Jan 1960 | A |
3130787 | Mason | Apr 1964 | A |
3270814 | Richardson et al. | Sep 1966 | A |
3366391 | Gore | Jan 1968 | A |
3460625 | Hart et al. | Aug 1969 | A |
3627046 | Miller et al. | Dec 1971 | A |
4791992 | Greenlee et al. | Dec 1988 | A |
5297633 | Snider et al. | Mar 1994 | A |
5337823 | Nobileau | Aug 1994 | A |
5343956 | Coronado | Sep 1994 | A |
5613557 | Blount et al. | Mar 1997 | A |
5697441 | Vercaemer et al. | Dec 1997 | A |
6253850 | Nazzai et al. | Jul 2001 | B1 |
7789148 | Rayssiguier et al. | Sep 2010 | B2 |
20020011341 | Ingram et al. | Jan 2002 | A1 |
20090260817 | Gambier et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
1426551 | Jun 2004 | EP |
1757770 | Feb 2007 | EP |
03042494 | May 2003 | WO |
2004097167 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20130075095 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12295452 | Aug 2009 | US |
Child | 13652404 | US |