1. Field of the Invention
This invention relates to methods and apparatus for the photothermal treatment of tissue and, more particularly, to methods and apparatus for treating cutaneous and subcutaneous conditions at depth.
2. Description of the Related Art
The benefits of being able to raise and/or lower the temperature in a selected region of tissue for various therapeutic and cosmetic purposes has been known for some time. For instance, heated pads or plates or various forms of electromagnetic radiation, including visible, infrared and microwave radiation, electricity, and ultrasound have previously been used for heating subdermal muscles, ligaments, bones and the like to, for example, increase blood flow, to otherwise promote the healing of various injuries and other damage, and for various therapeutic purposes, such as frostbite or hyperthermia treatment, treatment of poor blood circulation, physical therapy, stimulation of collagen, cellulite treatment, adrenergic stimulation, wound healing, psoriasis treatment, body reshaping, non-invasive wrinkle removal, etc. The heating of tissues has also been utilized as a potential treatment for removing cancers or other undesired growths, infections and the like. Heating may be applied over a small localized area, over a larger area, for example to the hands or feet, or over larger regions of tissue, including the entire body.
Since most of the techniques described above involve applying energy to tissue at depth through the patient's skin surface, peak temperature generally occurs at or near the patient's skin surface and decrease, sometimes significantly, with depth. Further, while microwaves or ultrasonic and other acoustic radiation have been used in the past, such radiation has had limited use because, particularly for microwaves, they may be potentially mutagenic, may potentially otherwise result in cell or systemic damage and, particularly for acoustic sources, are relatively expensive. They may also not be practical for large-area treatment.
While optical and near infrared (NIR) radiation (collectively referred to hereinafter as “optical radiation” is generally both less expensive and, being non-mutagenic, safer than microwaves radiation, the use of optical radiation has heretofore not been considered suitable for most applications involving heating of tissue at depth, the term “tissue at depth” as used herein meaning tissue at the border zone of the dermis and hypodermis or subcutaneous region, some of which tissue may be in the lower dermis, mostly at a depth deeper than 1 mm, and tissue below this border zone to a depth of up to about 50 mm The reason why this radiation has not been considered suitable is because such radiation is both highly scattered and highly absorbed in surface layers of tissue, precluding significant portions of such radiation from reaching the tissue regions at depth to cause heating thereof. In view of the energy losses due to scattering and absorption, substantial optical (including NIR) energy must be applied in order for enough such energy to reach a region of tissues at depth to have a desired effect. However, such high energy can cause damage to the surface layers of tissue and pain/discomfort to the patient, making it difficult to achieve desired photothermal treatments in tissue regions at depth. For these reasons, optical radiation has heretofore had at most limited value for therapeutic and cosmetic treatments on tissue at depth.
While heating or cooling of tissue at depth alone has proved useful for many treatments, the combination of heating and cooling applied intermittently to the skin surface (known as contrast therapy) is also known and has been suggested for skin improvement, pain relief, inflammation reduction, and healing of injury. Of particular importance is the application of these techniques for reducing subcutaneous fat deposits and treating cellulite (gynoid lipodystrophy). However, use of cooling or heating, either alone or in combination for treatment of conditions at depth, for example for skin improvement, cellulite improvement, fat reduction, and treatment of other conditions has been limited by the body's pain/discomfort tolerance and by the damage limits of treated organs and adjacent, especially cutaneous, tissue that need to be kept intact.
A need therefore exists for improved method and apparatus for photothermal treatment of tissue regions at depth, and in particular for treatment of deep dermis and subcutaneous regions of tissue, which treatments provide improved treatment results, while both reducing patient pain and discomfort and protecting adjacent and other non-treatment tissue from damage.
In accordance with the above, this invention provides a method and apparatus for treating at least a selected target region at depth, as this term has previously been defined, of a patient's body, while protecting non-targeted tissue by utilizing a suitable mechanism to cool the patient's skin surface to a temperature below normal body temperature for a selected duration; utilizing a suitable mechanism to selectively apply radiation to the patient's skin above said region before, during and/or after cooling; and repeating the cooling and radiation application for a selected number of cycles, the temperature to which the patient's skin is cooled and the duration of cooling being sufficient to cool the treatment region to a selected temperature below normal body temperature during at least cooling portions of cycles. The cooling duration should be at least about 10 seconds, normally being between approximately 10 seconds and 20 minutes. Where radiation is applied after cooling, the radiation may be applied for approximately one second to 4 minutes. The cooling may be performed continuously while the radiation is applied at intervals during the cooling. Where the selected region is subcutaneous fat, the selected temperature should be low enough to result in at least a selective phase change of at least a portion of the fat. In this case, the radiation should be of sufficient power and duration and of appropriate wavelength to heat the treatment region to at least a temperature where the phase of the fat cells is altered. Alternatively, the radiation may be of sufficient power and duration and of appropriate wavelength to heat the treatment region to a temperature where at least one of the biophysical and biochemical characteristics of cells in the region is altered. Alternatively, the radiation should be of sufficient power and duration and of appropriate wavelength to heat tissue above the treatment region to protect the tissue, but not to significantly heat the treatment region. For another embodiment, the treatment involves cycling cooling and heating of the treatment region, radiation being applied after cooling and the radiation being of sufficient power and duration and of appropriate wavelength to heat the region to an appropriate temperature to effect the treatment. For some embodiments, a selected condition of the patient is detected and utilized to control at least a portion of the operation. Stimulation of the selected region may also be utilized before, during and/or after at least one of the operations, such stimulation being generally at least one of mechanical, acoustic and electrical. The period and/or phase of the treatment cycles may be correlated with a sub-circadian rhythm of the patient.
For some embodiments, the radiation is from a continuous wave source and cooling is also performed from a substantially continuously operating source. For these embodiments, cooling and radiation application are each performed by passing an applicator outputting the appropriate source over the patient's overlying the treatment region at a selected rate. The same applicator may be used to perform both cooling ad radiation application for these embodiments and the applicator my perform both operations during the same pass or separate passes.
In accordance with another aspect of the invention, radiation is selectively delivered to the patients body above the selected region to heat the region; patient tissue above the selected region is concurrently cooled to a temperature below that of the selected region; and the region is cooled to a temperature below normal body temperature before and/or after the heating of the region.
In accordance with still another aspect of the invention, treatment is performed by cyclically applying radiation and cooling to the surface of the patient's skin above the selected region through at least one applicator providing substantially continuous cooling/radiation output, which applicator is passed over the patient's skin over the region multiple times for each cooling/radiation cycle.
Other advantages, novel features, and objects of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings, which are schematic and which are not intended to be drawn to scale. In the figures, each identical, or substantially similar component that is illustrated in various figures is represented by a single numeral or notation. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention.
Non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings in which:
a-5d are diagrams illustrating cooling temperature (T cooling), heating temperature (T heating), temperature in an upper layer of the skin (T upper) and target temperature at depth (T target) relative to normal core body temperature (T core normal) for successive cooling/heating cycles in a protective mode;
a-6d are diagrams illustrating cooling temperature (T cooling), heating temperature (T heating), temperature in an upper layer of the skin (T upper) and target temperature at depth (T target) relative to normal core body temperature (T core normal) for successive cooling/heating cycles in a therapeutic mode;
a is a cut-away side view of an optical head suitable use in practicing the teachings of the invention;
b is an enlarged cut-away side view of a portion of the head shown in
Applications in which the invention may be useful include the treatment of various pathological and cosmetic conditions, particularly skin rejuvenation, wrinkle removal, skin tightening and lifting, reduction of odor production, hair growth control, acne treatment, cellulite and subcutaneous fat treatment, physical therapy, muscle and skeletal treatments, including treatment of spinal cord problems, and treatment of cumulative trauma disorders (CTD's) such as carpel tunnel syndrome (CTS), tendonitis and bursitis, fibromyalgia, lymphedema and cancer therapy.
The application of thermal energy, either heating or cooling, to tissue may also be used, for example, in physical therapy treatments, such as to enhance or accelerate wound healing or relieve pain. Beneficial effects may include a decrease in joint stiffness, an increase in joint extensibility of collagenous structures such as tendons and scar tissue, pain relief, blood-flow changes, or a decrease in muscle spasm and increase in muscle tone. As another example, large protein molecules may have high absorption coefficients, and the heating of protein-rich collagenous tissues may contribute to healing. A wide variety of conditions may be treated using this invention, for example, but not limited to, strained tendons, tenosynovitis, torn ligaments, tendonitis, bursitis, torn joint capsules, or torn muscles. Thermal treatment can be effective on highly metabolic organs such as sebaceous gland, sweat glands and hair follicles. Other processes may be activated or deactivated within tissue during cooling or heating. Mechanical or electrical stimulation, such as massage, may also be used in conjunction with cooling or heating to achieve benefits greater then can be achieved by either alone. Positive and negative pressure may also be applied to the skin surface above the treatment region to facilitate the treatment.
In certain embodiments, the present invention may be used for non-invasive or nondestructive reduction of localized fat deposits. For example, the invention may be used to heat fat or adipose cells past their damage temperature, causing cell damage and/or necrosis. Alternatively, the treated cells may undergo apoptosis, resulting in cell death. The dead cells may then be removed or resorbed into the body, for example, by the body's phagocytic or lymphatic systems. Fat reduction may also be achieved by heating fat or adipose cells to an elevated temperature, but below the damage temperature. For example, the fat cells may be heated to a temperature of between about 41° C. and about 45° C. Under these conditions, applying heat to subcutaneous fat may activate lipases or metabolize lipids contained within the adipose tissue found within the subcutaneous fat layer, or blood flow may increase to the heated area. Additionally, “lipolysis,” or the process of breaking down fat in the body, may be regulated by enzymes sensitive to temperature, such as HSL (“hormone-sensitive lipase”). Thus, elevating the temperature of the adipose cells may increase the lipolysis rate, and thus contribute to a reduction in subdermal fat in the area being treated. This temperature can be below the temperature for vascular/lymph damage so damaged fatty cells and fatty acids can be easily removed from the treatment region. Additionally, application of the present invention may be used in combination with other fat-reduction techniques, such as medication, exercise, or adrenergic stimulation
The invention also includes cooling of the fat tissue to a temperature below normal body temperature, and preferably below the phase transition temperature of at least some fraction of the lipid content of fatty cells, which temperature is substantially higher then the freezing temperature of water-containing tissue, preceded or preferably followed by heating the fat to a temperature below its damage threshold. Triglycerides (which constitute the largest fraction of lipids in human fatty tissue) undergo a series of phase transitions when their temperature changes from normal body temperature to either a lower or higher temperature. Specifically, several crystalline forms can exist. These forms are (in the order of increasing stability): α, β′, and β. The latter crystals are also significantly larger in size (as needle of a dozen microns length). Crystal formation can be the reason for fatty cell dysfunction and shrinkage resulting from mechanical stress on cell structure and/or destruction of cell metabolism. β crystal formation can the primer mechanism for fatty cell treatment. When triglycerides are cooled from normal body temperature, formation of α-crystals takes place. In order to produce more stable forms, β′ first and β second, reverse heating of the crystallized triglycerides is required. Further heating leads to complete melting of all crystalline forms.
Therefore, the following process is suggested to initiate formation of β-crystals in adipose cells. First, the fatty tissue is cooled to a lower-than-normal temperature Tα (in the range between 0 and 37 C). This results in α-crystals being formed. Then, the tissue is heated back to a temperature Tβ>Tα but below 37 C, causing formation of β′- and β-crystals. Finally, the tissue can be heated to even higher temperature in order to melt the crystals, and the process can be repeated for a selected number of cycles. The expected final result is dystrophy and decrease in volume of fatty tissue. This process takes place for all temperature range 0-37 but for lower Tαthis process is more effective. Thermal activation of lymph systems in subcutaneous fat can also be used to treat cellulite by removing proteins from extra cell spaces.
Application of a cooling panel (agent or device) to the skin surface causes the temperature of skin and the subcutaneous region or subcutis to drop gradually, as illustrated by
Depending on the surface temperature and the duration of application, a number of processes can be initiated in the fatty and other tissues, including, but not limited to:
In practical use, cold exposure time is limited by the onset of unpleasant and, subsequently, painful sensations.
Thermal cycling, comprised of cooling and heating phases, may be used to eliminate both the pain/discomfort and unwanted tissue damage outside the target region. It should be emphasized that, although methods and devices alternating skin surface temperature between hot and cold have previously been proposed, the thermal inertia of tissue prevents rapid propagation of a heat front from the skin surface to a desired treatment depth (or vice versa).
This invention therefore uses deep-penetrating electromagnetic or acoustic radiation to create distributed heat sources within tissue. This allows increasing the treatment time substantially and achieving acceptable therapeutic effect, while maintaining both complete non-invasiveness of the procedure and patient comfort.
Beneficial effects of thermal cycling are not limited to treatment of fatty tissue. Thermal cycling initiates a number of biophysical and biochemical responses at molecular, cellular, tissue, and organ levels, including (but not limited to):
As a result, thermal cycling can be used for treatment of a wide range of conditions, involving skin, subcutaneous fat, connective tissues, blood and lymph vasculature, muscles, bones, and other internal organs.
Apparatus for implementing the technical concept is illustrated by
The invention can be practiced in two distinctive modes (See
The invention can be practiced in at least two distinct modes (See
Thermal cycling offers another advantage when optical radiation is used as the deep-penetrating energy. Specifically, it has been demonstrated with optical measurements, that the rate of increase in optical transmittance when fresh human fatty tissue is heated exceeds the rate of decrease in optical transmittance when the same tissue is cooled (See
In some embodiments, the applicator (handpiece) of the apparatus can be realized as a stationary implement, which is placed on the treatment area prior to initiating thermal cycling.
In other embodiments, the handpiece can be manually or mechanically scanned along the skin surface (See
The apparatus of
Where energy source is a continuous wave (CW) or other long duration source, the apparatus or device for various of the embodiments may be slid or scanned over the surface of the patient's skin to overlie successive treatment regions, the dwell time, and thus the treatment duration, for each such region being a function of the rate at which the device is moved. The device may be moved over each treatment region multiple times during a single treatment. Since the device will typically also include a skin cooling mechanism, concurrent heating and cooling is effected for each region as the device passes thereover. The device may also include a cooling mechanism ahead of the portion of the device under the energy source to pre-cool skin above the treatment region (see for example issued U.S. Pat. Nos. 6,273,884 and 6,511,475, which are incorporated herein by reference). The power density Ps for this sliding mode of operation is:
PS=P0Tv/d,
where T0 is the stationary mode treatment time for the organ/region being treated In order for the multiple passes to be beneficial, T should be less than the thermal relaxation time of the tissue being treated in the region at depth. However, when in either stationary mode or sliding mode, the treatment time can be greater than the thermal relaxation time of the tissue being treated.
Any of the embodiments can include a contact sensor to assure good optical and thermal coupling, and systems operating in the sliding mode may also include one or more motion sensors to control radiation delivery, cooling and other functions dependent on scanning speed, to enhance system safety and for other reasons.
In addition to coupling the deep heating treatment of this invention with deep cooling to enhance treatment of fat, bone, muscle, etc., the applicator may also include a massager, vibrator or other mechanical stimulation device, an ultrasonic or other acoustic stimulator or a DC or other suitable electrical stimulation source. It has been found that such mechanical or electrical stimulation is more effective when tissue temperature deviates from normal body temperature (ie., for hot or cold tissue). Similarly, the effect of deep heating may be enhanced by massage or other stimulation because both heat and cold generally penetrates better in compressed skin and subdermal tissue. Thus, the combination of deep heating and mechanical or electrical stimulation may provide significantly better results then either one alone. Heating may also be enhanced by supplementing the optical heating with, for example electro-stimulation by AC/DC, or additional heating by RF, etc. Tensioning or pressure applied to the skin overlying the treatment region may also enhance treatment effect and decrease patient discomfort/pain sensation.
While an optical radiation source has been utilized for preferred embodiments, other forms of electromagnetic radiation such as microwave or radio frequency radiation can be used on the heating phase of the cycle. Alternatively, acoustic energy can be used. Unless otherwise indicated, the term radiation, as used herein, shall refer to the output from all such sources. The power of the source utilized should be selected in order to maintain the temperature of the targeted tissue within the preferred range.
The effectiveness of the invention may also be further increased by practicing a thermotolerance regimen. In this mode, the magnitude of temperature deviations from normal skin surface temperature which a patient can tolerate increases gradually from cycle to cycle, permitting treatment temperatures, and thus treatment effectiveness to also be gradually increased from cycle to cycle. This mode allows further increasing protection of cutaneous tissues from unwanted damage.
It may also be possible to correlate the period and phase of the thermal cycle with sub-circadian biological rhythms of the patient. Such combination can further optimize treatment results by using naturally occurring oscillations of biochemical activity in cutaneous and subcutaneous tissues. Furthermore, the temporal structure of the thermal cycling can deviate from simple harmonic oscillations and be comprised, for example, of several, or even an infinite number of harmonics.
In certain embodiments, the cooling implement can be realized as a layer (film, wrap) placed over the treatment region and the irradiating applicator can be realized as a head scanned on top of the cooling implement. Thermal cycling is achieved as a result of multiple passes of the irradiating applicator.
Some embodiments of the invention can incorporate a feedback loop between the applicator and the control unit. The feedback loop can incorporate a single or multiple sensors registering the state of the apparatus and the treatment area. For example, a thermal sensor can be used to initiate the heating phase of the cycle when tissue temperature drops below a certain threshold, and initiate the cooling phase of the cycle when the temperature exceeds another threshold. Other sensor types include, but are not limited to, scanning speed sensors, contact sensors, pressure sensors, skin detectors, and skin response sensors.
In some embodiments of the invention, an additional stimulating implement can be integrated into the applicator (see
While several embodiments of the invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and structures for performing the functions and/or obtaining the results and/or advantages described herein, and each of such variations or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art would readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that actual parameters, dimensions, materials, and configurations will depend upon specific applications for which the teachings of the present invention are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described. The present invention is directed to each individual feature, system, material and/or method described herein. In addition, any combination of two or more such features, systems, materials and/or methods, if such features, systems, materials and/or methods are not mutually inconsistent, is included within the scope of the present invention. In the claims, all transitional phrases or phrases of inclusion, such as “comprising,” “including,” “carrying,” “having,” “containing,” and the like are to be understood to be open-ended, i.e. to mean “including but not limited to.” Only the transitional phrases or phrases of inclusion “consisting of” and “consisting essentially of” are to be interpreted as closed or semi-closed phrases, respectively.
This invention claims the benefit of now abandoned U.S. Provisional Patent Application Ser. No. 60/389,871, filed Jun. 19, 2002, entitled “Method and Apparatus for Subdermal Heating,” by G. Altshuler, et al., incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1706161 | Hollnagel | Mar 1929 | A |
2472385 | Rollman | Jun 1949 | A |
3327712 | Kaufman et al. | Jun 1967 | A |
3486070 | Engel | Dec 1969 | A |
3527932 | Thomas | Sep 1970 | A |
3538919 | Meyer | Nov 1970 | A |
3597652 | Gates, Jr. | Aug 1971 | A |
3622743 | Muncheryan | Nov 1971 | A |
3693623 | Harte et al. | Sep 1972 | A |
3818914 | Bender | Jun 1974 | A |
3834391 | Block | Sep 1974 | A |
3846811 | Nakamura et al. | Nov 1974 | A |
3857015 | Clark et al. | Dec 1974 | A |
3900034 | Katz et al. | Aug 1975 | A |
4233493 | Nath | Nov 1980 | A |
4273109 | Enderby | Jun 1981 | A |
4275335 | Ishida | Jun 1981 | A |
4316467 | Muckerheide | Feb 1982 | A |
4388924 | Weissman et al. | Jun 1983 | A |
4456872 | Froeschle | Jun 1984 | A |
4461294 | Baron | Jul 1984 | A |
4524289 | Hammond et al. | Jun 1985 | A |
4539987 | Nath et al. | Sep 1985 | A |
4561440 | Kubo et al. | Dec 1985 | A |
4591762 | Nakamura | May 1986 | A |
4608978 | Rohr | Sep 1986 | A |
4617926 | Sutton | Oct 1986 | A |
4695697 | Kosa | Sep 1987 | A |
4718416 | Nanaumi | Jan 1988 | A |
4733660 | Itzkan | Mar 1988 | A |
4745909 | Pelton et al. | May 1988 | A |
4747660 | Nishioka et al. | May 1988 | A |
4749913 | Stuermer et al. | Jun 1988 | A |
4819669 | Politzer | Apr 1989 | A |
4832024 | Boussignac et al. | May 1989 | A |
4860172 | Schlager et al. | Aug 1989 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4884560 | Kuracina | Dec 1989 | A |
4905690 | Ohshiro et al. | Mar 1990 | A |
4917084 | Sinofsky | Apr 1990 | A |
4926227 | Jensen | May 1990 | A |
4928038 | Nerone | May 1990 | A |
4930504 | Diamantopoulos et al. | Jun 1990 | A |
4945239 | Wist et al. | Jul 1990 | A |
5000752 | Hoskin et al. | Mar 1991 | A |
5057104 | Chess | Oct 1991 | A |
5059192 | Zaias | Oct 1991 | A |
5065515 | Iderosa | Nov 1991 | A |
5066293 | Furumoto | Nov 1991 | A |
5071417 | Sinofsky | Dec 1991 | A |
5108388 | Trokel | Apr 1992 | A |
5127395 | Bontemps | Jul 1992 | A |
5137530 | Sand | Aug 1992 | A |
5140984 | Dew et al. | Aug 1992 | A |
5178617 | Kuizenga et al. | Jan 1993 | A |
5182557 | Lang | Jan 1993 | A |
5182857 | Simon | Feb 1993 | A |
5196004 | Sinofsky | Mar 1993 | A |
5207671 | Franken et al. | May 1993 | A |
5225926 | Cuomo et al. | Jul 1993 | A |
5226907 | Tankovich | Jul 1993 | A |
5267399 | Johnston | Dec 1993 | A |
5282797 | Chess | Feb 1994 | A |
5287380 | Hsia | Feb 1994 | A |
5300097 | Lerner et al. | Apr 1994 | A |
5304170 | Green | Apr 1994 | A |
5306274 | Long | Apr 1994 | A |
5320618 | Gustafsson | Jun 1994 | A |
5334191 | Poppas et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5342358 | Daikuzono et al. | Aug 1994 | A |
5344418 | Ghaffari | Sep 1994 | A |
5344434 | Talmore | Sep 1994 | A |
5348551 | Spears et al. | Sep 1994 | A |
5350376 | Brown | Sep 1994 | A |
5358503 | Bertwell et al. | Oct 1994 | A |
5380317 | Everett et al. | Jan 1995 | A |
5403306 | Edwards et al. | Apr 1995 | A |
5405368 | Eckhouse | Apr 1995 | A |
5415654 | Daikuzono | May 1995 | A |
5425728 | Tankovich | Jun 1995 | A |
5458140 | Eppstein et al. | Oct 1995 | A |
5474549 | Ortiz et al. | Dec 1995 | A |
5486172 | Chess | Jan 1996 | A |
5505726 | Meserol | Apr 1996 | A |
5505727 | Keller | Apr 1996 | A |
5519534 | Smith et al. | May 1996 | A |
5522813 | Trelles | Jun 1996 | A |
5531739 | Trelles | Jul 1996 | A |
5531740 | Black | Jul 1996 | A |
5549660 | Mendes et al. | Aug 1996 | A |
5558667 | Yarborough et al. | Sep 1996 | A |
5578866 | DePoorter et al. | Nov 1996 | A |
5595568 | Anderson et al. | Jan 1997 | A |
5616140 | Prescott | Apr 1997 | A |
5620478 | Eckhouse | Apr 1997 | A |
5626631 | Eckhouse | May 1997 | A |
5630811 | Miller | May 1997 | A |
5649972 | Hochstein | Jul 1997 | A |
5655547 | Karni | Aug 1997 | A |
5658148 | Neuberger et al. | Aug 1997 | A |
5658323 | Miller | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5662643 | Kung et al. | Sep 1997 | A |
5662644 | Swor | Sep 1997 | A |
5683380 | Eckhouse et al. | Nov 1997 | A |
5698866 | Doiron et al. | Dec 1997 | A |
5707403 | Grove et al. | Jan 1998 | A |
5720772 | Eckhouse | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5735844 | Anderson et al. | Apr 1998 | A |
5735884 | Thompson et al. | Apr 1998 | A |
5742392 | Anderson et al. | Apr 1998 | A |
5743901 | Grove et al. | Apr 1998 | A |
5746735 | Furumoto et al. | May 1998 | A |
5755751 | Eckhouse | May 1998 | A |
5759200 | Azar | Jun 1998 | A |
5769076 | Mackawa et al. | Jun 1998 | A |
5782249 | Weber et al. | Jul 1998 | A |
5810801 | Anderson et al. | Sep 1998 | A |
5814008 | Chen et al. | Sep 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5814041 | Anderson et al. | Sep 1998 | A |
5817089 | Tankovich et al. | Oct 1998 | A |
5820625 | Izawa et al. | Oct 1998 | A |
5820626 | Baumgardner | Oct 1998 | A |
5824023 | Anderson | Oct 1998 | A |
5827264 | Hohla | Oct 1998 | A |
5828803 | Eckhouse | Oct 1998 | A |
5830208 | Muller | Nov 1998 | A |
5836877 | Zavislan | Nov 1998 | A |
5836999 | Eckhouse et al. | Nov 1998 | A |
5840048 | Cheng | Nov 1998 | A |
5849029 | Eckhouse et al. | Dec 1998 | A |
5851181 | Talmor | Dec 1998 | A |
5853407 | Miller | Dec 1998 | A |
5860967 | Zavislan et al. | Jan 1999 | A |
5868731 | Budnik et al. | Feb 1999 | A |
5871480 | Tankovich | Feb 1999 | A |
5883471 | Rodman et al. | Mar 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5885273 | Eckhouse et al. | Mar 1999 | A |
5885274 | Fullmer et al. | Mar 1999 | A |
5891063 | Vigil | Apr 1999 | A |
5913883 | Alexander et al. | Jun 1999 | A |
5916211 | Quon et al. | Jun 1999 | A |
5944748 | Mager et al. | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5949222 | Buono | Sep 1999 | A |
5954710 | Paolini et al. | Sep 1999 | A |
5955490 | Kennedy et al. | Sep 1999 | A |
5964749 | Eckhouse et al. | Oct 1999 | A |
5968033 | Fuller et al. | Oct 1999 | A |
5968034 | Fullmer et al. | Oct 1999 | A |
5976123 | Baumgardner et al. | Nov 1999 | A |
5977723 | Yoon | Nov 1999 | A |
5984915 | Loeb et al. | Nov 1999 | A |
6015404 | Altshuler et al. | Jan 2000 | A |
6022316 | Eppstein et al. | Feb 2000 | A |
6026828 | Altshuler | Feb 2000 | A |
6027495 | Miller | Feb 2000 | A |
6030399 | Ignotz et al. | Feb 2000 | A |
6032071 | Binder | Feb 2000 | A |
RE36634 | Ghaffari | Mar 2000 | E |
6036684 | Tankovich et al. | Mar 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
D424197 | Sydlowski et al. | May 2000 | S |
6056738 | Marchitto et al. | May 2000 | A |
6059820 | Baronov | May 2000 | A |
6074382 | Asah et al. | Jun 2000 | A |
6080146 | Altshuler et al. | Jun 2000 | A |
6086580 | Mordon et al. | Jul 2000 | A |
6096029 | O'Donnell, Jr. | Aug 2000 | A |
6096209 | O'Brien et al. | Aug 2000 | A |
6104959 | Spertell | Aug 2000 | A |
6117129 | Mukai | Sep 2000 | A |
6120497 | Anderson | Sep 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6149644 | Xie | Nov 2000 | A |
6162055 | Montgomery et al. | Dec 2000 | A |
6162211 | Tankovich et al. | Dec 2000 | A |
6162212 | Kreindel et al. | Dec 2000 | A |
6173202 | Eppstein et al. | Jan 2001 | B1 |
6174325 | Eckhouse | Jan 2001 | B1 |
6176854 | Cone | Jan 2001 | B1 |
6183434 | Eppstein | Feb 2001 | B1 |
6183500 | Kohler | Feb 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6187001 | Azar et al. | Feb 2001 | B1 |
6197020 | O'Donnell | Mar 2001 | B1 |
6210425 | Chen | Apr 2001 | B1 |
6214034 | Azar | Apr 2001 | B1 |
6228075 | Furumoto | May 2001 | B1 |
6229831 | Nightingale et al. | May 2001 | B1 |
6235016 | Stewart | May 2001 | B1 |
6236891 | Ingel et al. | May 2001 | B1 |
6245093 | Li et al. | Jun 2001 | B1 |
6263233 | Zavislan et al. | Jul 2001 | B1 |
6264649 | Whitcroft et al. | Jul 2001 | B1 |
6267780 | Streeter | Jul 2001 | B1 |
6273884 | Altshuler et al. | Aug 2001 | B1 |
6273885 | Koop et al. | Aug 2001 | B1 |
6280438 | Eckhouse et al. | Aug 2001 | B1 |
6283956 | McDaniel | Sep 2001 | B1 |
6290713 | Russell | Sep 2001 | B1 |
6306130 | Anderson et al. | Oct 2001 | B1 |
6319274 | Shadduck | Nov 2001 | B1 |
6340495 | Sumian et al. | Jan 2002 | B1 |
6343933 | Montgomery et al. | Feb 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6354370 | Miller et al. | Mar 2002 | B1 |
6358272 | Wilden | Mar 2002 | B1 |
6383176 | Connors et al. | May 2002 | B1 |
6383177 | Balle-Petersen et al. | May 2002 | B1 |
6387089 | Kreindel et al. | May 2002 | B1 |
6406474 | Neuberger et al. | Jun 2002 | B1 |
6424852 | Zavislan | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6436094 | Reuter | Aug 2002 | B1 |
6461296 | Desai | Oct 2002 | B1 |
6471712 | Burres | Oct 2002 | B2 |
6471716 | Pecukonis | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6494900 | Salansky et al. | Dec 2002 | B1 |
6508785 | Eppstein | Jan 2003 | B1 |
6508813 | Altshuler | Jan 2003 | B1 |
6511475 | Altshuler et al. | Jan 2003 | B1 |
6514243 | Eckhouse et al. | Feb 2003 | B1 |
6517532 | Altshuler et al. | Feb 2003 | B1 |
6530915 | Eppstein et al. | Mar 2003 | B1 |
6537270 | Elbrecht et al. | Mar 2003 | B1 |
6558372 | Altshuler | May 2003 | B1 |
6569155 | Connors et al. | May 2003 | B1 |
6572637 | Yamazaki et al. | Jun 2003 | B1 |
6602245 | Thiberg | Aug 2003 | B1 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6629971 | McDaniel | Oct 2003 | B2 |
6629989 | Akita | Oct 2003 | B2 |
6632219 | Baranov et al. | Oct 2003 | B1 |
6635075 | Li et al. | Oct 2003 | B2 |
6641600 | Kohler | Nov 2003 | B1 |
6648904 | Altshuler et al. | Nov 2003 | B2 |
6653618 | Zenzie | Nov 2003 | B2 |
6660000 | Neuberger et al. | Dec 2003 | B2 |
6663620 | Altshuler et al. | Dec 2003 | B2 |
6663658 | Kollias et al. | Dec 2003 | B1 |
6663659 | McDaniel | Dec 2003 | B2 |
6676654 | Balle-Petersen et al. | Jan 2004 | B1 |
6679837 | Daikuzono | Jan 2004 | B2 |
6685699 | Eppstein et al. | Feb 2004 | B1 |
6689124 | Thiberg | Feb 2004 | B1 |
6709269 | Altshuler | Mar 2004 | B1 |
6709446 | Lundahl et al. | Mar 2004 | B2 |
6723090 | Altshuler et al. | Apr 2004 | B2 |
6743222 | Durkin et al. | Jun 2004 | B2 |
6770069 | Hobart et al. | Aug 2004 | B1 |
6790205 | Yamazaki et al. | Sep 2004 | B1 |
6808532 | Andersen et al. | Oct 2004 | B2 |
RE38670 | Asah et al. | Dec 2004 | E |
6878144 | Altshuler et al. | Apr 2005 | B2 |
6881212 | Clement et al. | Apr 2005 | B1 |
6887260 | McDaniel | May 2005 | B1 |
6888319 | Inochkin et al. | May 2005 | B2 |
20010041886 | Durkin et al. | Nov 2001 | A1 |
20020005475 | Zenzie | Jan 2002 | A1 |
20020026225 | Segal | Feb 2002 | A1 |
20020091377 | Anderson | Jul 2002 | A1 |
20020128635 | Altshuler et al. | Sep 2002 | A1 |
20020161357 | Anderson | Oct 2002 | A1 |
20020173780 | Altshuler et al. | Nov 2002 | A1 |
20030004499 | McDaniel | Jan 2003 | A1 |
20030023283 | McDaniel | Jan 2003 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030032950 | Altshuler et al. | Feb 2003 | A1 |
20030036680 | Black | Feb 2003 | A1 |
20030055414 | Altshuler et al. | Mar 2003 | A1 |
20030057875 | Inochkin et al. | Mar 2003 | A1 |
20030065314 | Altshuler et al. | Apr 2003 | A1 |
20030100936 | Altshuler et al. | May 2003 | A1 |
20030109787 | Black | Jun 2003 | A1 |
20030109860 | Black | Jun 2003 | A1 |
20030129154 | McDaniel | Jul 2003 | A1 |
20030187486 | Savage et al. | Oct 2003 | A1 |
20030195494 | Altshuler et al. | Oct 2003 | A1 |
20030199859 | Altshuler et al. | Oct 2003 | A1 |
20030232303 | Black | Dec 2003 | A1 |
20040006332 | Black | Jan 2004 | A1 |
20040010298 | Altshuler et al. | Jan 2004 | A1 |
20040015156 | Vasily | Jan 2004 | A1 |
20040024388 | Altshuler | Feb 2004 | A1 |
20040030326 | Altshuler et al. | Feb 2004 | A1 |
20040034319 | Anderson et al. | Feb 2004 | A1 |
20040034341 | Altshuler et al. | Feb 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040082940 | Black et al. | Apr 2004 | A1 |
20040085026 | Inochkin et al. | May 2004 | A1 |
20040093042 | Altshuler et al. | May 2004 | A1 |
20040133251 | Altshuler et al. | Jul 2004 | A1 |
20040143920 | Nanda | Jul 2004 | A1 |
20040147984 | Altshuler et al. | Jul 2004 | A1 |
20040162549 | Altshuler et al. | Aug 2004 | A1 |
20040162596 | Altshuler et al. | Aug 2004 | A1 |
20040191729 | Altshuler et al. | Sep 2004 | A1 |
20040193235 | Altshuler et al. | Sep 2004 | A1 |
20040193236 | Altshuler et al. | Sep 2004 | A1 |
20040199227 | Altshuler et al. | Oct 2004 | A1 |
20040204745 | Altshuler et al. | Oct 2004 | A1 |
20040210276 | Altshuler et al. | Oct 2004 | A1 |
20040214132 | Altshuler | Oct 2004 | A1 |
20040225339 | Yaroslavsky et al. | Nov 2004 | A1 |
20040230258 | Altshuler et al. | Nov 2004 | A1 |
20050038418 | Altshuler et al. | Feb 2005 | A1 |
20050049582 | DeBenedictis et al. | Mar 2005 | A1 |
20050049658 | Connors et al. | Mar 2005 | A1 |
20050107849 | Altshuler et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
9102407 | Jul 1991 | DE |
0743029 | Nov 1996 | EP |
0884066 | Dec 1998 | EP |
0885629 | Dec 1998 | EP |
1138349 | Oct 2001 | EP |
1147785 | Oct 2001 | EP |
1226787 | Jul 2002 | EP |
1 457 234 | Sep 2004 | EP |
1546625 | May 1979 | GB |
2356570 | May 2001 | GB |
2368020 | Apr 2002 | GB |
2390021 | Dec 2003 | GB |
2397528 | Jul 2004 | GB |
2001145520 | May 2001 | JP |
2003192809 | Feb 2005 | JP |
WO8804592 | Jun 1988 | WO |
WO9113652 | Sep 1991 | WO |
WO9636396 | Nov 1996 | WO |
WO9641579 | Dec 1996 | WO |
WO9858595 | Dec 1998 | WO |
WO9917666 | Apr 1999 | WO |
WO9917667 | Apr 1999 | WO |
WO9927863 | Jun 1999 | WO |
WO 0002491 | Jan 2000 | WO |
WO 0032272 | Jun 2000 | WO |
WO 0040266 | Jul 2000 | WO |
WO 0043070 | Jul 2000 | WO |
WO 0044294 | Aug 2000 | WO |
WO 0064537 | Nov 2000 | WO |
WO 0074583 | Dec 2000 | WO |
WO 0126573 | Apr 2001 | WO |
WO 0154770 | Aug 2001 | WO |
WO 0168185 | Sep 2001 | WO |
WO 0178830 | Oct 2001 | WO |
WO 02069825 | Sep 2002 | WO |
WO 2004073537 | Sep 2004 | WO |
WO 2004084752 | Oct 2004 | WO |
WO 2004086947 | Oct 2004 | WO |
WO 2005007003 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20040073079 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
60389871 | Jun 2002 | US |