Field of the Invention
This invention relates to methods and apparatus for the photothermal treatment of tissue and, more particularly, to methods and apparatus for treating cutaneous and subcutaneous conditions at depth.
Description of the Related Art
The benefits of being able to raise and/or lower the temperature in a selected region of tissue for various therapeutic and cosmetic purposes has been known for some time. For instance, heated pads or plates or various forms of electromagnetic radiation, including visible, infrared and microwave radiation, electricity, and ultrasound have previously been used for heating subdermal muscles, ligaments, bones and the like to, for example, increase blood flow, to otherwise promote the healing of various injuries and other damage, and for various therapeutic purposes, such as frostbite or hyperthermia treatment, treatment of poor blood circulation, physical therapy, stimulation of collagen, cellulite treatment, adrenergic stimulation, wound healing, psoriasis treatment, body reshaping, non-invasive wrinkle removal, etc. The heating of tissues has also been utilized as a potential treatment for removing cancers or other undesired growths, infections and the like. Heating may be applied over a small localized area, over a larger area, for example to the hands or feet, or over larger regions of tissue, including the entire body.
Since most of the techniques described above involve applying energy to tissue at depth through the patient's skin surface, peak temperature generally occurs at or near the patient's skin surface and decrease, sometimes significantly, with depth. Further, while microwaves or ultrasonic and other acoustic radiation have been used in the past, such radiation has had limited use because, particularly for microwaves, they may be potentially mutagenic, may potentially otherwise result in cell or systemic damage and, particularly for acoustic sources, are relatively expensive. They may also not be practical for large-area treatment.
While optical and near infrared (NIR) radiation (collectively referred to hereinafter as “optical radiation” is generally both less expensive and, being non-mutagenic, safer than microwaves radiation, the use of optical radiation has heretofore not been considered suitable for most applications involving heating of tissue at depth, the term “tissue at depth” as used herein meaning tissue at the border zone of the dermis and hypodermis or subcutaneous region, some of which tissue may be in the lower dermis, mostly at a depth deeper than 1 mm, and tissue below this border zone to a depth of up to about 50 mm. The reason why this radiation has not been considered suitable is because such radiation is both highly scattered and highly absorbed in surface layers of tissue, precluding significant portions of such radiation from reaching the tissue regions at depth to cause heating thereof. In view of the energy losses due to scattering and absorption, substantial optical (including NIR) energy must be applied in order for enough such energy to reach a region of tissues at depth to have a desired effect. However, such high energy can cause damage to the surface layers of tissue and pain/discomfort to the patient, making it difficult to achieve desired photothermal treatments in tissue regions at depth. For these reasons, optical radiation has heretofore had at most limited value for therapeutic and cosmetic treatments on tissue at depth.
While heating or cooling of tissue at depth alone has proved useful for many treatments, the combination of heating and cooling applied intermittently to the skin surface (known as contrast therapy) is also known and has been suggested for skin improvement, pain relief, inflammation reduction, and healing of injury. Of particular importance is the application of these techniques for reducing subcutaneous fat deposits and treating cellulite (gynoid lipodystrophy). However, use of cooling or heating, either alone or in combination for treatment of conditions at depth, for example for skin improvement, cellulite improvement, fat reduction, and treatment of other conditions has been limited by the body's pain/discomfort tolerance and by the damage limits of treated organs and adjacent, especially cutaneous, tissue that need to be kept intact.
A need therefore exists for improved method and apparatus for photothermal treatment of tissue regions at depth, and in particular for treatment of deep dermis and subcutaneous regions of tissue, which treatments provide improved treatment results, while both reducing patient pain and discomfort and protecting adjacent and other non-treatment tissue from damage.
In accordance with the above, this invention provides a method and apparatus for treating at least a selected target region at depth, as this term has previously been defined, of a patient's body, while protecting non-targeted tissue by utilizing a suitable mechanism to cool the patient's skin surface to a temperature below normal body temperature for a selected duration; utilizing a suitable mechanism to selectively apply radiation to the patient's skin above said region before, during and/or after cooling; and repeating the cooling and radiation application for a selected number of cycles, the temperature to which the patient's skin is cooled and the duration of cooling being sufficient to cool the treatment region to a selected temperature below normal body temperature during at least cooling portions of cycles. The cooling duration should be at least about 10 seconds, normally being between approximately 10 seconds and 20 minutes. Where radiation is applied after cooling, the radiation may be applied for approximately one second to 4 minutes. The cooling may be performed continuously while the radiation is applied at intervals during the cooling. Where the selected region is subcutaneous fat, the selected temperature should be low enough to result in at least a selective phase change of at least a portion of the fat. In this case, the radiation should be of sufficient power and duration and of appropriate wavelength to heat the treatment region to at least a temperature where the phase of the fat cells is altered. Alternatively, the radiation may be of sufficient power and duration and of appropriate wavelength to heat the treatment region to a temperature where at least one of the biophysical and biochemical characteristics of cells in the region is altered. Alternatively, the radiation should be of sufficient power and duration and of appropriate wavelength to heat tissue above the treatment region to protect the tissue, but not to significantly heat the treatment region. For another embodiment, the treatment involves cycling cooling and heating of the treatment region, radiation being applied after cooling and the radiation being of sufficient power and duration and of appropriate wavelength to heat the region to an appropriate temperature to effect the treatment. For some embodiments, a selected condition of the patient is detected and utilized to control at least a portion of the operation. Stimulation of the selected region may also be utilized before, during and/or after at least one of the operations, such stimulation being generally at least one of mechanical, acoustic and electrical. The period and/or phase of the treatment cycles may be correlated with a sub-circadian rhythm of the patient.
For some embodiments, the radiation is from a continuous wave source and cooling is also performed from a substantially continuously operating source. For these embodiments, cooling and radiation application are each performed by passing an applicator outputting the appropriate source over the patient's overlying the treatment region at a selected rate. The same applicator may be used to perform both cooling ad radiation application for these embodiments and the applicator my perform both operations during the same pass or separate passes.
In accordance with another aspect of the invention, radiation is selectively delivered to the patients body above the selected region to heat the region; patient tissue above the selected region is concurrently cooled to a temperature below that of the selected region; and the region is cooled to a temperature below normal body temperature before and/or after the heating of the region.
In accordance with still another aspect of the invention, treatment is performed by cyclically applying radiation and cooling to the surface of the patient's skin above the selected region through at least one applicator providing substantially continuous cooling/radiation output, which applicator is passed over the patient's skin over the region multiple times for each cooling/radiation cycle.
Other advantages, novel features, and objects of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings, which are schematic and which are not intended to be drawn to scale. In the figures, each identical, or substantially similar component that is illustrated in various figures is represented by a single numeral or notation. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention.
Non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings in which:
Applications in which the invention may be useful include the treatment of various pathological and cosmetic conditions, particularly skin rejuvenation, wrinkle removal, skin tightening and lifting, reduction of odor production, hair growth control, acne treatment, cellulite and subcutaneous fat treatment, physical therapy, muscle and skeletal treatments, including treatment of spinal cord problems, and treatment of cumulative trauma disorders (CTD's) such as carpel tunnel syndrome (CTS), tendonitis and bursitis, fibromyalgia, lymphedema and cancer therapy.
The application of thermal energy, either heating or cooling, to tissue may also be used, for example, in physical therapy treatments, such as to enhance or accelerate wound healing or relieve pain. Beneficial effects may include a decrease in joint stiffness, an increase in joint extensibility of collagenous structures such as tendons and scar tissue, pain relief, blood-flow changes, or a decrease in muscle spasm and increase in muscle tone. As another example, large protein molecules may have high absorption coefficients, and the heating of protein-rich collagenous tissues may contribute to healing. A wide variety of conditions may be treated using this invention, for example, but not limited to, strained tendons, tenosynovitis, torn ligaments, tendonitis, bursitis, torn joint capsules, or torn muscles. Thermal treatment can be effective on highly metabolic organs such as sebaceous gland, sweat glands and hair follicles. Other processes may be activated or deactivated within tissue during cooling or heating. Mechanical or electrical stimulation, such as massage, may also be used in conjunction with cooling or heating to achieve benefits greater then can be achieved by either alone. Positive and negative pressure may also be applied to the skin surface above the treatment region to facilitate the treatment.
In certain embodiments, the present invention may be used for non-invasive or non-destructive reduction of localized fat deposits. For example, the invention may be used to heat fat or adipose cells past their damage temperature, causing cell damage and/or necrosis. Alternatively, the treated cells may undergo apoptosis, resulting in cell death. The dead cells may then be removed or resorbed into the body, for example, by the body's phagocytic or lymphatic systems. Fat reduction may also be achieved by heating fat or adipose cells to an elevated temperature, but below the damage temperature. For example, the fat cells may be heated to a temperature of between about 41° C. and about 45° C. Under these conditions, applying heat to subcutaneous fat may activate lipases or metabolize lipids contained within the adipose tissue found within the subcutaneous fat layer, or blood flow may increase to the heated area. Additionally, “lipolysis,” or the process of breaking down fat in the body, may be regulated by enzymes sensitive to temperature, such as HSL (“hormone-sensitive lipase”). Thus, elevating the temperature of the adipose cells may increase the lipolysis rate, and thus contribute to a reduction in subdermal fat in the area being treated. This temperature can be below the temperature for vascular/lymph damage so damaged fatty cells and fatty acids can be easily removed from the treatment region. Additionally, application of the present invention may be used in combination with other fat-reduction techniques, such as medication, exercise, or adrenergic stimulation.
The invention also includes cooling of the fat tissue to a temperature below normal body temperature, and preferably below the phase transition temperature of at least some fraction of the lipid content of fatty cells, which temperature is substantially higher then the freezing temperature of water-containing tissue, preceded or preferably followed by heating the fat to a temperature below its damage threshold. Triglycerides (which constitute the largest fraction of lipids in human fatty tissue) undergo a series of phase transitions when their temperature changes from normal body temperature to either a lower or higher temperature. Specifically, several crystalline forms can exist. These forms are (in the order of increasing stability): α, β′, and β. The latter crystals are also significantly larger in size (as needle of a dozen microns length). Crystal formation can be the reason for fatty cell dysfunction and shrinkage resulting from mechanical stress on cell structure and/or destruction of cell metabolism. β crystal formation can the primer mechanism for fatty cell treatment. When triglycerides are cooled from normal body temperature, formation of α-crystals takes place. In order to produce more stable forms, β′ first and β second, reverse heating of the crystallized triglycerides is required. Further heating leads to complete melting of all crystalline forms.
Therefore, the following process is suggested to initiate formation of β-crystals in adipose cells. First, the fatty tissue is cooled to a lower-than-normal temperature Tα (in the range between 0 and 37 C). This results in α-crystals being formed. Then, the tissue is heated back to a temperature Tβ>Tα but below 37 C, causing formation of β′- and β-crystals. Finally, the tissue can be heated to even higher temperature in order to melt the crystals, and the process can be repeated for a selected number of cycles. The expected final result is dystrophy and decrease in volume of fatty tissue. This process takes place for all temperature range 0-37 but for lower Tα this process is more effective. Thermal activation of lymph systems in subcutaneous fat can also be used to treat cellulite by removing proteins from extra cell spaces.
Application of a cooling panel (agent or device) to the skin surface causes the temperature of skin and the subcutaneous region or subcutis to drop gradually, as illustrated by
Depending on the surface temperature and the duration of application, a number of processes can be initiated in the fatty and other tissues, including, but not limited to:
In practical use, cold exposure time is limited by the onset of unpleasant and, subsequently, painful sensations.
Thermal cycling, comprised of cooling and heating phases, may be used to eliminate both the pain/discomfort and unwanted tissue damage outside the target region. It should be emphasized that, although methods and devices alternating skin surface temperature between hot and cold have previously been proposed, the thermal inertia of tissue prevents rapid propagation of a heat front from the skin surface to a desired treatment depth (or vice versa).
This invention therefore uses deep-penetrating electromagnetic or acoustic radiation to create distributed heat sources within tissue. This allows increasing the treatment time substantially and achieving acceptable therapeutic effect, while maintaining both complete non-invasiveness of the procedure and patient comfort.
Beneficial effects of thermal cycling are not limited to treatment of fatty tissue. Thermal cycling initiates a number of biophysical and biochemical responses at molecular, cellular, tissue, and organ levels, including (but not limited to):
As a result, thermal cycling can be used for treatment of a wide range of conditions, involving skin, subcutaneous fat, connective tissues, blood and lymph vasculature, muscles, bones, and other internal organs.
Apparatus for implementing the technical concept is illustrated by
The invention can be practiced in two distinctive modes (See
The invention can be practiced in at least two distinct modes (See
Thermal cycling offers another advantage when optical radiation is used as the deep-penetrating energy. Specifically, it has been demonstrated with optical measurements, that the rate of increase in optical transmittance when fresh human fatty tissue is heated exceeds the rate of decrease in optical transmittance when the same tissue is cooled (See
In some embodiments, the applicator (handpiece) of the apparatus can be realized as a stationary implement, which is placed on the treatment area prior to initiating thermal cycling.
In other embodiments, the handpiece can be manually or mechanically scanned along the skin surface (See
The apparatus of
Where energy source is a continuous wave (CW) or other long duration source, the apparatus or device for various of the embodiments may be slid or scanned over the surface of the patient's skin to overlie successive treatment regions, the dwell time, and thus the treatment duration, for each such region being a function of the rate at which the device is moved. The device may be moved over each treatment region multiple times during a single treatment. Since the device will typically also include a skin cooling mechanism, concurrent heating and cooling is effected for each region as the device passes thereover. The device may also include a cooling mechanism ahead of the portion of the device under the energy source to pre-cool skin above the treatment region (see for example issued U.S. Pat. Nos. 6,273,884 and 6,511,475, which are incorporated herein by reference). The power density Ps for this sliding mode of operation is:
Ps=P0T v/d,
Were P0 is power density for the organ/region being treated in a stationary mode
V is speed of sliding,
d is spot or aperture size in the direction of scanning,
T is interval between two consecutive passes through same spot.
Treatment time is
Ts=T0T v/d,
where T0 is the stationary mode treatment time for the organ/region being treated In order for the multiple passes to be beneficial, T should be less than the thermal relaxation time of the tissue being treated in the region at depth. However, when in either stationary mode or sliding mode, the treatment time can be greater than the thermal relaxation time of the tissue being treated.
Any of the embodiments can include a contact sensor to assure good optical and thermal coupling, and systems operating in the sliding mode may also include one or more motion sensors to control radiation delivery, cooling and other functions dependent on scanning speed, to enhance system safety and for other reasons.
In addition to coupling the deep heating treatment of this invention with deep cooling to enhance treatment of fat, bone, muscle, etc., the applicator may also include a massager, vibrator or other mechanical stimulation device, an ultrasonic or other acoustic stimulator or a DC or other suitable electrical stimulation source. It has been found that such mechanical or electrical stimulation is more effective when tissue temperature deviates from normal body temperature (ie., for hot or cold tissue). Similarly, the effect of deep heating may be enhanced by massage or other stimulation because both heat and cold generally penetrates better in compressed skin and subdermal tissue. Thus, the combination of deep heating and mechanical or electrical stimulation may provide significantly better results then either one alone. Heating may also be enhanced by supplementing the optical heating with, for example electro-stimulation by AC/DC, or additional heating by RF, etc. Tensioning or pressure applied to the skin overlying the treatment region may also enhance treatment effect and decrease patient discomfort/pain sensation.
While an optical radiation source has been utilized for preferred embodiments, other forms of electromagnetic radiation such as microwave or radio frequency radiation can be used on the heating phase of the cycle. Alternatively, acoustic energy can be used. Unless otherwise indicated, the term radiation, as used herein, shall refer to the output from all such sources. The power of the source utilized should be selected in order to maintain the temperature of the targeted tissue within the preferred range.
The effectiveness of the invention may also be further increased by practicing a thermotolerance regimen. In this mode, the magnitude of temperature deviations from normal skin surface temperature which a patient can tolerate increases gradually from cycle to cycle, permitting treatment temperatures, and thus treatment effectiveness to also be gradually increased from cycle to cycle. This mode allows further increasing protection of cutaneous tissues from unwanted damage.
It may also be possible to correlate the period and phase of the thermal cycle with sub-circadian biological rhythms of the patient. Such combination can further optimize treatment results by using naturally occurring oscillations of biochemical activity in cutaneous and subcutaneous tissues. Furthermore, the temporal structure of the thermal cycling can deviate from simple harmonic oscillations and be comprised, for example, of several, or even an infinite number of harmonics.
In certain embodiments, the cooling implement can be realized as a layer (film, wrap) placed over the treatment region and the irradiating applicator can be realized as a head scanned on top of the cooling implement. Thermal cycling is achieved as a result of multiple passes of the irradiating applicator.
Some embodiments of the invention can incorporate a feedback loop between the applicator and the control unit. The feedback loop can incorporate a single or multiple sensors registering the state of the apparatus and the treatment area. For example, a thermal sensor can be used to initiate the heating phase of the cycle when tissue temperature drops below a certain threshold, and initiate the cooling phase of the cycle when the temperature exceeds another threshold. Other sensor types include, but are not limited to, scanning speed sensors, contact sensors, pressure sensors, skin detectors, and skin response sensors.
In some embodiments of the invention, an additional stimulating implement can be integrated into the applicator (see
While several embodiments of the invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and structures for performing the functions and/or obtaining the results and/or advantages described herein, and each of such variations or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art would readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that actual parameters, dimensions, materials, and configurations will depend upon specific applications for which the teachings of the present invention are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described. The present invention is directed to each individual feature, system, material and/or method described herein. In addition, any combination of two or more such features, systems, materials and/or methods, if such features, systems, materials and/or methods are not mutually inconsistent, is included within the scope of the present invention. In the claims, all transitional phrases or phrases of inclusion, such as “comprising,” “including,” “carrying,” “having,” “containing,” and the like are to be understood to be open-ended, i.e. to mean “including but not limited to.” Only the transitional phrases or phrases of inclusion “consisting of” and “consisting essentially of” are to be interpreted as closed or semi-closed phrases, respectively.
This application is a continuation of U.S. patent application Ser. No. 14/588,746, filed on Jan. 2, 2015 and entitled “Method And Apparatus For Treatment Of Cutaneous And Subcutaneous Conditions,” which is a continuation of U.S. patent application Ser. No. 11/865,367, filed on Oct. 1, 2007 and entitled “Method And Apparatus For Treatment Of Cutaneous And Subcutaneous Conditions,” which is a continuation of U.S. patent application Ser. No. 10/465,757, now U.S. Pat. No. 7,276,058, filed Jun. 19, 2003 and entitled “Method And Apparatus For Treatment Of Cutaneous And Subcutaneous Conditions,” which claims priority to U.S. patent application Ser. No. 60/389,871, filed Jun. 19, 2002 and entitled “Method And Apparatus For Subdermal Heating,” all of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
853033 | Roberts | May 1907 | A |
1590283 | Catlin | Jun 1926 | A |
1676183 | Garfunkle | Jul 1928 | A |
1706161 | Hollnagen | Mar 1929 | A |
2068721 | Wappler et al. | Jan 1937 | A |
2472385 | Rollman | Jun 1949 | A |
2669771 | Burge et al. | Feb 1954 | A |
3243650 | Hawkins et al. | Mar 1966 | A |
3261978 | Brenman | Jul 1966 | A |
3284665 | Goncz | Nov 1966 | A |
3327712 | Kaufmann | Jun 1967 | A |
3465203 | Michaels et al. | Sep 1969 | A |
3486070 | Engel | Dec 1969 | A |
3524144 | Buser et al. | Aug 1970 | A |
3527932 | Thomas | Sep 1970 | A |
3538919 | Meyer | Nov 1970 | A |
3597652 | Gates, Jr. | Aug 1971 | A |
3622743 | Muncheryan | Nov 1971 | A |
3651425 | McKnight | Mar 1972 | A |
3653778 | Freiling | Apr 1972 | A |
3667454 | Prince | Jun 1972 | A |
3693623 | Harte et al. | Sep 1972 | A |
3699967 | Anderson | Oct 1972 | A |
3725733 | Mack et al. | Apr 1973 | A |
3766393 | Herzog et al. | Oct 1973 | A |
3766488 | Kohn | Oct 1973 | A |
3769963 | Goldman et al. | Nov 1973 | A |
3793723 | Kuris et al. | Feb 1974 | A |
3794028 | Mueller et al. | Feb 1974 | A |
3815046 | Johnson et al. | Jun 1974 | A |
3818373 | Chun et al. | Jun 1974 | A |
3818914 | Bender | Jun 1974 | A |
3821510 | Muncheryan | Jun 1974 | A |
3834391 | Block | Sep 1974 | A |
3843865 | Nath | Oct 1974 | A |
3846811 | Nakamura et al. | Nov 1974 | A |
3857015 | Clark et al. | Dec 1974 | A |
3858577 | Bass et al. | Jan 1975 | A |
3885569 | Judson | May 1975 | A |
3890537 | Park et al. | Jun 1975 | A |
3900034 | Katz et al. | Aug 1975 | A |
3909649 | Arsena | Sep 1975 | A |
3914709 | Pike et al. | Oct 1975 | A |
3939560 | Lyall | Feb 1976 | A |
3977083 | Leslie et al. | Aug 1976 | A |
3980861 | Fukunaga | Sep 1976 | A |
4019156 | Fountain et al. | Apr 1977 | A |
4037136 | Hoene | Jul 1977 | A |
4038984 | Sittner | Aug 1977 | A |
4047106 | Robinson | Sep 1977 | A |
4065370 | Noble et al. | Dec 1977 | A |
4122853 | Smith | Oct 1978 | A |
4133503 | Bliss | Jan 1979 | A |
4139342 | Sheldrake et al. | Feb 1979 | A |
4154240 | Ikuno et al. | May 1979 | A |
4176324 | Aldag et al. | Nov 1979 | A |
4188927 | Harris | Feb 1980 | A |
4213462 | Sato | Jul 1980 | A |
4228800 | Degler, Jr. et al. | Oct 1980 | A |
4233493 | Nath et al. | Nov 1980 | A |
4254333 | Bergstrom | Mar 1981 | A |
4269067 | Tynan et al. | May 1981 | A |
4273109 | Enderby | Jun 1981 | A |
4275335 | Ishida et al. | Jun 1981 | A |
4291281 | Pinard et al. | Sep 1981 | A |
4292601 | Aldag et al. | Sep 1981 | A |
4293827 | McAllister et al. | Oct 1981 | A |
4298005 | Mutzhas | Nov 1981 | A |
4302730 | Jernigan | Nov 1981 | A |
4313431 | Frank | Feb 1982 | A |
4316467 | Muckerheide | Feb 1982 | A |
4333197 | Kuris | Jun 1982 | A |
4335726 | Kolstedt | Jun 1982 | A |
4336809 | Clark | Jun 1982 | A |
4364015 | Drake et al. | Dec 1982 | A |
4375684 | Everett | Mar 1983 | A |
4388924 | Weissman et al. | Jun 1983 | A |
4409479 | Sprague et al. | Oct 1983 | A |
4428368 | Torii | Jan 1984 | A |
4435808 | Javan | Mar 1984 | A |
4445217 | Acharekar et al. | Apr 1984 | A |
4452081 | Seppi | Jun 1984 | A |
4456872 | Froeschle | Jun 1984 | A |
4461294 | Baron | Jul 1984 | A |
4488104 | Suzuki | Dec 1984 | A |
4489415 | Jones et al. | Dec 1984 | A |
4492601 | Nakasone et al. | Jan 1985 | A |
4503854 | Jako | Mar 1985 | A |
4504727 | Melcher et al. | Mar 1985 | A |
4512197 | von Gutfeld et al. | Apr 1985 | A |
4524289 | Hammond et al. | Jun 1985 | A |
4539987 | Nath et al. | Sep 1985 | A |
4553546 | Javelle | Nov 1985 | A |
4555786 | Byer | Nov 1985 | A |
4559943 | Bowers | Dec 1985 | A |
4561440 | Kubo et al. | Dec 1985 | A |
4566271 | French et al. | Jan 1986 | A |
4566438 | Liese et al. | Jan 1986 | A |
4569345 | Manes | Feb 1986 | A |
4576177 | Webster, Jr. | Mar 1986 | A |
4587968 | Price | May 1986 | A |
4591762 | Nakamura | May 1986 | A |
4592353 | Daikuzono | Jun 1986 | A |
4601037 | McDonald | Jul 1986 | A |
4601753 | Soileau et al. | Jul 1986 | A |
4608978 | Rohr | Sep 1986 | A |
4608979 | Breidenthal et al. | Sep 1986 | A |
4617926 | Sutton | Oct 1986 | A |
4623929 | Johnson et al. | Nov 1986 | A |
4629884 | Bergstrom | Dec 1986 | A |
4638800 | Michel | Jan 1987 | A |
4653495 | Nanaumi | Mar 1987 | A |
4656641 | Scifres et al. | Apr 1987 | A |
4662368 | Hussein et al. | May 1987 | A |
4677347 | Nakamura | Jun 1987 | A |
4686986 | Fenyo et al. | Aug 1987 | A |
4693244 | Daikuzono | Sep 1987 | A |
4693556 | McCaughan, Jr. | Sep 1987 | A |
4695697 | Kosa | Sep 1987 | A |
4710677 | Halberstadt et al. | Dec 1987 | A |
4718416 | Nanaumi | Jan 1988 | A |
4724835 | Liss et al. | Feb 1988 | A |
4733660 | Itzkan | Mar 1988 | A |
4735201 | O'Reilly | Apr 1988 | A |
4736743 | Daikuzono | Apr 1988 | A |
4736745 | Gluckman | Apr 1988 | A |
4740047 | Abe et al. | Apr 1988 | A |
4741338 | Miyamae | May 1988 | A |
4745909 | Pelton et al. | May 1988 | A |
4747660 | Nishioka et al. | May 1988 | A |
4749913 | Stuermer et al. | Jun 1988 | A |
4759349 | Betz et al. | Jul 1988 | A |
4773413 | Hussein et al. | Sep 1988 | A |
4775361 | Jacques et al. | Oct 1988 | A |
4779173 | Carr et al. | Oct 1988 | A |
4784135 | Blum et al. | Nov 1988 | A |
4799479 | Spears | Jan 1989 | A |
4813412 | Yamazaki et al. | Mar 1989 | A |
4813762 | Leger et al. | Mar 1989 | A |
4819669 | Politzer | Apr 1989 | A |
4826431 | Fujimura et al. | May 1989 | A |
4829262 | Furumoto | May 1989 | A |
4832024 | Boussignac et al. | May 1989 | A |
4840174 | Gluckman | Jun 1989 | A |
4840563 | Altendorf | Jun 1989 | A |
4845608 | Gdula | Jul 1989 | A |
4848339 | Rink et al. | Jul 1989 | A |
4852107 | Hamal et al. | Jul 1989 | A |
4852549 | Mori | Aug 1989 | A |
4860172 | Schlager et al. | Aug 1989 | A |
4860303 | Russell | Aug 1989 | A |
4860743 | Abela | Aug 1989 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4862886 | Clarke et al. | Sep 1989 | A |
4862888 | Yessik | Sep 1989 | A |
4862903 | Campbell | Sep 1989 | A |
4871479 | Bachelard et al. | Oct 1989 | A |
4878224 | Kuder | Oct 1989 | A |
4884560 | Kuracina | Dec 1989 | A |
4887600 | Watson et al. | Dec 1989 | A |
4889525 | Yuhas et al. | Dec 1989 | A |
4890898 | Bentley et al. | Jan 1990 | A |
4891817 | Duarte | Jan 1990 | A |
4896329 | Knaak | Jan 1990 | A |
4898438 | Mori | Feb 1990 | A |
4898439 | Mori | Feb 1990 | A |
4901323 | Hawkins et al. | Feb 1990 | A |
4905690 | Ohshiro et al. | Mar 1990 | A |
4910438 | Farnsworth | Mar 1990 | A |
4913142 | Kittrell et al. | Apr 1990 | A |
4914298 | Quad et al. | Apr 1990 | A |
4917084 | Sinofsky | Apr 1990 | A |
4926227 | Jensen | May 1990 | A |
4928038 | Nerone | May 1990 | A |
4930504 | Diamantopoulos | Jun 1990 | A |
4931053 | L'Esperance | Jun 1990 | A |
4932954 | Wondrazek et al. | Jun 1990 | A |
4945239 | Wist et al. | Jul 1990 | A |
4950266 | Sinofsky | Aug 1990 | A |
4955882 | Hakky | Sep 1990 | A |
4968314 | Michaels | Nov 1990 | A |
4972427 | Streifer et al. | Nov 1990 | A |
4973848 | Kolobanov et al. | Nov 1990 | A |
4976308 | Faghri | Dec 1990 | A |
4976709 | Sand | Dec 1990 | A |
4977571 | Furumoto et al. | Dec 1990 | A |
4978186 | Mori | Dec 1990 | A |
4979180 | Muncheryan | Dec 1990 | A |
4992256 | Skaggs et al. | Feb 1991 | A |
4994060 | Rink et al. | Feb 1991 | A |
5000752 | Hoskin et al. | Mar 1991 | A |
5006293 | Hartman et al. | Apr 1991 | A |
5009658 | Damgaard-Iversen | Apr 1991 | A |
5011483 | Sleister | Apr 1991 | A |
5027359 | Leger et al. | Jun 1991 | A |
5030090 | Maeda et al. | Jul 1991 | A |
5032178 | Cornell | Jul 1991 | A |
5037421 | Boutacoff et al. | Aug 1991 | A |
5041109 | Abela | Aug 1991 | A |
5046494 | Searfoss et al. | Sep 1991 | A |
5050597 | Daikuzono | Sep 1991 | A |
5056515 | Abel | Oct 1991 | A |
5057099 | Rink | Oct 1991 | A |
5057104 | Chess | Oct 1991 | A |
5059192 | Zaias | Oct 1991 | A |
5060243 | Eckert | Oct 1991 | A |
5061266 | Hakky | Oct 1991 | A |
5065515 | Iderosa | Nov 1991 | A |
5066292 | Müller et al. | Nov 1991 | A |
5066293 | Furumoto | Nov 1991 | A |
5071416 | Heller et al. | Dec 1991 | A |
5071417 | Sinofsky | Dec 1991 | A |
5080660 | Buelna | Jan 1992 | A |
5090019 | Scheps | Feb 1992 | A |
5092865 | Rink | Mar 1992 | A |
5099231 | Sato | Mar 1992 | A |
5102410 | Dressel | Apr 1992 | A |
5108388 | Trokel | Apr 1992 | A |
5109387 | Garden et al. | Apr 1992 | A |
5112328 | Taboada et al. | May 1992 | A |
5127395 | Bontemps | Jul 1992 | A |
5129896 | Hasson | Jul 1992 | A |
5129897 | Daikuzono | Jul 1992 | A |
5132980 | Connors et al. | Jul 1992 | A |
5133102 | Sakuma | Jul 1992 | A |
5137530 | Sand | Aug 1992 | A |
5140608 | Karpol et al. | Aug 1992 | A |
5140984 | Dew et al. | Aug 1992 | A |
5147353 | Everett | Sep 1992 | A |
5147356 | Bhatta | Sep 1992 | A |
5151097 | Daikuzono | Sep 1992 | A |
5159601 | Huber | Oct 1992 | A |
5160194 | Feldman | Nov 1992 | A |
5163935 | Black et al. | Nov 1992 | A |
5171564 | Nathoo et al. | Dec 1992 | A |
5178617 | Kuizenga et al. | Jan 1993 | A |
5180378 | Kung et al. | Jan 1993 | A |
5182557 | Lang | Jan 1993 | A |
5182857 | Simon | Feb 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5191883 | Lennox et al. | Mar 1993 | A |
5192278 | Hayes et al. | Mar 1993 | A |
5193526 | Daikuzono | Mar 1993 | A |
5196004 | Sinofsky | Mar 1993 | A |
5197470 | Helfer et al. | Mar 1993 | A |
5201731 | Hakky | Apr 1993 | A |
5207671 | Franken et al. | May 1993 | A |
5207672 | Roth et al. | May 1993 | A |
5207673 | Ebling et al. | May 1993 | A |
5209748 | Daikuzono | May 1993 | A |
5213092 | Uram | May 1993 | A |
5217455 | Tan | Jun 1993 | A |
5219347 | Negus et al. | Jun 1993 | A |
5222907 | Katabuchi et al. | Jun 1993 | A |
5222953 | Dowlatshahi | Jun 1993 | A |
5225926 | Cuomo et al. | Jul 1993 | A |
5226907 | Tankovich | Jul 1993 | A |
5242437 | Everett et al. | Sep 1993 | A |
5242438 | Saadatmanesh | Sep 1993 | A |
5246436 | Rowe | Sep 1993 | A |
5249192 | Kuizenga et al. | Sep 1993 | A |
5254114 | Reed, Jr. et al. | Oct 1993 | A |
5255277 | Carvalho | Oct 1993 | A |
5257970 | Dougherty | Nov 1993 | A |
5257991 | Fletcher et al. | Nov 1993 | A |
5261904 | Baker et al. | Nov 1993 | A |
5267399 | Johnston | Dec 1993 | A |
5267995 | Doiron et al. | Dec 1993 | A |
5267998 | Hagen | Dec 1993 | A |
5269777 | Doiron et al. | Dec 1993 | A |
5269780 | Roos | Dec 1993 | A |
5281211 | Parel et al. | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5282797 | Chess | Feb 1994 | A |
5284154 | Raymond et al. | Feb 1994 | A |
5287372 | Ortiz | Feb 1994 | A |
5287380 | Hsia | Feb 1994 | A |
5290273 | Tan | Mar 1994 | A |
5290274 | Levy et al. | Mar 1994 | A |
5292320 | Brown et al. | Mar 1994 | A |
5293880 | Levitt | Mar 1994 | A |
5300063 | Tano et al. | Apr 1994 | A |
5300065 | Anderson | Apr 1994 | A |
5300097 | Lerner et al. | Apr 1994 | A |
5303585 | Lichte | Apr 1994 | A |
5304167 | Freiberg | Apr 1994 | A |
5304170 | Green | Apr 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5306143 | Levy | Apr 1994 | A |
5306274 | Long | Apr 1994 | A |
5307369 | Kimberlin | Apr 1994 | A |
5308311 | Eggers et al. | May 1994 | A |
5312395 | Tan et al. | May 1994 | A |
5312396 | Feld et al. | May 1994 | A |
5320618 | Gustafsson | Jun 1994 | A |
5320620 | Long et al. | Jun 1994 | A |
5330470 | Hagen | Jul 1994 | A |
5331649 | Dacquay et al. | Jul 1994 | A |
5334191 | Poppas et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5336217 | Buys et al. | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342358 | Daikuzono et al. | Aug 1994 | A |
5344418 | Ghaffari | Sep 1994 | A |
5344434 | Talmore | Sep 1994 | A |
5346488 | Prince et al. | Sep 1994 | A |
5348551 | Spears et al. | Sep 1994 | A |
5349590 | Amirkhanian et al. | Sep 1994 | A |
5350376 | Brown | Sep 1994 | A |
5353020 | Schurmann | Oct 1994 | A |
5353790 | Jacques et al. | Oct 1994 | A |
5354294 | Chou | Oct 1994 | A |
5356081 | Sellar | Oct 1994 | A |
5358503 | Bertwell et al. | Oct 1994 | A |
5360426 | Muller et al. | Nov 1994 | A |
5366456 | Rink et al. | Nov 1994 | A |
5368031 | Cline et al. | Nov 1994 | A |
5368038 | Fraden | Nov 1994 | A |
5369496 | Alfano et al. | Nov 1994 | A |
5369831 | Bock | Dec 1994 | A |
5370642 | Keller | Dec 1994 | A |
5370649 | Gardetto et al. | Dec 1994 | A |
5380317 | Everett et al. | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5386427 | Zayhowski | Jan 1995 | A |
5387211 | Saadatmanesh | Feb 1995 | A |
5395356 | King et al. | Mar 1995 | A |
5403306 | Edwards et al. | Apr 1995 | A |
5405368 | Eckhouse | Apr 1995 | A |
5409446 | Rattner | Apr 1995 | A |
5409479 | Dew et al. | Apr 1995 | A |
5409481 | Poppas et al. | Apr 1995 | A |
5415654 | Daikuzono | May 1995 | A |
5421337 | Richards-Kortum | Jun 1995 | A |
5421339 | Ramanujam et al. | Jun 1995 | A |
5422112 | Williams | Jun 1995 | A |
5423800 | Ren et al. | Jun 1995 | A |
5423803 | Tankovich et al. | Jun 1995 | A |
5423805 | Brucker et al. | Jun 1995 | A |
5425728 | Tankovich | Jun 1995 | A |
5425735 | Rosen et al. | Jun 1995 | A |
5425754 | Braun et al. | Jun 1995 | A |
5439954 | Bush | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5445608 | Chen et al. | Aug 1995 | A |
5445611 | Eppstein et al. | Aug 1995 | A |
5454807 | Lennox et al. | Oct 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5458140 | Eppstein et al. | Oct 1995 | A |
5464436 | Smith | Nov 1995 | A |
5470331 | Daikuzono | Nov 1995 | A |
5472748 | Wolfe et al. | Dec 1995 | A |
5474549 | Ortiz et al. | Dec 1995 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486170 | Winston et al. | Jan 1996 | A |
5486172 | Chess | Jan 1996 | A |
5488626 | Heller et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5492894 | Bascom et al. | Feb 1996 | A |
5496305 | Kittrell et al. | Mar 1996 | A |
5496307 | Daikuzono | Mar 1996 | A |
5498935 | McMahan et al. | Mar 1996 | A |
5499313 | Kleinerman | Mar 1996 | A |
5501680 | Kurtz et al. | Mar 1996 | A |
5502582 | Larson et al. | Mar 1996 | A |
5505726 | Meserol | Apr 1996 | A |
5505727 | Keller | Apr 1996 | A |
5507739 | Vassiliadis et al. | Apr 1996 | A |
5519534 | Smith et al. | May 1996 | A |
5521367 | Bard et al. | May 1996 | A |
5522813 | Trelles | Jun 1996 | A |
5527350 | Grove et al. | Jun 1996 | A |
5527368 | Supkis et al. | Jun 1996 | A |
5530711 | Scheps | Jun 1996 | A |
5531739 | Trelles | Jul 1996 | A |
5531740 | Black | Jul 1996 | A |
5536168 | Bourke | Jul 1996 | A |
5540676 | Freiberg | Jul 1996 | A |
5540678 | Long et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5541948 | Krupke et al. | Jul 1996 | A |
5546214 | Black et al. | Aug 1996 | A |
5549660 | Mendes et al. | Aug 1996 | A |
5557625 | Durville | Sep 1996 | A |
5558666 | Dewey et al. | Sep 1996 | A |
5558667 | Yarborough et al. | Sep 1996 | A |
5561881 | Klinger et al. | Oct 1996 | A |
5571098 | Domankevitz et al. | Nov 1996 | A |
5578029 | Trelles et al. | Nov 1996 | A |
5578866 | DePoorter et al. | Nov 1996 | A |
5591219 | Dungan | Jan 1997 | A |
5595568 | Anderson et al. | Jan 1997 | A |
5598426 | Hsia et al. | Jan 1997 | A |
5608210 | Esparza et al. | Mar 1997 | A |
5611793 | Wilson et al. | Mar 1997 | A |
5616140 | Prescott | Apr 1997 | A |
5618284 | Sand | Apr 1997 | A |
5620478 | Eckhouse | Apr 1997 | A |
5624435 | Furumoto et al. | Apr 1997 | A |
5626631 | Eckhouse | May 1997 | A |
5628744 | Coleman et al. | May 1997 | A |
5628771 | Mizukawa et al. | May 1997 | A |
5630811 | Miller | May 1997 | A |
5632741 | Zavislan et al. | May 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5647866 | Zaias et al. | Jul 1997 | A |
5649972 | Hochstein | Jul 1997 | A |
5651783 | Reynard | Jul 1997 | A |
5652481 | Johnson et al. | Jul 1997 | A |
5653706 | Zavislan et al. | Aug 1997 | A |
5655547 | Karni | Aug 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5658148 | Neuberger et al. | Aug 1997 | A |
5658323 | Miller | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5661744 | Murakami et al. | Aug 1997 | A |
5662643 | Kung et al. | Sep 1997 | A |
5662644 | Swor | Sep 1997 | A |
5668824 | Furumoto et al. | Sep 1997 | A |
5671315 | Tabuchi et al. | Sep 1997 | A |
5673451 | Moore et al. | Oct 1997 | A |
5679113 | Caisey et al. | Oct 1997 | A |
5683380 | Eckhouse et al. | Nov 1997 | A |
5684902 | Tada | Nov 1997 | A |
5688266 | Edwards et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5692509 | Voss et al. | Dec 1997 | A |
5698866 | Doiron et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5707401 | Martin et al. | Jan 1998 | A |
5707403 | Grove et al. | Jan 1998 | A |
5713738 | Yarborough | Feb 1998 | A |
5714119 | Kawagoe et al. | Feb 1998 | A |
5720772 | Eckhouse | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5725522 | Sinofsky | Mar 1998 | A |
5728090 | Martin et al. | Mar 1998 | A |
5735844 | Anderson et al. | Apr 1998 | A |
5735884 | Thompson et al. | Apr 1998 | A |
5738678 | Patel | Apr 1998 | A |
5742392 | Anderson et al. | Apr 1998 | A |
5743901 | Grove et al. | Apr 1998 | A |
5743902 | Trost | Apr 1998 | A |
5746735 | Furumoto et al. | May 1998 | A |
5748822 | Miura et al. | May 1998 | A |
5749868 | Furumoto | May 1998 | A |
5755751 | Eckhouse | May 1998 | A |
5759162 | Oppelt et al. | Jun 1998 | A |
5759200 | Azar | Jun 1998 | A |
5760362 | Eloy | Jun 1998 | A |
5769076 | Maekawa et al. | Jun 1998 | A |
5776129 | Mersch | Jul 1998 | A |
5782249 | Weber et al. | Jul 1998 | A |
5802136 | Carol | Sep 1998 | A |
5807386 | Slatkine et al. | Sep 1998 | A |
5810801 | Anderson et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5812567 | Jeon et al. | Sep 1998 | A |
5813855 | Crisio, Jr. | Sep 1998 | A |
5814008 | Chen et al. | Sep 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5814041 | Anderson et al. | Sep 1998 | A |
5817089 | Tankovich et al. | Oct 1998 | A |
5818580 | Murnick | Oct 1998 | A |
5820625 | Izawa et al. | Oct 1998 | A |
5820626 | Baumgardner | Oct 1998 | A |
5822034 | Shimashita et al. | Oct 1998 | A |
5824023 | Anderson | Oct 1998 | A |
5827264 | Hohla | Oct 1998 | A |
5828803 | Eckhouse | Oct 1998 | A |
5830208 | Muller | Nov 1998 | A |
5830209 | Savage et al. | Nov 1998 | A |
5835648 | Narciso, Jr. | Nov 1998 | A |
5836877 | Zavislan | Nov 1998 | A |
5836999 | Eckhouse et al. | Nov 1998 | A |
5837001 | Mackey | Nov 1998 | A |
5840048 | Cheng | Nov 1998 | A |
5843072 | Furumoto et al. | Dec 1998 | A |
5849029 | Eckhouse et al. | Dec 1998 | A |
5851181 | Talmor | Dec 1998 | A |
5853407 | Miller | Dec 1998 | A |
5860967 | Zavislan et al. | Jan 1999 | A |
5868731 | Budnik et al. | Feb 1999 | A |
5868732 | Waldman et al. | Feb 1999 | A |
5871479 | Furumoto et al. | Feb 1999 | A |
5871480 | Tankovich | Feb 1999 | A |
5879159 | Cipolla | Mar 1999 | A |
5879346 | Waldman et al. | Mar 1999 | A |
5879376 | Miller | Mar 1999 | A |
5883471 | Rodman et al. | Mar 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5885273 | Eckhouse et al. | Mar 1999 | A |
5885274 | Fullmer et al. | Mar 1999 | A |
5891063 | Vigil | Apr 1999 | A |
5893828 | Uram | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5895350 | Hori | Apr 1999 | A |
5897549 | Tankovich | Apr 1999 | A |
5906609 | Assa et al. | May 1999 | A |
5908418 | Dority et al. | Jun 1999 | A |
5913883 | Alexander et al. | Jun 1999 | A |
5916211 | Quon et al. | Jun 1999 | A |
5920374 | Vaphiades et al. | Jul 1999 | A |
5921926 | Rolland et al. | Jul 1999 | A |
5928222 | Kleinerman | Jul 1999 | A |
5935124 | Klumb et al. | Aug 1999 | A |
5944687 | Benett et al. | Aug 1999 | A |
5944748 | Mager et al. | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5949222 | Buono | Sep 1999 | A |
5951543 | Brauer | Sep 1999 | A |
5954710 | Paolini et al. | Sep 1999 | A |
5955490 | Kennedy et al. | Sep 1999 | A |
5957915 | Trost | Sep 1999 | A |
5964749 | Eckhouse et al. | Oct 1999 | A |
5968033 | Fuller et al. | Oct 1999 | A |
5968034 | Fullmer et al. | Oct 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5974059 | Dawson | Oct 1999 | A |
5974616 | Dreyfus | Nov 1999 | A |
5976123 | Baumgardner et al. | Nov 1999 | A |
5977723 | Yoon | Nov 1999 | A |
5979454 | Anvari et al. | Nov 1999 | A |
5983900 | Clement et al. | Nov 1999 | A |
5984915 | Loeb et al. | Nov 1999 | A |
5991697 | Nelson et al. | Nov 1999 | A |
6007219 | O'Meara | Dec 1999 | A |
6015404 | Altshuler et al. | Jan 2000 | A |
6022316 | Eppstein et al. | Feb 2000 | A |
6022346 | Panescu et al. | Feb 2000 | A |
6024095 | Stanley, III | Feb 2000 | A |
6026828 | Altshuler | Feb 2000 | A |
6027493 | Donitzky et al. | Feb 2000 | A |
6027495 | Miller | Feb 2000 | A |
6028694 | Schmidt | Feb 2000 | A |
6029303 | Dewan | Feb 2000 | A |
6029304 | Hulke et al. | Feb 2000 | A |
6030378 | Stewart | Feb 2000 | A |
6030399 | Ignotz et al. | Feb 2000 | A |
6032071 | Binder | Feb 2000 | A |
RE36634 | Ghaffari | Mar 2000 | E |
6033431 | Segal | Mar 2000 | A |
6036684 | Tankovich et al. | Mar 2000 | A |
6044514 | Kaneda et al. | Apr 2000 | A |
6045548 | Furumoto et al. | Apr 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
D424197 | Sydlowski et al. | May 2000 | S |
6056548 | Neuberger et al. | May 2000 | A |
6056738 | Marchitto et al. | May 2000 | A |
6058937 | Doiron et al. | May 2000 | A |
6059820 | Baronov | May 2000 | A |
6063108 | Salansky et al. | May 2000 | A |
6070092 | Kazama et al. | May 2000 | A |
6071239 | Cribbs et al. | Jun 2000 | A |
6074382 | Asah et al. | Jun 2000 | A |
6077294 | Cho et al. | Jun 2000 | A |
6080146 | Altshuler et al. | Jun 2000 | A |
6080147 | Tobinick | Jun 2000 | A |
6083217 | Tankovich | Jul 2000 | A |
6086363 | Moran et al. | Jul 2000 | A |
6086558 | Bower et al. | Jul 2000 | A |
6086580 | Mordon et al. | Jul 2000 | A |
6094767 | Iimura | Aug 2000 | A |
6096028 | Bahmanyar et al. | Aug 2000 | A |
6096029 | O'Donnell, Jr. | Aug 2000 | A |
6096209 | O'Brien et al. | Aug 2000 | A |
6099521 | Shadduck | Aug 2000 | A |
6101207 | Ilorinne | Aug 2000 | A |
6104959 | Spertell | Aug 2000 | A |
6106293 | Wiesel | Aug 2000 | A |
6106294 | Daniel | Aug 2000 | A |
6110195 | Xie et al. | Aug 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6117129 | Mukai | Sep 2000 | A |
6120497 | Anderson et al. | Sep 2000 | A |
6126655 | Domankevitz et al. | Oct 2000 | A |
6129723 | Anderson | Oct 2000 | A |
6135774 | Hack et al. | Oct 2000 | A |
6135994 | Chernoff | Oct 2000 | A |
6142650 | Brown et al. | Nov 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6149644 | Xie | Nov 2000 | A |
6149895 | Kutsch | Nov 2000 | A |
6159203 | Sinofsky et al. | Dec 2000 | A |
6159204 | Hibst | Dec 2000 | A |
6159236 | Biel | Dec 2000 | A |
6162055 | Montgomery et al. | Dec 2000 | A |
6162211 | Tankovich et al. | Dec 2000 | A |
6162212 | Kreindel et al. | Dec 2000 | A |
6162215 | Feng | Dec 2000 | A |
6162218 | Elbrecht et al. | Dec 2000 | A |
6164837 | Haake et al. | Dec 2000 | A |
6171300 | Adams | Jan 2001 | B1 |
6171301 | Nelson | Jan 2001 | B1 |
6171302 | Talpalriu et al. | Jan 2001 | B1 |
6171332 | Whitehurst | Jan 2001 | B1 |
6173202 | Eppstein | Jan 2001 | B1 |
6174325 | Eckhouse | Jan 2001 | B1 |
6176854 | Cone | Jan 2001 | B1 |
6183434 | Eppstein | Feb 2001 | B1 |
6183500 | Kohler | Feb 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6187001 | Azar et al. | Feb 2001 | B1 |
6187029 | Shapiro et al. | Feb 2001 | B1 |
6197020 | O'Donnell, Jr. | Mar 2001 | B1 |
6200134 | Kovac et al. | Mar 2001 | B1 |
6200309 | Rice et al. | Mar 2001 | B1 |
6202242 | Salmon et al. | Mar 2001 | B1 |
6203540 | Weber | Mar 2001 | B1 |
6210425 | Chen | Apr 2001 | B1 |
6210426 | Cho et al. | Apr 2001 | B1 |
6214034 | Azar | Apr 2001 | B1 |
6221068 | Fried et al. | Apr 2001 | B1 |
6221095 | Van Zuylen et al. | Apr 2001 | B1 |
6228074 | Almeida | May 2001 | B1 |
6228075 | Furumoto | May 2001 | B1 |
6229831 | Nightingale et al. | May 2001 | B1 |
6233584 | Purcell | May 2001 | B1 |
6235015 | Mead et al. | May 2001 | B1 |
6235016 | Stewart | May 2001 | B1 |
6236891 | Ingle et al. | May 2001 | B1 |
6239442 | Iimura | May 2001 | B1 |
6240306 | Rohrscheib et al. | May 2001 | B1 |
6240925 | McMillan et al. | Jun 2001 | B1 |
6245093 | Li et al. | Jun 2001 | B1 |
6246710 | Furumoto | Jun 2001 | B1 |
6248103 | Tannenbaum et al. | Jun 2001 | B1 |
6251100 | Flock et al. | Jun 2001 | B1 |
6251127 | Biel | Jun 2001 | B1 |
6254388 | Yarborough | Jul 2001 | B1 |
6263233 | Zavislan et al. | Jul 2001 | B1 |
6264649 | Whitcroft et al. | Jul 2001 | B1 |
6267779 | Gerdes | Jul 2001 | B1 |
6267780 | Streeter | Jul 2001 | B1 |
6273883 | Furumoto | Aug 2001 | B1 |
6273884 | Altshuler | Aug 2001 | B1 |
6273885 | Koop et al. | Aug 2001 | B1 |
6280438 | Eckhouse et al. | Aug 2001 | B1 |
6282442 | Destefano et al. | Aug 2001 | B1 |
6283956 | McDaniel | Sep 2001 | B1 |
6287549 | Sumian et al. | Sep 2001 | B1 |
6290496 | Azar et al. | Sep 2001 | B1 |
6290712 | Nordquist et al. | Sep 2001 | B1 |
6290713 | Russell | Sep 2001 | B1 |
6306130 | Anderson et al. | Oct 2001 | B1 |
6306160 | Nidetzky | Oct 2001 | B1 |
6311111 | Cao | Oct 2001 | B1 |
6315772 | Marchitto et al. | Nov 2001 | B1 |
6317624 | Kollias et al. | Nov 2001 | B1 |
6319274 | Shadduck | Nov 2001 | B1 |
6322584 | Ingle et al. | Nov 2001 | B2 |
6325769 | Klopotek | Dec 2001 | B1 |
6327506 | Yogo et al. | Dec 2001 | B1 |
6328733 | Trost | Dec 2001 | B1 |
6331111 | Cao | Dec 2001 | B1 |
6332891 | Himes | Dec 2001 | B1 |
6338855 | Albacarys et al. | Jan 2002 | B1 |
6340495 | Sumian et al. | Jan 2002 | B1 |
6343400 | Massholder et al. | Feb 2002 | B1 |
6343933 | Montgomery et al. | Feb 2002 | B1 |
6350261 | Domankevitz et al. | Feb 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6354370 | Miller et al. | Mar 2002 | B1 |
6355054 | Neuberger | Mar 2002 | B1 |
6358242 | Cecchetti | Mar 2002 | B1 |
6358272 | Wilden | Mar 2002 | B1 |
6364872 | Hsia et al. | Apr 2002 | B1 |
6383176 | Connors et al. | May 2002 | B1 |
6383177 | Balle-Petersen | May 2002 | B1 |
6387089 | Kreindel et al. | May 2002 | B1 |
6387353 | Jensen et al. | May 2002 | B1 |
6391022 | Furumoto et al. | May 2002 | B1 |
6394949 | Crowley et al. | May 2002 | B1 |
6395016 | Oron et al. | May 2002 | B1 |
6398801 | Clement et al. | Jun 2002 | B1 |
6400011 | Miki | Jun 2002 | B1 |
6402739 | Neev | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6406474 | Neuberger et al. | Jun 2002 | B1 |
6409665 | Scott et al. | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6413267 | Dumoulin-White | Jul 2002 | B1 |
6416319 | Cipolla | Jul 2002 | B1 |
6419389 | Fuchs et al. | Jul 2002 | B1 |
6424852 | Zavislan | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6435873 | Burgio | Aug 2002 | B1 |
6436094 | Reuter | Aug 2002 | B1 |
6439888 | Boutoussov et al. | Aug 2002 | B1 |
6440155 | Matsumae et al. | Aug 2002 | B1 |
6443946 | Clement et al. | Sep 2002 | B2 |
6443978 | Zharov | Sep 2002 | B1 |
6447503 | Wynne et al. | Sep 2002 | B1 |
6447504 | Ben-Haim et al. | Sep 2002 | B1 |
6451007 | Koop et al. | Sep 2002 | B1 |
6454790 | Neuberger et al. | Sep 2002 | B1 |
6459919 | Lys et al. | Oct 2002 | B1 |
6461296 | Desai | Oct 2002 | B1 |
6464694 | Massengill | Oct 2002 | B1 |
6470216 | Mulholland | Oct 2002 | B1 |
6471712 | Burres | Oct 2002 | B2 |
6471716 | Pecukonis | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6491685 | Visuri et al. | Dec 2002 | B2 |
6493608 | Niemeyer | Dec 2002 | B1 |
6494900 | Salansky et al. | Dec 2002 | B1 |
6497702 | Bernaz | Dec 2002 | B1 |
6503269 | Nield et al. | Jan 2003 | B2 |
6503486 | Xu et al. | Jan 2003 | B2 |
6508785 | Eppstein | Jan 2003 | B1 |
6508813 | Altshuler | Jan 2003 | B1 |
6511475 | Altshuler et al. | Jan 2003 | B1 |
6514243 | Eckhouse et al. | Feb 2003 | B1 |
6517532 | Altshuler et al. | Feb 2003 | B1 |
6519376 | Biagi et al. | Feb 2003 | B2 |
6525819 | Delawter et al. | Feb 2003 | B1 |
6527716 | Eppstein | Mar 2003 | B1 |
6527764 | Neuberger et al. | Mar 2003 | B1 |
6529540 | Demmer et al. | Mar 2003 | B1 |
6530915 | Eppstein et al. | Mar 2003 | B1 |
6530916 | Shimmick | Mar 2003 | B1 |
6537270 | Elbrecht et al. | Mar 2003 | B1 |
6544257 | Nagage et al. | Apr 2003 | B2 |
6547780 | Sinofsky | Apr 2003 | B1 |
6551346 | Crossley | Apr 2003 | B2 |
6554439 | Teicher et al. | Apr 2003 | B1 |
6556596 | Kim et al. | Apr 2003 | B1 |
6558372 | Altshuler | May 2003 | B1 |
6561808 | Neuberger | May 2003 | B2 |
6569155 | Connors et al. | May 2003 | B1 |
6570892 | Lin et al. | May 2003 | B1 |
6570893 | Libatique et al. | May 2003 | B1 |
6572634 | Koo | Jun 2003 | B2 |
6572637 | Yamazaki et al. | Jun 2003 | B1 |
6595934 | Hissong et al. | Jul 2003 | B1 |
6600951 | Anderson | Jul 2003 | B1 |
6602245 | Thiberg | Aug 2003 | B1 |
6602275 | Sullivan | Aug 2003 | B1 |
6603988 | Dowlatshahi | Aug 2003 | B2 |
6605080 | Altshuler | Aug 2003 | B1 |
6605083 | Clement et al. | Aug 2003 | B2 |
6606755 | Robinson et al. | Aug 2003 | B1 |
6607525 | France et al. | Aug 2003 | B2 |
6610052 | Furumoto | Aug 2003 | B2 |
6613040 | Tankovich et al. | Sep 2003 | B2 |
6616447 | Rizoiu et al. | Sep 2003 | B1 |
6616451 | Rizoiu et al. | Sep 2003 | B1 |
6618531 | Goto et al. | Sep 2003 | B1 |
6623272 | Clemans | Sep 2003 | B2 |
6623513 | Biel | Sep 2003 | B2 |
6629971 | McDaniel | Oct 2003 | B2 |
6629989 | Akita | Oct 2003 | B2 |
6632219 | Baranov et al. | Oct 2003 | B1 |
6635075 | Li et al. | Oct 2003 | B2 |
6641578 | Mukai | Nov 2003 | B2 |
6641600 | Kohler | Nov 2003 | B1 |
6648904 | Altshuler et al. | Nov 2003 | B2 |
6652459 | Payne et al. | Nov 2003 | B2 |
6653618 | Zenzie | Nov 2003 | B2 |
6659999 | Anderson et al. | Dec 2003 | B1 |
6660000 | Neuberger et al. | Dec 2003 | B2 |
6663620 | Altshuler et al. | Dec 2003 | B2 |
6663658 | Kollias et al. | Dec 2003 | B1 |
6663659 | McDaniel | Dec 2003 | B2 |
6666856 | Connors et al. | Dec 2003 | B2 |
6669685 | Rizoiu et al. | Dec 2003 | B1 |
6675425 | Iimura | Jan 2004 | B1 |
6676654 | Balle-Petersen | Jan 2004 | B1 |
6679837 | Daikuzono | Jan 2004 | B2 |
6682523 | Shadduck | Jan 2004 | B2 |
6682524 | Elbrecht et al. | Jan 2004 | B1 |
6685639 | Wang et al. | Feb 2004 | B1 |
6685699 | Eppstein et al. | Feb 2004 | B1 |
6685722 | Rosenbluth et al. | Feb 2004 | B1 |
6689124 | Thiberg | Feb 2004 | B1 |
6692456 | Eppstein et al. | Feb 2004 | B1 |
6692517 | Cho et al. | Feb 2004 | B2 |
6699040 | Hahn et al. | Mar 2004 | B1 |
6706035 | Cense et al. | Mar 2004 | B2 |
6709269 | Altshuler | Mar 2004 | B1 |
6709446 | Lundahl et al. | Mar 2004 | B2 |
6723090 | Altshuler et al. | Apr 2004 | B2 |
6724958 | German et al. | Apr 2004 | B1 |
6726681 | Grasso et al. | Apr 2004 | B2 |
6733490 | Falsini | May 2004 | B1 |
6736807 | Yamazaki et al. | May 2004 | B2 |
6743222 | Durkin et al. | Jun 2004 | B2 |
6746444 | Key | Jun 2004 | B2 |
6749623 | Hsi et al. | Jun 2004 | B1 |
6755647 | Melikechi et al. | Jun 2004 | B2 |
6770069 | Hobart et al. | Aug 2004 | B1 |
6772053 | Niemeyer | Aug 2004 | B2 |
6790205 | Yamazaki et al. | Sep 2004 | B1 |
6800122 | Anderson et al. | Oct 2004 | B2 |
6801595 | Grodzins et al. | Oct 2004 | B2 |
6808331 | Hall et al. | Oct 2004 | B2 |
6808532 | Andersen et al. | Oct 2004 | B2 |
6824542 | Jay | Nov 2004 | B2 |
RE38670 | Asah et al. | Dec 2004 | E |
6858009 | Kawata et al. | Feb 2005 | B2 |
6860879 | Irion et al. | Mar 2005 | B2 |
6860896 | Leber et al. | Mar 2005 | B2 |
6862771 | Muller | Mar 2005 | B1 |
6863781 | Nocera et al. | Mar 2005 | B2 |
6872203 | Shafirstein et al. | Mar 2005 | B2 |
6878144 | Altshuler et al. | Apr 2005 | B2 |
6881212 | Clement et al. | Apr 2005 | B1 |
6887260 | McDaniel | May 2005 | B1 |
6888319 | Inochkin et al. | May 2005 | B2 |
6893259 | Reizenson | May 2005 | B1 |
6902397 | Farrell et al. | Jun 2005 | B2 |
6902563 | Wilkens et al. | Jun 2005 | B2 |
6905492 | Zvuloni et al. | Jun 2005 | B2 |
6916316 | Jay | Jul 2005 | B2 |
6917715 | Berstis | Jul 2005 | B2 |
6936046 | Hissong et al. | Aug 2005 | B2 |
6942658 | Rizoiu et al. | Sep 2005 | B1 |
6953341 | Black | Oct 2005 | B2 |
6974450 | Weber et al. | Dec 2005 | B2 |
6974451 | Altshuler et al. | Dec 2005 | B2 |
6976985 | Altshuler et al. | Dec 2005 | B2 |
6986903 | Zulli et al. | Jan 2006 | B2 |
6989007 | Shadduck | Jan 2006 | B2 |
6989023 | Black | Jan 2006 | B2 |
6991644 | Spooner et al. | Jan 2006 | B2 |
6997923 | Anderson | Feb 2006 | B2 |
7001413 | Butler | Feb 2006 | B2 |
7006223 | Mullani | Feb 2006 | B2 |
7006874 | Knowlton | Feb 2006 | B2 |
7018396 | Sierra et al. | Mar 2006 | B2 |
7029469 | Vasily | Apr 2006 | B2 |
7033349 | Key | Apr 2006 | B2 |
7041094 | Connors et al. | May 2006 | B2 |
7041100 | Kreindel | May 2006 | B2 |
7044959 | Anderson et al. | May 2006 | B2 |
7060061 | Altshuler et al. | Jun 2006 | B2 |
7066733 | Logan et al. | Jun 2006 | B2 |
7070611 | Biel | Jul 2006 | B2 |
7077840 | Altshuler et al. | Jul 2006 | B2 |
7081128 | Hart et al. | Jul 2006 | B2 |
7097639 | Almeida | Aug 2006 | B1 |
7097656 | Akopov | Aug 2006 | B1 |
7104985 | Martinelli | Sep 2006 | B2 |
7118562 | Furumoto | Oct 2006 | B2 |
7118563 | Weckwerth et al. | Oct 2006 | B2 |
7135033 | Altshuler et al. | Nov 2006 | B2 |
7144247 | Black | Dec 2006 | B2 |
7144248 | Irwin | Dec 2006 | B2 |
7145105 | Gaulard | Dec 2006 | B2 |
7145108 | Kanel et al. | Dec 2006 | B2 |
7160289 | Cohen | Jan 2007 | B2 |
7170034 | Shalev | Jan 2007 | B2 |
7175617 | Jay | Feb 2007 | B2 |
7182760 | Kubota | Feb 2007 | B2 |
7198634 | Harth et al. | Apr 2007 | B2 |
7202446 | Shalev | Apr 2007 | B2 |
7204832 | Altshuler et al. | Apr 2007 | B2 |
7216055 | Horton et al. | May 2007 | B1 |
7217265 | Hennings et al. | May 2007 | B2 |
7217267 | Jay | May 2007 | B2 |
7220254 | Altshuler et al. | May 2007 | B2 |
7223270 | Altshuler et al. | May 2007 | B2 |
7223281 | Altshuler et al. | May 2007 | B2 |
7255691 | Tolkoff et al. | Aug 2007 | B2 |
7274155 | Inochkin et al. | Sep 2007 | B2 |
7276058 | Altshuler et al. | Oct 2007 | B2 |
7280866 | McIntosh et al. | Oct 2007 | B1 |
7282060 | DeBenedictis et al. | Oct 2007 | B2 |
7282723 | Schomaket et al. | Oct 2007 | B2 |
7291140 | MacFarland et al. | Nov 2007 | B2 |
7291141 | Harvey | Nov 2007 | B2 |
7309335 | Altshuler et al. | Dec 2007 | B2 |
7311722 | Larsen | Dec 2007 | B2 |
7322972 | Viator et al. | Jan 2008 | B2 |
7329273 | Altshuler et al. | Feb 2008 | B2 |
7329274 | Altshuler et al. | Feb 2008 | B2 |
7331953 | Manstein et al. | Feb 2008 | B2 |
7331964 | Maricle et al. | Feb 2008 | B2 |
7333698 | Israel | Feb 2008 | B2 |
7351252 | Altshuler et al. | Apr 2008 | B2 |
7354448 | Altshuler et al. | Apr 2008 | B2 |
7367341 | Anderson | May 2008 | B2 |
7422598 | Altshuler et al. | Sep 2008 | B2 |
7423767 | Steinsiek et al. | Sep 2008 | B2 |
7431719 | Altshuler | Oct 2008 | B2 |
7436863 | Matsuda et al. | Oct 2008 | B2 |
7500956 | Wilk | Mar 2009 | B1 |
7531967 | Inochkin et al. | May 2009 | B2 |
7540869 | Altshuler et al. | Jun 2009 | B2 |
7553308 | Jay | Jun 2009 | B2 |
7588547 | Deem et al. | Sep 2009 | B2 |
7624640 | Maris et al. | Dec 2009 | B2 |
7647092 | Motz et al. | Jan 2010 | B2 |
7699058 | Jay | Apr 2010 | B1 |
7722600 | Connors et al. | May 2010 | B2 |
7758621 | Altshuler et al. | Jul 2010 | B2 |
7763016 | Altshuler et al. | Jul 2010 | B2 |
7839972 | Ruchala et al. | Nov 2010 | B2 |
7856985 | Mirkov et al. | Dec 2010 | B2 |
7860554 | Leonardi | Dec 2010 | B2 |
7931028 | Jay | Apr 2011 | B2 |
7935107 | Altshuler et al. | May 2011 | B2 |
7938821 | Chan et al. | May 2011 | B2 |
7942869 | Houbolt et al. | May 2011 | B2 |
7942915 | Altshuler et al. | May 2011 | B2 |
7942916 | Altshuler et al. | May 2011 | B2 |
7998181 | Nightingale et al. | Aug 2011 | B2 |
8002768 | Altshuler et al. | Aug 2011 | B1 |
8027710 | Dannan | Sep 2011 | B1 |
8109924 | Altshuler | Feb 2012 | B2 |
8182473 | Altshuler et al. | May 2012 | B2 |
8328794 | Altshuler et al. | Dec 2012 | B2 |
8328796 | Altshuler et al. | Dec 2012 | B2 |
8346347 | Altshuler et al. | Jan 2013 | B2 |
8378322 | Dahm et al. | Feb 2013 | B2 |
8915948 | Altshuler | Dec 2014 | B2 |
20010007068 | Ota | Jul 2001 | A1 |
20010008973 | Van Zuylen et al. | Jul 2001 | A1 |
20010016732 | Hobart et al. | Aug 2001 | A1 |
20010023363 | Harth et al. | Sep 2001 | A1 |
20010024777 | Azar et al. | Sep 2001 | A1 |
20010025173 | Ritchie et al. | Sep 2001 | A1 |
20010029956 | Argenta et al. | Oct 2001 | A1 |
20010041886 | Durkin et al. | Nov 2001 | A1 |
20010046652 | Ostler et al. | Nov 2001 | A1 |
20010048077 | Afanassieva | Dec 2001 | A1 |
20020002367 | Tankovich et al. | Jan 2002 | A1 |
20020004066 | Stanley et al. | Jan 2002 | A1 |
20020005475 | Zenzie | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020016587 | Furumoto | Feb 2002 | A1 |
20020018754 | Sagel et al. | Feb 2002 | A1 |
20020019624 | Clement et al. | Feb 2002 | A1 |
20020019625 | Azar | Feb 2002 | A1 |
20020026225 | Segal | Feb 2002 | A1 |
20020029071 | Whitehurst | Mar 2002 | A1 |
20020032437 | Andrews et al. | Mar 2002 | A1 |
20020045891 | Clement et al. | Apr 2002 | A1 |
20020049432 | Mukai | Apr 2002 | A1 |
20020049483 | Knowlton | Apr 2002 | A1 |
20020058890 | Visuri et al. | May 2002 | A1 |
20020071287 | Haase | Jun 2002 | A1 |
20020071827 | Petersen et al. | Jun 2002 | A1 |
20020072676 | Afanassieva | Jun 2002 | A1 |
20020081555 | Wiesel | Jun 2002 | A1 |
20020090725 | Simpson et al. | Jul 2002 | A1 |
20020091377 | Anderson et al. | Jul 2002 | A1 |
20020108193 | Gruber | Aug 2002 | A1 |
20020111546 | Cook et al. | Aug 2002 | A1 |
20020111610 | Nordquist | Aug 2002 | A1 |
20020120256 | Furuno et al. | Aug 2002 | A1 |
20020123745 | Svaasand et al. | Sep 2002 | A1 |
20020127224 | Chen | Sep 2002 | A1 |
20020128635 | Altshuler et al. | Sep 2002 | A1 |
20020128695 | Harth et al. | Sep 2002 | A1 |
20020128696 | Pearl | Sep 2002 | A1 |
20020151878 | Shimmick et al. | Oct 2002 | A1 |
20020151879 | Loeb | Oct 2002 | A1 |
20020161357 | Anderson et al. | Oct 2002 | A1 |
20020161418 | Wilkens et al. | Oct 2002 | A1 |
20020167974 | Kennedy et al. | Nov 2002 | A1 |
20020173723 | Lewis | Nov 2002 | A1 |
20020173777 | Sand | Nov 2002 | A1 |
20020173780 | Altshuler et al. | Nov 2002 | A1 |
20020173781 | Cense et al. | Nov 2002 | A1 |
20020182563 | Boutoussov et al. | Dec 2002 | A1 |
20020183808 | Biel | Dec 2002 | A1 |
20020198517 | Alfano et al. | Dec 2002 | A1 |
20030004499 | McDaniel | Jan 2003 | A1 |
20030009158 | Perricone | Jan 2003 | A1 |
20030009205 | Biel | Jan 2003 | A1 |
20030018373 | Eckhardt et al. | Jan 2003 | A1 |
20030023235 | Cense et al. | Jan 2003 | A1 |
20030023283 | McDaniel | Jan 2003 | A1 |
20030023284 | Gartstein et al. | Jan 2003 | A1 |
20030028186 | Kreintel | Feb 2003 | A1 |
20030028227 | Neuberger et al. | Feb 2003 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030032950 | Altshuler et al. | Feb 2003 | A1 |
20030036680 | Black | Feb 2003 | A1 |
20030040739 | Koop | Feb 2003 | A1 |
20030055413 | Altshuler et al. | Mar 2003 | A1 |
20030055414 | Altshuler et al. | Mar 2003 | A1 |
20030057875 | Inochkin et al. | Mar 2003 | A1 |
20030059738 | Neuberger | Mar 2003 | A1 |
20030065314 | Altshuler et al. | Apr 2003 | A1 |
20030073989 | Hoey et al. | Apr 2003 | A1 |
20030083649 | Margaron et al. | May 2003 | A1 |
20030084534 | Kaizuka | May 2003 | A1 |
20030092982 | Eppstein | May 2003 | A1 |
20030097122 | Ganz et al. | May 2003 | A1 |
20030100936 | Altshuler et al. | May 2003 | A1 |
20030104340 | Clemans | Jun 2003 | A1 |
20030109787 | Black | Jun 2003 | A1 |
20030109860 | Black | Jun 2003 | A1 |
20030113684 | Scott | Jun 2003 | A1 |
20030129154 | McDaniel | Jul 2003 | A1 |
20030130709 | Haber | Jul 2003 | A1 |
20030152528 | Singh et al. | Aug 2003 | A1 |
20030158550 | Ganz et al. | Aug 2003 | A1 |
20030163884 | Weihrauch | Sep 2003 | A1 |
20030167080 | Hart et al. | Sep 2003 | A1 |
20030169433 | Koele et al. | Sep 2003 | A1 |
20030181896 | Zvuloni et al. | Sep 2003 | A1 |
20030187319 | Kaneko et al. | Oct 2003 | A1 |
20030187383 | Weber et al. | Oct 2003 | A1 |
20030187486 | Savage et al. | Oct 2003 | A1 |
20030195494 | Altshuler et al. | Oct 2003 | A1 |
20030199859 | Altshuler et al. | Oct 2003 | A1 |
20030216719 | DeBenedictis | Nov 2003 | A1 |
20030216795 | Harth et al. | Nov 2003 | A1 |
20030232303 | Black | Dec 2003 | A1 |
20030233138 | Spooner | Dec 2003 | A1 |
20040006332 | Black | Jan 2004 | A1 |
20040010298 | Altshuler et al. | Jan 2004 | A1 |
20040015156 | Vasily | Jan 2004 | A1 |
20040015158 | Chen et al. | Jan 2004 | A1 |
20040019120 | Vargas et al. | Jan 2004 | A1 |
20040019990 | Farrell et al. | Feb 2004 | A1 |
20040024388 | Altshuler | Feb 2004 | A1 |
20040024430 | Bader et al. | Feb 2004 | A1 |
20040030326 | Altshuler et al. | Feb 2004 | A1 |
20040034319 | Anderson et al. | Feb 2004 | A1 |
20040034341 | Altshuler et al. | Feb 2004 | A1 |
20040036975 | Slatkine | Feb 2004 | A1 |
20040054248 | Kimchy et al. | Mar 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040082940 | Black et al. | Apr 2004 | A1 |
20040085026 | Inochkin et al. | May 2004 | A1 |
20040092506 | Thompson et al. | May 2004 | A1 |
20040093042 | Altshuler et al. | May 2004 | A1 |
20040093043 | Edel et al. | May 2004 | A1 |
20040098070 | Mohr et al. | May 2004 | A1 |
20040105611 | Bischel et al. | Jun 2004 | A1 |
20040111031 | Alfano et al. | Jun 2004 | A1 |
20040111086 | Trombly | Jun 2004 | A1 |
20040111132 | Shenderova et al. | Jun 2004 | A1 |
20040116984 | Spooner et al. | Jun 2004 | A1 |
20040122311 | Cosman | Jun 2004 | A1 |
20040133251 | Altshuler et al. | Jul 2004 | A1 |
20040143181 | Damasio et al. | Jul 2004 | A1 |
20040143247 | Anderson et al. | Jul 2004 | A1 |
20040143920 | Nanda | Jul 2004 | A1 |
20040147984 | Altshuler et al. | Jul 2004 | A1 |
20040156626 | Thoms | Aug 2004 | A1 |
20040161213 | Lee | Aug 2004 | A1 |
20040162490 | Soltz et al. | Aug 2004 | A1 |
20040162549 | Altshuler | Aug 2004 | A1 |
20040162596 | Altshuler et al. | Aug 2004 | A1 |
20040167502 | Weckwerth et al. | Aug 2004 | A1 |
20040176754 | Island et al. | Sep 2004 | A1 |
20040176764 | Dant | Sep 2004 | A1 |
20040186465 | Francischelli | Sep 2004 | A1 |
20040191729 | Altshuler et al. | Sep 2004 | A1 |
20040193234 | Butler | Sep 2004 | A1 |
20040193235 | Altshuler et al. | Sep 2004 | A1 |
20040193236 | Altshuler et al. | Sep 2004 | A1 |
20040199079 | Chuck et al. | Oct 2004 | A1 |
20040199151 | Neuberger | Oct 2004 | A1 |
20040199227 | Altshuler et al. | Oct 2004 | A1 |
20040204745 | Altshuler et al. | Oct 2004 | A1 |
20040208918 | Koch et al. | Oct 2004 | A1 |
20040210275 | Town et al. | Oct 2004 | A1 |
20040210276 | Altshuler et al. | Oct 2004 | A1 |
20040214132 | Altshuler | Oct 2004 | A1 |
20040225339 | Yaroslavsky et al. | Nov 2004 | A1 |
20040230258 | Altshuler et al. | Nov 2004 | A1 |
20040230260 | MacFarland et al. | Nov 2004 | A1 |
20040234460 | Tarver et al. | Nov 2004 | A1 |
20040249261 | Torchia et al. | Dec 2004 | A1 |
20040260210 | Ella et al. | Dec 2004 | A1 |
20050015077 | Kuklin et al. | Jan 2005 | A1 |
20050038418 | Altshuler et al. | Feb 2005 | A1 |
20050049467 | Stamatas et al. | Mar 2005 | A1 |
20050049582 | DeBenedictis | Mar 2005 | A1 |
20050049658 | Connors et al. | Mar 2005 | A1 |
20050063931 | Paus et al. | Mar 2005 | A1 |
20050065502 | Stoltz | Mar 2005 | A1 |
20050065531 | Cohen | Mar 2005 | A1 |
20050074038 | Khaydarov | Apr 2005 | A1 |
20050080404 | Jones et al. | Apr 2005 | A1 |
20050085875 | Van Zuylen | Apr 2005 | A1 |
20050102213 | Savasoglu et al. | May 2005 | A1 |
20050107849 | Altshuler et al. | May 2005 | A1 |
20050113815 | Ritchie et al. | May 2005 | A1 |
20050113890 | Ritchie et al. | May 2005 | A1 |
20050116673 | Carl et al. | Jun 2005 | A1 |
20050131400 | Hennings et al. | Jun 2005 | A1 |
20050143719 | Sink | Jun 2005 | A1 |
20050143723 | Zvuloni et al. | Jun 2005 | A1 |
20050154380 | DeBenedictis | Jul 2005 | A1 |
20050165315 | Zuluaga et al. | Jul 2005 | A1 |
20050165393 | Eppstein | Jul 2005 | A1 |
20050168158 | Inochkin et al. | Aug 2005 | A1 |
20050170313 | Pitz et al. | Aug 2005 | A1 |
20050171517 | Altshuler et al. | Aug 2005 | A1 |
20050171581 | Connors et al. | Aug 2005 | A1 |
20050177026 | Hoeg et al. | Aug 2005 | A1 |
20050177139 | Yamazaki et al. | Aug 2005 | A1 |
20050177142 | Jay | Aug 2005 | A1 |
20050182389 | Laporte et al. | Aug 2005 | A1 |
20050197681 | Barolet et al. | Sep 2005 | A1 |
20050203496 | Ritchie et al. | Sep 2005 | A1 |
20050203497 | Speeg et al. | Sep 2005 | A1 |
20050215988 | Altshuler et al. | Sep 2005 | A1 |
20050220726 | Pauly et al. | Oct 2005 | A1 |
20050222556 | Arivra et al. | Oct 2005 | A1 |
20050245917 | Strassl et al. | Nov 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20050251117 | Anderson et al. | Nov 2005 | A1 |
20050251118 | Anderson et al. | Nov 2005 | A1 |
20050257612 | Hiemer et al. | Nov 2005 | A1 |
20050281530 | Rizoiu et al. | Dec 2005 | A1 |
20060004306 | Altshuler et al. | Jan 2006 | A1 |
20060004347 | Altshuler et al. | Jan 2006 | A1 |
20060007965 | Tankovich et al. | Jan 2006 | A1 |
20060009750 | Altshuler et al. | Jan 2006 | A1 |
20060013533 | Slatkine etr al. | Jan 2006 | A1 |
20060020309 | Altshuler et al. | Jan 2006 | A1 |
20060047281 | Kreindel et al. | Mar 2006 | A1 |
20060052661 | Gannot et al. | Mar 2006 | A1 |
20060056589 | Engelward | Mar 2006 | A1 |
20060058712 | Altshuler et al. | Mar 2006 | A1 |
20060062448 | Hirsch et al. | Mar 2006 | A1 |
20060079947 | Tankovich et al. | Apr 2006 | A1 |
20060089687 | Spooner et al. | Apr 2006 | A1 |
20060094988 | Tosaya et al. | May 2006 | A1 |
20060100677 | Blumenkranz et al. | May 2006 | A1 |
20060116671 | Slayton et al. | Jun 2006 | A1 |
20060118127 | Chinn | Jun 2006 | A1 |
20060122584 | Bommannan et al. | Jun 2006 | A1 |
20060122668 | Anderson et al. | Jun 2006 | A1 |
20060128771 | Mirkov et al. | Jun 2006 | A1 |
20060149343 | Altshuler et al. | Jul 2006 | A1 |
20060155266 | Manstein et al. | Jul 2006 | A1 |
20060161143 | Altshuler et al. | Jul 2006 | A1 |
20060173480 | Zhang | Aug 2006 | A1 |
20060194164 | Altshuler et al. | Aug 2006 | A1 |
20060206103 | Altshuler et al. | Sep 2006 | A1 |
20060217689 | Dick et al. | Sep 2006 | A1 |
20060224148 | Cho et al. | Oct 2006 | A1 |
20060247609 | Mirkov et al. | Nov 2006 | A1 |
20060253176 | Caruso et al. | Nov 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20060265032 | Hennings | Nov 2006 | A1 |
20060271028 | Altshuler et al. | Nov 2006 | A1 |
20060282067 | Koop et al. | Dec 2006 | A1 |
20060287646 | Altshuler et al. | Dec 2006 | A1 |
20060293727 | Spooner et al. | Dec 2006 | A1 |
20060293728 | Roersma et al. | Dec 2006 | A1 |
20070027440 | Altshuler et al. | Feb 2007 | A1 |
20070038206 | Altshuler et al. | Feb 2007 | A1 |
20070038271 | Cole et al. | Feb 2007 | A1 |
20070049910 | Altshuler et al. | Mar 2007 | A1 |
20070060819 | Altshuler et al. | Mar 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070067006 | Altshuler et al. | Mar 2007 | A1 |
20070073308 | Anderson et al. | Mar 2007 | A1 |
20070078501 | Altshuler et al. | Apr 2007 | A1 |
20070088206 | Peyman | Apr 2007 | A1 |
20070093797 | Chan et al. | Apr 2007 | A1 |
20070105212 | Oldham et al. | May 2007 | A1 |
20070121069 | Andersen et al. | May 2007 | A1 |
20070123851 | Alejandro et al. | May 2007 | A1 |
20070142881 | Hennings | Jun 2007 | A1 |
20070159592 | Rylander et al. | Jul 2007 | A1 |
20070173749 | Williams et al. | Jul 2007 | A1 |
20070179378 | Boese et al. | Aug 2007 | A1 |
20070179470 | Toombs | Aug 2007 | A1 |
20070185552 | Masotti et al. | Aug 2007 | A1 |
20070194717 | Belikov et al. | Aug 2007 | A1 |
20070198004 | Altshuler et al. | Aug 2007 | A1 |
20070208252 | Makower | Sep 2007 | A1 |
20070213696 | Altshuler et al. | Sep 2007 | A1 |
20070213698 | Altshuler et al. | Sep 2007 | A1 |
20070213792 | Yaroslavsky et al. | Sep 2007 | A1 |
20070213851 | Bellas et al. | Sep 2007 | A1 |
20070219602 | Ostrovsky et al. | Sep 2007 | A1 |
20070219604 | Yaroslavsky et al. | Sep 2007 | A1 |
20070219605 | Yaroslavsky et al. | Sep 2007 | A1 |
20070239142 | Altshuler et al. | Oct 2007 | A1 |
20070239143 | Altshuler et al. | Oct 2007 | A1 |
20070244527 | Hatayama et al. | Oct 2007 | A1 |
20070255355 | Altshuler et al. | Nov 2007 | A1 |
20070260230 | Youngquist et al. | Nov 2007 | A1 |
20070264625 | DeBenedictis | Nov 2007 | A1 |
20070288071 | Rogers et al. | Dec 2007 | A1 |
20080003536 | Altshuler et al. | Jan 2008 | A1 |
20080004608 | Dacquay et al. | Jan 2008 | A1 |
20080004611 | Houbolt et al. | Jan 2008 | A1 |
20080009842 | Manstein et al. | Jan 2008 | A1 |
20080033516 | Altshuler et al. | Feb 2008 | A1 |
20080058782 | Frangcischelli | Mar 2008 | A1 |
20080058783 | Altshuler et al. | Mar 2008 | A1 |
20080103565 | Altshuler et al. | May 2008 | A1 |
20080132886 | Cohen et al. | Jun 2008 | A1 |
20080139901 | Altshuler et al. | Jun 2008 | A1 |
20080140164 | Oberreiter et al. | Jun 2008 | A1 |
20080147054 | Altshuler et al. | Jun 2008 | A1 |
20080154157 | Altshuler et al. | Jun 2008 | A1 |
20080154247 | Dallarosa | Jun 2008 | A1 |
20080172047 | Altshuler et al. | Jul 2008 | A1 |
20080183162 | Altshuler et al. | Jul 2008 | A1 |
20080183250 | Tanojo et al. | Jul 2008 | A1 |
20080186591 | Altshuler et al. | Aug 2008 | A1 |
20080194969 | Werahera et al. | Aug 2008 | A1 |
20080195183 | Botchkareva et al. | Aug 2008 | A1 |
20080208105 | Zelickson et al. | Aug 2008 | A1 |
20080214988 | Altshuler et al. | Sep 2008 | A1 |
20080215038 | Bakker | Sep 2008 | A1 |
20080248554 | Merchant et al. | Oct 2008 | A1 |
20080262577 | Altshuler et al. | Oct 2008 | A1 |
20080294150 | Altshuler et al. | Nov 2008 | A1 |
20080294152 | Altshuler et al. | Nov 2008 | A1 |
20080294153 | Altshuler et al. | Nov 2008 | A1 |
20080306471 | Altshuler et al. | Dec 2008 | A1 |
20080319430 | Zenzie et al. | Dec 2008 | A1 |
20090018531 | Welches | Jan 2009 | A1 |
20090018624 | Levinson et al. | Jan 2009 | A1 |
20090024192 | Knowlton | Jan 2009 | A1 |
20090024193 | Altshuler et al. | Jan 2009 | A1 |
20090043294 | Island et al. | Feb 2009 | A1 |
20090048557 | Yeshurun et al. | Feb 2009 | A1 |
20090069741 | Altshuler et al. | Mar 2009 | A1 |
20090132011 | Altshuler et al. | May 2009 | A1 |
20090137995 | Altshuler et al. | May 2009 | A1 |
20090149844 | Altshuler et al. | Jun 2009 | A1 |
20090222068 | Oberreiter et al. | Sep 2009 | A1 |
20090248004 | Altshuler et al. | Oct 2009 | A1 |
20090254076 | Altshuler et al. | Oct 2009 | A1 |
20090287195 | Altshuler et al. | Nov 2009 | A1 |
20090292277 | Sierra et al. | Nov 2009 | A1 |
20090312749 | Pini et al. | Dec 2009 | A1 |
20100010507 | Kinoshita | Jan 2010 | A1 |
20100015576 | Altshuler et al. | Jan 2010 | A1 |
20100021867 | Altshuler et al. | Jan 2010 | A1 |
20100036295 | Altshuler et al. | Feb 2010 | A1 |
20100049180 | Wells et al. | Feb 2010 | A1 |
20100109041 | Yin et al. | May 2010 | A1 |
20100123399 | Bollmann et al. | May 2010 | A1 |
20100145321 | Altshuler et al. | Jun 2010 | A1 |
20100195680 | Sierra et al. | Aug 2010 | A1 |
20100198134 | Eckhouse et al. | Aug 2010 | A1 |
20100204686 | Yaroslavksy et al. | Aug 2010 | A1 |
20100217248 | Mirkov et al. | Aug 2010 | A1 |
20100278756 | Chung et al. | Nov 2010 | A1 |
20100286673 | Altshuler et al. | Nov 2010 | A1 |
20100298744 | Altshuler et al. | Nov 2010 | A1 |
20110046523 | Altshuler et al. | Feb 2011 | A1 |
20110087155 | Uhland et al. | Apr 2011 | A1 |
20110137230 | Altshuler et al. | Jun 2011 | A1 |
20110152847 | Mirkov et al. | Jun 2011 | A1 |
20110172651 | Altshuler et al. | Jul 2011 | A1 |
20110184334 | Altshuler et al. | Jul 2011 | A1 |
20110207075 | Altshuler et al. | Aug 2011 | A1 |
20110257584 | Altshuler et al. | Oct 2011 | A1 |
20110267830 | Altshuler et al. | Nov 2011 | A1 |
20120083862 | Altshuler et al. | Apr 2012 | A1 |
20120099816 | Wilson | Apr 2012 | A1 |
20120116271 | Caruso et al. | May 2012 | A1 |
20120277659 | Yaroslavsky et al. | Nov 2012 | A1 |
20120301842 | Altshuler et al. | Nov 2012 | A1 |
20130096596 | Schafer | Apr 2013 | A1 |
20140081264 | Fandrey | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
400305 | Apr 1995 | AT |
1851583 | Mar 1984 | AU |
2053926 | Mar 1990 | CN |
1073607 | Jun 1993 | CN |
1182572 | May 1998 | CN |
1351483 | May 2002 | CN |
1535126 | Oct 2004 | CN |
3304230 | Aug 1984 | DE |
3837248 | May 1990 | DE |
9102407 | Jul 1991 | DE |
3719561 | Jan 1998 | DE |
19803460 | Aug 1999 | DE |
19944401 | Mar 2001 | DE |
10112289 | Aug 2001 | DE |
10140715 | Mar 2002 | DE |
10120787 | Jan 2003 | DE |
0000593 | Feb 1979 | EP |
0142671 | May 1985 | EP |
0172490 | Feb 1986 | EP |
0297360 | Jan 1989 | EP |
0320080 | Jun 1989 | EP |
0324120 | Jul 1989 | EP |
0413025 | Feb 1991 | EP |
0458576 | Nov 1991 | EP |
0563953 | Oct 1993 | EP |
0565331 | Oct 1993 | EP |
0593375 | Apr 1994 | EP |
0598984 | Jun 1994 | EP |
0709941 | May 1996 | EP |
0724894 | Aug 1996 | EP |
0726083 | Aug 1996 | EP |
0736308 | Oct 1996 | EP |
0755698 | Jan 1997 | EP |
0763371 | Mar 1997 | EP |
0765673 | Apr 1997 | EP |
0765674 | Apr 1997 | EP |
0783904 | Jul 1997 | EP |
0884066 | Dec 1998 | EP |
0885629 | Dec 1998 | EP |
0920840 | Jun 1999 | EP |
0927544 | Jul 1999 | EP |
1038505 | Sep 2000 | EP |
1057455 | Dec 2000 | EP |
1075854 | Feb 2001 | EP |
1138269 | Apr 2001 | EP |
1219258 | Jul 2002 | EP |
1238683 | Sep 2002 | EP |
1250893 | Oct 2002 | EP |
1057454 | Nov 2003 | EP |
1495735 | Jan 2005 | EP |
1512373 | Mar 2005 | EP |
1535582 | Jun 2005 | EP |
1627662 | Feb 2006 | EP |
1650615 | Apr 2006 | EP |
1797836 | Jun 2007 | EP |
1839705 | Oct 2007 | EP |
1854505 | Nov 2007 | EP |
2199453 | Apr 1974 | FR |
2591902 | Jun 1987 | FR |
1251424 | Oct 1971 | GB |
2044908 | Oct 1980 | GB |
2059053 | Apr 1981 | GB |
2059054 | Apr 1981 | GB |
2123287 | Feb 1984 | GB |
2212010 | Jul 1989 | GB |
2239675 | Jul 1991 | GB |
2360461 | Sep 2001 | GB |
2360946 | Oct 2001 | GB |
2364376 | Jan 2002 | GB |
S5577187 | Jun 1980 | JP |
S62165985 | Jul 1987 | JP |
S6323648 | Jan 1988 | JP |
S63249577 | Oct 1988 | JP |
S6427554 | Jan 1989 | JP |
H0366387 | Mar 1989 | JP |
H01181877 | Jul 1989 | JP |
H02174804 | Jul 1990 | JP |
H0316956 | Feb 1991 | JP |
H0622871 | Feb 1994 | JP |
H06154239 | Jun 1994 | JP |
H079179 | Jan 1995 | JP |
H0763957 | Mar 1995 | JP |
H07328025 | Dec 1995 | JP |
H0815539 | Jan 1996 | JP |
H0854538 | Feb 1996 | JP |
H0984803 | Mar 1997 | JP |
H09141869 | Jun 1997 | JP |
H09220292 | Aug 1997 | JP |
H1014661 | Jan 1998 | JP |
H0199574 | Apr 1998 | JP |
H1147146 | Feb 1999 | JP |
H11232229 | May 1999 | JP |
2000037400 | Feb 2000 | JP |
2000153003 | Jun 2000 | JP |
2000300684 | Oct 2000 | JP |
2001000560 | Jan 2001 | JP |
2001029124 | Feb 2001 | JP |
2001145520 | May 2001 | JP |
2001196665 | Jul 2001 | JP |
2001343560 | Dec 2001 | JP |
2002272861 | Sep 2002 | JP |
2003052843 | Feb 2003 | JP |
2005017796 | Jan 2005 | JP |
2005027702 | Feb 2005 | JP |
2006192073 | Jul 2006 | JP |
2082337 | Jun 1997 | RU |
2089126 | Sep 1997 | RU |
2089127 | Sep 1997 | RU |
2096051 | Nov 1997 | RU |
2122848 | Dec 1998 | RU |
WO 1986002783 | May 1986 | WO |
WO 1990000420 | Jan 1990 | WO |
WO 1990006727 | Jun 1990 | WO |
WO 1990012548 | Nov 1990 | WO |
WO 1991001053 | Jan 1991 | WO |
WO 1991002562 | Mar 1991 | WO |
WO 1991012050 | Aug 1991 | WO |
WO 1991013653 | Sep 1991 | WO |
WO 1991018646 | Dec 1991 | WO |
WO 1992016338 | Jan 1992 | WO |
WO 1992003977 | Mar 1992 | WO |
WO 1992006739 | Apr 1992 | WO |
WO 1992019165 | Nov 1992 | WO |
WO 1993005920 | Apr 1993 | WO |
WO 1993021843 | Nov 1993 | WO |
WO 1995003089 | Feb 1995 | WO |
WO 1995004393 | Feb 1995 | WO |
WO 1995010243 | Apr 1995 | WO |
WO 1995014251 | May 1995 | WO |
WO 1995015725 | Jun 1995 | WO |
WO 1995032441 | Nov 1995 | WO |
WO 1995033518 | Dec 1995 | WO |
WO 1996009853 | Apr 1996 | WO |
WO 1996018347 | Jun 1996 | WO |
WO 1996022741 | Aug 1996 | WO |
WO 1996022813 | Aug 1996 | WO |
WO 1996024182 | Aug 1996 | WO |
WO 1996024406 | Aug 1996 | WO |
WO 1996028212 | Sep 1996 | WO |
WO 1996036396 | Nov 1996 | WO |
WO 1996039734 | Dec 1996 | WO |
WO 1996041579 | Dec 1996 | WO |
WO 1997013458 | Apr 1997 | WO |
WO 1997013552 | Apr 1997 | WO |
WO 1997022384 | Jun 1997 | WO |
WO 1997028752 | Aug 1997 | WO |
WO 1997037602 | Oct 1997 | WO |
WO 1997037723 | Oct 1997 | WO |
WO 1998004317 | Feb 1998 | WO |
WO 1998005380 | Feb 1998 | WO |
WO 1998006456 | Feb 1998 | WO |
WO 1998007379 | Feb 1998 | WO |
WO 1998020937 | May 1998 | WO |
WO 1998024507 | Jun 1998 | WO |
WO 1998029134 | Jul 1998 | WO |
WO 1998041158 | Sep 1998 | WO |
WO 1998051235 | Nov 1998 | WO |
WO 1998052481 | Nov 1998 | WO |
WO 1999010046 | Mar 1999 | WO |
WO 1999017668 | Apr 1999 | WO |
WO 1999027997 | Jun 1999 | WO |
WO 1999029243 | Jun 1999 | WO |
WO 1999034867 | Jul 1999 | WO |
WO 1999038569 | Aug 1999 | WO |
WO 1999039410 | Aug 1999 | WO |
WO 1999043387 | Sep 1999 | WO |
WO 1999044638 | Sep 1999 | WO |
WO 1999046005 | Sep 1999 | WO |
WO 1999049937 | Oct 1999 | WO |
WO 1999058195 | Nov 1999 | WO |
WO 1999062472 | Dec 1999 | WO |
WO 1999066988 | Dec 1999 | WO |
WO 2000007514 | Feb 2000 | WO |
WO 2000030714 | Jun 2000 | WO |
WO 2000040266 | Jul 2000 | WO |
WO 2000041278 | Jul 2000 | WO |
WO 2000044294 | Aug 2000 | WO |
WO 2000053113 | Sep 2000 | WO |
WO 2000054649 | Sep 2000 | WO |
WO 2000054685 | Sep 2000 | WO |
WO 2000062700 | Oct 2000 | WO |
WO 2000071045 | Nov 2000 | WO |
WO 2000074781 | Dec 2000 | WO |
WO 2000078242 | Dec 2000 | WO |
WO 2001014012 | Mar 2001 | WO |
WO 2001026573 | Apr 2001 | WO |
WO 2001034048 | May 2001 | WO |
WO 2001042671 | Jun 2001 | WO |
WO 2001054606 | Aug 2001 | WO |
WO 2002009813 | Feb 2002 | WO |
WO 2002026147 | Apr 2002 | WO |
WO 2001003257 | Jul 2002 | WO |
WO 2002053050 | Jul 2002 | WO |
WO 2002078559 | Oct 2002 | WO |
WO 2002094116 | Nov 2002 | WO |
WO 2003005883 | Jan 2003 | WO |
WO 2003049633 | Jun 2003 | WO |
WO 2003103529 | Dec 2003 | WO |
WO 2004000150 | Dec 2003 | WO |
WO 2004011848 | Feb 2004 | WO |
WO 2004033040 | Apr 2004 | WO |
WO 2004037068 | May 2004 | WO |
WO 2004037287 | May 2004 | WO |
WO 2004080279 | Sep 2004 | WO |
WO 2005009266 | Feb 2005 | WO |
WO 2005030317 | Apr 2005 | WO |
WO 2005046793 | May 2005 | WO |
WO 2005065288 | Jul 2005 | WO |
WO 2005092438 | Oct 2005 | WO |
WO 2005096981 | Oct 2005 | WO |
WO 2005099369 | Oct 2005 | WO |
WO 2005112815 | Dec 2005 | WO |
WO 2006006123 | Jan 2006 | WO |
WO 2006036968 | Apr 2006 | WO |
WO 2006066226 | Jun 2006 | WO |
WO 2006089227 | Aug 2006 | WO |
WO 2006101735 | Sep 2006 | WO |
WO 2006116141 | Nov 2006 | WO |
WO 2007035444 | Mar 2007 | WO |
WO 2007122611 | Nov 2007 | WO |
WO 2008007218 | Jan 2008 | WO |
WO 2008070747 | Jun 2008 | WO |
WO 2008153999 | Dec 2008 | WO |
WO 2010102255 | Sep 2010 | WO |
Entry |
---|
US 6,230,044 B1, 05/2001, Afanassieva et al. (withdrawn) |
[No Author] Webpage www.gallery.com—RUTILE (Titanium Oxide)—Retrieved Oct. 3, 2011 from Http://www.galleries.com/minerals/oxides/rutile/rutile.htm. 2 pages. |
[No Author] Energy Systems Coropration, “A Practical Guide for the PhotoDern.RTM.VL user,” Haifa, Israel, Commercial Brochure 8 Pages, Oct. 1995. |
[No Author] “Final Report on the LFDL-10 Laser System for the GCA Corporation,” Candela Corp., Natick, MA, Section II, subsection 5, pp. 13-15 & 27, Mar. 1982. |
[No Author] “Fractional Photothermolysis Redefines Facial Skin Regeneration Science,” Aesthetic Buyers Guide, Mar./Apr. 2004, www.miinews.com, pp. 1-4. |
[No Author] “Hydrogel Dressings Contain Particles During Laser Therapy,” Dermatology Times, ISSN-01966197, p. 26 (1994). |
[No Author] “Prostate Enlargement: Benigh Prostatic Hyperplasia,” brochure from U.S. Department of Health and Human Services, pp. 1-14, (at least by 1992). |
[No Author] RITTER Sybron Corporation, “Electrosurgery, A Guide for Operating Room Personnel,” pp. 1-22, (Jun. 1976). |
[No Author] Selective Photothermolysis of Sebaceous Glands, Department of Health and Human Services, Public Health Service, Small Business Innovation Research Program II Grant Application, CYNOSURE, Inc., dated: Jul. 27, 2000, pp. 17-39 and 43-44. |
Anderson, R.R., et al., “Microvasculature Can Be Selectively Damaged Using Dye Lasers: A Basic Theory and Experimental Evidence in Human Skin,” Lasers in Surgery and Medicine 1:263-276 (1981). |
Altshuler et al., “Human Tooth as an Optical Device,” SPIE vol. 1429 Holography and Interferometry and Optical Pattern Recognition in Biomedicine, pp. 95-104, 1991. |
Altshuler et al., “New Optical Effects in the Human Hard Tooth Tissues,” Lasers and Medicine, Proc. SPIE vol. 1353, pp. 97-102, 1989. |
Anderson, R.R. et al., “Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation,” Science, vol. 220, pp. 524-527, Apr. 1983. |
Anderson, R.R. et al., “The optics of human skin,” Journal of Investigative Dermatology, vol. 77, No. 1, pp. 13-19, 1981. |
Angelis, et al., “Fractional, Non-Abltive Laser Therapy for the Treatment of Striae Distensae”, White Paper published by Palomar Medical Technologies, Inc. (2009)5 pages. |
Apfelberg et al. “Analysis of Complications of Argon Laser Treatment for Port Wine Hemangiomas with Reference to Striped Technique,” Lasers in Surgery and Medicine, 2:357-371 (1983). |
Apfelberg et al. “Dot or Pointillistic Method for Improvement in Results of Hypertrophic Scarring in the Argon Laser Treatment of Portwine Hemangiomas,” Lasers in Surgery and Medicine, 6:552-558 (1987). |
Apfelberg, D.B., “Combination Treatment for Massive Cavernous Hemangioma of the Face: YAG Laser Photocoagulation Pulse Direct Steroid Injection Followed by YAG Laser Resection with Sapphire Scalpel Tips, Aided by Superselective Embolization,” Lasers in Surgery and Medicine, 10:217-223 (1990). |
Belikov, A.V. et al., “Identification of enamel and dentine under tooth laser treatment,” SPIE vol. 2623, Progress in Biomedical Optics Europt Series, Proceedings of Medical Applications of Lasers III, pp. 109-116, Sep. 1995. |
Bjerring, P. et al., “Selective Non-Ablative Wrinkle Reduction by Laser,” J Cutan Laser Ther, vol. 2, pp. 9-15, 2000. |
Blankenau et al., “In Vivo Caries-Like Lesion Prevention with Argon Laser: Pilot Study,” Journal of Clinical Laser Medicine and Surgery, vol. 17, No. 6, pp. 241-243, 1999. |
Bogdan Allemann, et al., “Laser Principles”, Physical and Electronic Properties of Lasers, Basics in Dermatological Laser Applications, Curr. Probl. Dermatol, Basel, Karger. Zurich, Switzerland and Miami, Florida. vol. 42, pp. 7-23, 2011, 17 pages. |
Boulnois, J., “Photophysical Processes in Recent Medical Laser Developments: a Review,” Lasers in Medical Science, vol. 1:47-66 (1986). |
Britt et al., “The Effect of pH or Photobleaching of Organic Laser Dyes”, IEEE J. Quantum Electron. (Dec. 1972), 913-914. |
Burlamacchi et al, “A Simple Reliable Waveguide Dye Laser for Ophthalmological Applications,” Rev of Sci Instrum; vol. 46; No. 3; pp. 281-283, Mar. 1975. |
Chan, E.K., “Effects of Compression on Soft Tissue Optical Properties,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 4, pp. 943-950 (Dec. 1996). |
Costello, A. et al., “Nd:YAG Laser Ablation of the Prostate as a Treatment for Benign Prostatic Hypertrophy,” Lasers in Surgery and Medicine, 12:121-124 (1992). |
Dixon et al. “Hypertrophic Scarring in Argon Laser Treatment of Port-Wine Stains,” Plastic and Reconstructive Surgery, 73:771-777 (1984). |
Dock et al., “Clinical Histologic and Ultrastructural Evaluation of Solar Elastosis Treated With the Pulsed Dye Laser,” American Society for Laser Medicine and Surgery Abstracts, p. 54 (Apr. 1997). |
Dufresne et al., “Squamous cell carcinoma arising from the follicular occlusion triad,” J. Am. Acad. Dermatol. 35(3), Part 1:475-477, 1996. |
Fallon Friedlander, “Effective Treatment of Acne Fulminans-Associated Granulation Tissue with the Pulsed Dye Laser,” Pediatric Dermatology, 15(5):396-398, 1998. |
Fiskerstrand E.J. et al., “Hair Removal with Long Pulsed Diode Lasers: A Comparison Between Two Systems with Different Pulse Structures,” Lasers in Surgery and Medicine, vol. 32, pp. 399-404, 2003. |
Furomoto, H., “Dye Chemisry and System Study for Optimun Laser Operation at 436 NM Using the LFDL-10 Laser,” Prepared for Burlington Division Geophysical Corporation of America, pp. 1-23, Mar. 1982. |
Goldberg, “Lasers for Facial Rejuvenation”, Am J. Clin. Dermatol., 4(4):225-234, 2003, 10 pages. |
Goldman, L. et al., “Impact of the laser on nevi and melanomas,” Archives of Dermatology, vol. 90, pp. 71-75, Jul. 1964. |
Goldman, L. et al., “Long-term laser exposure of a senile freckle,” ArchEnviron Health, vol. 22, pp. 401-403, Mar. 1971. |
Goldman, L., “Dermatologic manifestations of laser radiation,” Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation, Federation of American Societies for Experimental Biology, Supp. No. 14, pp. S-92-S-93, Jan.-Feb. 1965. |
Grossman, et al., “780 nm Low Power Diode Laser Irradiation Stimulates Proliferation of Keratinocyte Cultures: Involvement of Reactive Oxygen Species,” Lasers in Surgery and Medicine vol. 29, pp. 212-218, 1998. |
Haedersal, et el., “Fractional Nonablative 1540 nm Laser Resurfacing for Thermal Burn Scars: A Randomized Controlled Trial”, Lasers in Surgery and Medicine, 41:189-195, 2009, 7 pages. |
Hicks et al., “Enamel Carries Initiation and Progression Following Low Fluence (energy) and Argon Laser and Fluoride Treatment,” The Journal of Clinical Pediatric Dentistry, vol. 20, No. 1 pp. 9-13, 1995. |
Hulsbergen Henning et al., “Clinical and Histological Evaluation of Portwine Stain Treatment with a Microsecond-Pulsed Dye-Laser at 577 NM, ” Lasers in Surgery and Medicine, 4:375-380 (1984). |
Hulsbergen Henning et al., “Port Wine Stain Coagulation Experiments with a 540-nm Continuous Wave Dye-Laser,” Lasers in Surgery and Medicine, 2:205-210 (1983). |
Kandel, Laurence B., M.D., et al., “Transurethral Laser Prostatectomy in the Canine Model,” Lasers in Surgery and Medicine, 12:33-42 (1992). |
Karu, “Cell Attachment to Extracellular Matrics is Modulated by Pulsed Radiation at 820 nm and Chemicals that Modify the Activity of Enzymes in the Plasma Membrane,” Laser in Surgery and Medicine, vol. 29, pp. 274-281, 2001. |
Levin, G. et al., “Designing with hyseretic current-mode control, ” EDN Magazine, pp. 1-8, Apr. 28, 1994. |
Lucchina et al., “Fluorescence photography in the evaluation of acne,” J. Am. Acad. Dermatol. 35:58-63 (1996). |
Maegawa, et al., “Effects of Near-Infrared Low-Level Laser Irradiation on Microcirculation,” Lasers in Surgery and Medicine, vol. 27, pp. 427-437, 2000. |
Manstein, D., et al., “Fractional Photothermolysis: A New Concept for Cutaneous Remodeling Using Microscopic Patterns of Thermal Injury,” Lasers in Surgery and Medicine, 34: 426-438 (2004). |
Manuskiatti et al., “Laser hair removal affects sebaceous glands and sebum excretion . . . ,” J. Am. Acad. Dermatol., 41:176-180, 1999. |
Marinelli et al., “Diode laser illuminated automotive lamp systems,” SPIE Proceedings vol. 3285:170-177 (1998). |
Matsunaga et al., “Effect of pH on Dye-Laser Output Power”, J. Appl. Phys. 48(2):842-844 (Feb. 1977). |
McDaniel, et al., “Hexascan: A New Robotized Scanning Laser Handpiece,” Cutis, 45:300-305 (1990). |
McNicholas, T. A., et al., “Interstitial Laser Coagulation of the Prostate: Experimental Studies,” SPIE, 1421:30-35 (1991). (From Proceedings of Lasers in Urol., Laparoscopy, and General Surgery, Jan. 21-23, 1991). |
Moretti, Michael, “Holmium Boosts Orthopedic Laser Development,” Medical Laser Buyers Guide, p. 93 (1992). |
Moretti, Michael, “Lasers Improve Prostatectomy Treatment,” Medical Laser Buyers Guide, p. 94-96 (1992). |
Mostovnikov, V.A. et al., “Recovery of Lasing Properties of Dye Solutions after Their Photolysis,” Sov. J. Quantum Electron, 6(9), Sep. 1976, pp. 1126-1128. |
Nanni, C.A. et al., “Complications of Carbon Dioxide Laser Resurfacing,” Washington Inst. of Dermatol. Surg. 24:315-320 (1998). |
Overholt BF et al. “Balloon photodynamic therapy of esophageal cancer: effect of increasing balloon size.” PubMed; Lasers Surg Med. 1996, 18(3):248-52. |
Panjehpour M et al. “Spectroscopic diagnosis of esophageal cancer: new classification model, improved measurement system.” PubMed; Gastrointest Endosc. Jun. 1995; 41 (6):577-81. |
Polla, L. et al., “Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin,” Journal of Investigative Dermatology, vol. 89, No. 3, pp. 281-286, Sep. 1987. |
Reed J.T. et al., “Treatment of Periorbital Wrinkles,” Washington Inst. of Dermatol. Surg. 23:643-648 (1997). |
Remillard et al., “Diode laser illuminated automotive brake lamp using a linear fanout diffractive optical element,” Proc of the Diffractive Optics and Micro-Optics Conference, OSA Technical Digest Series vol. 10, 192-194 (1998). |
Remillard et al., “Diode Laser Illuminators for Night-Vision Applications,” SPIE Proceedings vol. 4285:14-22 (2001). |
Rosenfeld, H., et al., “Treatment of Cutaneous and Deep Vascular Lesions with the Nd:YAG Laser,” Lasers in Surgery and Medicine, 6:20-23 (1986). |
Rotteleur, et al., “Robotized scanning laser handpiece for the treatment of port wine stains and other angiodysplasias,” Lasers Surg. Med., 8:283-287 (1998). |
Rubach et al., “Histological and Clinical Evaluation of Facial Resurfacing Using a Carbon Dioxide Laser With the Computer Pattern Generator,” Arch Otolaryngol Head Neck Surg., 123:929-934 (1997). |
Rylander, C.G. et al., “Mechanical Tissue Optical Clearing Devices: Enhancement of Light Penetration in Ex Vivo Porcine Skin and Adipose Tissue,” Lasers in Surgery and Medicine, vol. 40, pp. 688-694 (2008). |
Schade, W. et al., “Temperature tuned distributed feedback dye laser with high repetition rate”, Applied Optics, vol. 2 9, No. 27, Sep. 20, 1990, pp. 3950-3954. |
Schappert et al., “Temperture Tuning of an Organic Dye Laser” Applied Physics Letters 13(4):124-126 (Aug. 15, 1968). |
Schindl, “Does Low Intensity Laser Irradiation Really Cause Cell Damage?” Laser in Surgery and Medicine vol. 22, pp. 105, 2001. |
Sheehan-Dare, et al., “Lasers in Dermatology,” British Journal of Dermatology, 129:1-8 (1993). |
Sliney et al., “Safety with Lasers and Other Optical Sources: A Comprehensive Handbook,” Plenum Press, pp. 477-480 (1980). |
Spears et al., “Fluorescence of Experimental Atheromatous Plaques with Hematoporphyrin Derivative,” J. Clin. Invest, 71:395-399 (1983). |
Spotswood, “Novel Use of Fractional Lasers for Scarring Improves Quality of Life for Injured Troops”, http://www.usmedicine.com/articles/novel-use-of-fractional-lasers-for-scarring-improves-quality-of-life-for-injured-troops-.html, (Aug. 2012) , U.S. Medicine ISSN: 0191-6246. 4 pages. |
Strauss et al., “Skin Lipids and Acne,” Annu. Rev. Med., 26: 27-31, 1975. |
Tarijian, et al., “Fractional abalative laser skin resurfacing: A review”, Journal of Cosmetic and Laser Therapy, 13:262-264, ISSN 1476/4172. Informa UK Ltd. Sep. 2011, 3 pages. |
Unger, W.P., Laser hair transplantation III: Computer-assisted laser transplanting. Dermatol Surg. 1995;21:1047-1055. |
Van Bruegel, “Power Density and Exposure Time of He—Ne Irradiation Are More Important Than Total Energy Dose in Photo-Biomodulation of Human Fibroblasts in Vitro,” Lasers in Surgery and Medicine, vol. 12 pp. 528-537, 1992. |
Vasily, et al., “Non-Ablative Fractional Resurfacing of Surgical and Post-Traumatic Scars”, Journal of Drugs in Dermatology, 8(11):998-1005, Nov. 2009, 8 pages. |
Walsh, “Laser “Curettage”: a Critical Analysis,” Periodontology 14:4-12, 1993. |
Watanabe, S. et al., “Comparative studies of femtosecond to microsecond laser pulses on selective pigmented cell injury in skin,” Photochemistry and Photobiology, vol. 53, No. 6, pp. 757-762, 1991. |
Watanabe, S. et al., “The Effect of Pulse Duration on Selective Pigmented Cell Injury by Dye Lasers,” The Journal of Investigative Dermatology, 88:523, 1987. |
Watson, G. M., MS, “Minimally Invasive Therapies of the Prostate,” Minimally Invasive Therapy, 1:231-240 (1992). |
Westerman et al., “Argon Laser Irradiation Effects on Sound Root Surfaces: In Vitro Scanning Electron Microscopic Observations,” Journal of Clinical Laser Medicine and Surgery, vol. 16, No. 2, pp. 111-115, 1998. |
Yules, R.B. et al., “The effect of Q-switched ruby laser radiation on dermal tattoo pigment in man,” Arch Surg, vol. 95, pp. 179-180, Aug. 1967. |
Zonios et al., “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed in Vivo Using Diffuse Reflectance Spectroscopy,” Journal of Investigative Dermatology, 117:1452-1457 (Dec. 2001). |
Number | Date | Country | |
---|---|---|---|
20170182334 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
60389871 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14588746 | Jan 2015 | US |
Child | 15402649 | US | |
Parent | 11865367 | Oct 2007 | US |
Child | 14588746 | US | |
Parent | 10465757 | Jun 2003 | US |
Child | 11865367 | US |