The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent the work is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Many electrical and electronic devices are controlled by dimmers to change output characteristics of the devices. In an example, a dimmer is used to change light output from a lighting device. In another example, a dimmer is used to change rotation speed of a fan. Further, a dimmer can includes a receiver to receive a remote control signal, such that the dimmer is remote controllable. The receiver needs to be powered on even when the dimmer is turned off.
Aspects of the disclosure provide a circuit. The circuit includes a control circuit and a return path circuit. The control circuit is configured to operate in response to a first conduction angle of a dimmer coupled to the circuit. The first conduction angle is adjusted to control an output power to a first device. The dimmer has a second conduction angle that is independent of the control of the output power to the first device. The return path circuit is configured to provide a return path to enable providing power to a second device in response to the second conduction angle.
In an example, the circuit includes a startup circuit configured to enable the control circuit to start operation in response to the first conduction angle. Further, the return path circuit is configured to provide the return path to enable providing power to the second device in response to the second conduction angle when the control circuit is not in operation. In an example, the control circuit includes a return path control circuit configured to disable the return path when the control circuit is in operation. The return path control circuit is configured to disable the return path based on at least one of an input voltage to the circuit and an output voltage of the circuit.
According to an aspect of the disclosure, the return path circuit is configured to provide the return path to enable providing power to the second device in the dimmer when the control circuit is not in operation. In an example, the second device is a remote control receiver.
In an example, the return path circuit includes a transistor configured to be turned on in response to the second conduction angle when the control circuit is not in operation. In an example, the return path circuit includes a resistor and a capacitor to determine a turn on time of the transistor.
Aspects of the disclosure provide an electronic system. The electronic system includes the dimmer and the circuit coupled together.
Aspects of the disclosure provide a method. The method includes receiving an input that is regulated to have a first conduction angle and a second conduction angle. The first conduction angle is adjusted to control an output power to a first device, and the second conduction angle is independent of the control of the output power to the first device. Further the method includes turning on a return path for the input during the second conduction angle to provide power to a second device when the input provides no output power to the first device.
Various embodiments of this disclosure that are proposed as examples will be described in detail with reference to the following figures, wherein like numerals reference like elements, and wherein:
According to an embodiment of the disclosure, the electronic system 100 is suitably coupled to an energy source 101. In the
According to an aspect of the disclosure, the dimmer 102 is configured to control electric energy from the energy source 101 to the electronic system 100, and thus controls output power from the output device 109. For example, the dimmer 102 is turned on/off to turn on/off the output device 109, and a dimming angle of the dimmer 102 is adjusted to adjust output power from the output device 109.
Further, according to an embodiment of the disclosure, the electronic system 100 includes a component that is turned-on no matter the dimmer 102 is turned on or off when the electronic system 100 is coupled to the energy source 101. The dimmer 102 is configured to provide electric energy to the always-on component.
In an example, the dimmer 102 is a remote controllable dimmer that includes a remote control receiver 160. When the electronic system 100 is coupled to the energy source 101, the remote control receiver 160 is turned on to listen to control signals from a remote control component 162 no matter the dimmer 102 is turned on or off.
In an example, the remote control component 162 is configured to transmit a turn-on control signal. When the remote control receiver 160 receives the turn-on control signal, the dimmer 102 is turned on to start providing electric energy to other devices, such as to the output device 109 in the electronic system 100. Further, in an example, the remote control component 162 is configured to transmit a power adjustment signal. When the remote control receiver 160 receives the power adjustment signal, the dimmer 102 adjusts the electric energy provided to the output device 109 according to the received power adjustment signal. Then, in an example, the remote control component 162 is configured to transmit a turn-off control signal. When the remote control receiver 160 receives the turn-off control signal, the dimmer 102 is turned off to stop providing electric energy to the other devices in the electronic system 100, and thus turns off the output device 109 in an example.
It is noted that even when the dimmer 102 is turned off to stop providing electric energy to the output device 109, the remote control receiver 160 in the dimmer 102 needs to continue operation to listen to the control signals from the remote control component 162. In an embodiment, the dimmer 102 provides the necessary energy to support the remote control receiver 160 even when the dimmer 102 is turned off to stop providing electric energy to the output device 109.
According to an aspect of the disclosure, the dimmer 102 is a phase angle based dimmer. In an example, the AC voltage supply has a sine wave shape, and the dimmer 102 includes a forward-type triode for alternating current (TRIAC) 164 having an adjustable dimming angle α within [0, π]. Every time the AC voltage VAC crosses zero, the forward-type TRIAC 164 stops firing charges for a dimming angle α. The dimming angle α is adjusted to turn on/off the dimmer 102 and adjust the output power of the output device 109. For example, when the dimming angle α is equal to π, the dimmer 102 is turned off; when the dimming angle α is reduced from π, the dimmer 102 is turned on; when the dimming angle α is further reduced, the output power of the output device 109 is increased; and when the dimming angle α is zero, the output power of the output device 109 is maximized.
Further, according to an aspect of the disclosure, the forward-type TRIAC 164 additionally fires charges for a time duration that is independent of the dimming angle α to provide electric energy to the always-on component in the electronic system 100, such as the remote control receiver 160.
Thus, in an example, the forward-type TRIAC 164 has first conduction angles that depend on the dimming angle α, such as [α, π] and [π+α, 2π], 270, and has a second conduction angle that is independent of the dimming angle α, such as a relatively small time during at the beginning of each AC cycle. When a phase of the AC voltage VAC is within a conduction angle, the forward-type TRIAC 164 fires charges, and a TRIAC voltage VTRIAC follows the AC voltage VAC; and when the phase of the AC voltage VAC is out of any conduction angle, the TRIAC voltage VTRIAC output from the forward-type TRIAC 164 is zero.
According to an embodiment of the disclosure, the dimmer 102 includes an energy storing element 161 to store electric energy for the remote control receiver 160. In the
According to an aspect of the disclosure, a low impedance return path is required to enable the dimmer 102 to store electric energy in the energy storing element 161. In an example, the capacitor CTRIAC has a relatively large capacitance, such as in the order of 10 μF, and thus the impedance of the return path needs to be much lower than the impedance of the capacitor CTRIAC to enable the capacitor CTRIAC to store the electric energy.
According to an aspect of the disclosure, even when the dimmer 102 is turned off to stop providing output power to the output device 109, the electronic system 100 provides a low impedance return path to enable the energy storing element 161 in the dimmer 102 to store electric energy.
According to an embodiment of the disclosure, the dimmer 102 is integrated with other components in the electronic system 100. In another embodiment, the dimmer 102 is a separate component, and is suitably coupled with the other components of the electronic system 100. It is noted that the dimmer 102 can include other suitable components, such as a processor (not shown), and the like.
The rectifier 103 rectifies the received AC voltage to a fixed polarity, such as to be positive. In the
As can be seen in
Specifically, in the
In each cycle [0, 2π], when the phase of the AC voltage VAC is within the second conduction angle [0, β], the AC voltage VAC is positive, the TRIAC voltage VTRIAC follows the AC voltage VAC, as shown by 240, and the rectified voltage VRECT is about the same as the TRIAC voltage VTRIAC, as shown by 250; when the phase of the AC voltage VAC is within [β, α] or [π, π+α], the TRIAC voltage VTRIAC output from the forward-type TRIAC dimmer 102 is about zero, and the rectified voltage VRECT is about zero; when the phase of the AC voltage VAC is within [α, π], the AC voltage VAC is positive, the TRIAC voltage VTRIAC follows the AC voltage VAC, and the rectified voltage VRECT is about the same as the TRIAC voltage VTRIAC; and when the phase of the AC voltage VAC is within [π+α, 2π], the AC voltage VAC is negative, the TRIAC voltage VTRIAC follows the AC voltage VAC, and the rectified voltage VRECT is about negative of the TRIAC voltage VTRIAC.
According to an embodiment of the disclosure, the second conduction angle is relatively small and independent of the dimming angle α. At the beginning of each cycle, the rectified voltage VRECT increases from zero to a peak voltage, and then drops to zero in response to the second conduction angle, as shown by 250.
The rectified voltage VRECT is provided to following circuits, such as the circuit 110, the energy transfer module 104, and the output device 109, and the like in the electronic system 100. In an embodiment, the circuit 110 is implemented on a single integrated circuit (IC) chip. In another embodiment, the circuit 110 is implemented on multiple IC chips. The circuit 110 is suitably coupled with the other components in the electronic system 100. For example, the circuit 110 provides control signals to the energy transfer module 104. The energy transfer module 104 transfers the provided electric energy by the rectified voltage VRECT to the output device 109.
In an example, the energy transfer module 104 includes a transformer T and a switch ST. The energy transfer module 104 also includes other suitable components, such as a diode DT, a capacitor CT, and the like. The transformer T includes a primary winding coupled with the switch ST and a secondary winding coupled to the output device 109. In an embodiment, the circuit 110 provides control signals to control the operations of the switch ST to transfer the energy from the primary winding to the secondary winding. In an example, the circuit 110 provides pulses having a relatively high frequency, such as in the order of 100 KHz, to control the switch ST. The relatively high frequency pulses enable power factor correction (PFC) for the AC supply.
The output device 109 can be any suitable device, such as a light bulb, a plurality of light emitting diodes (LEDs), a fan and the like.
According to an embodiment of the disclosure, the circuit 110 includes a return path circuit 140. The return path circuit 140 is configured to provide a low impedance return path when the dimmer 102 is turned off to stop providing electric energy to the output device 109.
According to an embodiment of the disclosure, when the dimmer 102 is turned on to provide electric energy to the output device 109, the electronic system 100 has a low impedance return path. For example, when the dimmer 102 is turned on, the circuit 110 is powered up, and provides relatively high frequency pulses to repetitively switch on/off the switch ST. Thus, the transformer T and the switch ST form a return path when the dimmer 102 is turned on.
When the dimmer 102 is turned off to stop providing energy to the output device 109 (e.g., the dimming angle α being π), the circuit 110 is powered down and unable to provide the pulses to the switch ST, and the switch ST is in the off state, and breaks the return path formed by the transformer T and the switch ST. The return path circuit 140 is configured to provide a low impedance return path to the dimmer 102 when the dimmer 102 is turned off.
In an embodiment, the circuit 110 includes a startup circuit 120 and a control circuit 130. The startup circuit 120 is configured to startup the circuit 110 when the dimmer 102 is switched from being turned off to being turned on. In an embodiment, after startup, the control circuit 130 is enabled to provide pulses to the switch ST, and thus the transformer T and the switch ST form a low impedance return path.
According to an example of the disclosure, the return path circuit 140 is coupled to the startup circuit 120 to operate based on the operation of the startup circuit 120. For example, the return path circuit 140 turns on a return path in the circuit 110 before the startup circuit 120 starts up the circuit 110 and the return path circuit 140 turns off the return path in the circuit 110 to reduce current leakage after the startup circuit 120 starts up the circuit 110.
In an example, the control circuit 130 includes a return path control circuit 150 coupled to the return path circuit 140. In an example, before startup, the return path circuit 140 turns on the return path when control signals from the return path control circuit are not available. After startup, the return path control circuit 150 generates control signals to turn off the return path formed by the return path circuit 140.
It is noted that the control circuit 130 includes various control circuits, such as a control circuit for controlling a depletion mode transistor in the start-up circuit 120, a control circuit for controlling the switch ST, the return path control circuit 150 for controlling the return path circuit 140, and the like. Different control circuits can be enabled to start operation in response an output voltage from the start-up circuit 120 at different voltage levels. In an example, the control circuit for controlling the switch ST is configured to operate when the output voltage from the start-up circuit 120 is above a relatively high voltage level, such as 10V and the like; and the control circuit for controlling the depletion mode transistor in the start-up circuit 120 and the return path control circuit 150 are configured to operate when the output voltage from the start-up circuit 120 is above a relatively low voltage level, such as 4V and the like.
At S310, the dimmer 102 receives the AC power supply, and adjusts power supply to following circuits according to conduction angles. Specifically, in each AC cycle, when the phase of the AC power supply is within a conduction angle, the dimmer 102 fires charges, and the output voltage from the dimmer 102 follows the voltage of the AC power supply; and when the phase of the AC power supply is not within any conduction angle, the dimmer 102 does not fire charges, and the output voltage from the dimmer 102 is zero. In an example, when the dimmer 102 is turned on, in each AC cycle, there exists at least a first conduction angle and a second conduction angle. The first conduction angle is related to the dimming angle α of the dimmer 102 that determines output power to the output device 109. The second conduction angle is independent of the dimming angle α. When the dimmer 102 is turned off, the first conduction angle does not exist, and the second conduction angle still exists at the beginning of each AC cycle. The second conduction angle is intended to provide electric energy to certain circuits, such as the remote control receiver 160, that need to stay in operation even when the dimmer 102 is turned off.
At S320, the control circuit 130 operates in response to the first conduction angle to control output power to a first device, such as the output device 109. For example, when the first conduction angle exists in each AC cycle, the start-up circuit 120 starts up the circuit 110 and enables the operation of the control circuit 130. The control circuit 130 then provides control signals to control the energy transfer module 104 to transfer the provided electric energy by the rectified voltage VRECT to the output device 109.
At S330, the return path circuit 140 provides a return path to enable providing electric energy to a second device, such as the remote control receiver 160, in response to the second conduction angles when the dimmer 102 is turned off. For example, when the dimmer 102 is turned off, the dimming angle is π, the first conduction angle does not exist in an AC cycle. The control circuit 130 is not in operation, and no output power is provided to the output device 109. Then, the return path circuit 140 in the circuit 110 provides a return path to enable the capacitor CTRIAC to store electric energy in response to the second conduction angles. The stored electric energy supports the operation of the remote control receiver 160. Then, the process proceeds to S399 and terminates.
In the
In the
In the
During operation, in an example, when the dimmer 102 is turned off, the rectified voltage VRECT is unable to charge the capacitor COUT to an output voltage level to enable the operation of the control circuit 430, and thus the control circuit 430 does not provide a control signal to the transistor M3. Thus, the transistor M3 is turned off. Then, the output voltage VOUT controls the gate voltage of the transistor M2 via the resistor R1. For example, when the output voltage VOUT is larger than the threshold voltage of the transistor M2, such as larger than 3V, the transistor M2 is turned on. In an example, the transistor M2 is suitably designed to have a low impedance when it is turned on. When the transistor M2 is turned on, the transistor M2 forms a low impedance return path to ground, and conducts a bleeding current IBLEEDER to the ground. When the output voltage VOUT is smaller than the threshold voltage of the transistor M2, the transistor M2 is turned off.
In the
In another example, the control circuit 430 includes a switch control portion (not shown) configured to provide pulses to, for example, the switch ST in
The return path control circuit 450 is configured to control the return path circuit 440 when the control circuit 430 is enabled to operate. In an example, when the dimmer 102 is turned on, the start-up circuit 420 charges the capacitor COUT to above certain voltage level, such as above 10V to enable the operation of the control circuit 430. In an embodiment, the control circuit 430 provides control signals to external circuits to form a return path that is out of the circuit 410. Further, the return path control circuit 450 controls the return path circuit 440 to turn off the return path within the circuit 410 to reduce the power leakage in an example.
According to an aspect of the disclosure, the return path control circuit 450 is configured to sense the rectified voltage VRECT and the output voltage VOUT, and controls the return path circuit 440 based on the rectified voltage VRECT and the output voltage VOUT.
In the
Further, the return path control circuit 450 includes an output voltage sensing circuit 452. The output voltage sensing circuit 452 includes resistors R5, R6 and R7 and a second comparator OA2. The resistors R5, R6 and R7 form a voltage divider with a switchable ratio to sense the output voltage VOUT, and to generate a sensed output voltage VOUT
In the
According to an aspect of the disclosure, the return path control circuit 450 is configured to control the return path circuit 440 to turn off the return path when the rectified voltage VRECT is larger than the peak voltage in the second conduction angle. In an example, the second conduction angle is generally a short period at the beginning of an AC cycle that the AC voltage increases from zero to the peak voltage and then drops to zero (e.g., 250 in
It is noted that the rectified voltage sensing circuit 451 is not sensitive to low conduction angles. Specifically, when the dimmer 102 is turned on to provide relatively small output power to the output device 109, the rectified voltage VRECT during the first conduction angles can be lower than the peak voltage of the second conduction angle. Thus, the sensed rectified voltage VRECT
In an embodiment, even when the dimming angle is large and the first conduction angles are low, the rectified voltage VRECT is able to charge the capacitor COUT to have a relatively large output voltage VOUT. Then, the output sensing circuit 452 controls the return path circuit 440 to turn off the return path in the circuit 410. Specifically, when the sensed output voltage VOUT
According to another aspect of the disclosure, the output sensing circuit 452 is configured to use two thresholds for the output voltage VOUT to control the return path in the return path circuit 440. In an example, the voltage divider is configured to have a relatively large ratio to sense the output voltage VOUT when the output voltage VOUT is below a voltage level that enables the operation of the control circuit 430. For example, at default, the sensed output voltage VOUT
In an example, when the dimmer 102 is turned off, the output sensing circuit 452 uses the relatively small threshold. In addition, the output voltage VOUT is below the voltage level to enable the operation of the control circuit 430, and thus the control circuit 430 is unable to turn on the transistor M3. Then, the transistor M2 is turned on to form the return path in the circuit 410. In an example, the return path enables providing electric energy to the always-on component, such as the remote control receiver 160, in the dimmer 102.
Further, in the example, when the dimmer 102 is switched from being turned off to being turned on, the rectified voltage VRECT charges the capacitor COUT. When the output voltage VOUT on the COUT is above the level to enable the operation of the control circuit 430, the control circuit 430 starts operating, The control circuit 430 generates the reference voltage VREF. When the output voltage VOUT is above 15V for the first time, the FC-LATCH signal is latched and is used to switch the sensed output voltage VOUT
When the dimmer 102 is switched from being turned on to being turned off, the rectified voltage VRECT stays low, and the output voltage VOUT starts dropping. Because the threshold voltage is relatively high, the output voltage VOUT drops below the threshold voltage in a relatively short time, and the output of the second comparator OA2 switches from “1” to “0” in a relatively short time. The output of the first comparator OA1 is also “0” due to the low rectified VRECT. Then, the transistor M3 is turned off in a relatively short time, and the transistor M2 is turned on in a relatively short time.
According to an embodiment, at beginning of each AC cycle, the dimmer 102 has a conduction angle that is independent of the state of the dimmer 102. The conduction angle allows the dimmer 102 to fire charges to provide electric energy to the always-on component, such as the remote control receiver 160, even when the dimmer 102 has been turned off.
During the conduction angle at the beginning of each AC cycle, the rectified voltage VRECT follows the AC supply to increase from zero to the peak voltage and then drop to zero, as shown by 511 in
Because the rectified VRECT is non-zero within the conduction angle, the startup circuit 420 charges the capacitor COUT and increases the output voltage VOUT during the conduction angle. Because when the output voltage VOUT is below a level to enable the operation of the control circuit 430, the control circuit 430 is not able to provide the control signal to the transistor M3. Thus, the transistor M3 is turned off. When the output voltage VOUT is above the threshold voltage of the transistor M2, such as about 3V, the transistor M2 is turned on to form the return path to ground. The return path conducts the bleeding current IBLEEDER that is about same as the drain current IDRAIN. The return path enables the dimmer 102 to provide electric energy to the always-on component. The return path also discharges the buildup on the capacitor COUT, and thus reduces the output voltage VOUT. When the output voltage VOUT drops below the threshold of the transistor M2, the transistor M2 is turned off, and the bleeding current IBLEEDER drops to about zero.
In the
As can be seen from the first waveform 610, before the dimmer 102 is switched off, during the first conduction angle and the second conduction angle, the rectified voltage VRECT follows the absolute value of the AC supply voltage.
Before the dimmer 102 is switched off, the control circuit 430 is in operation. As can be seen from the second waveform 620 and the second waveform 630, the gate control circuit 431 controls the transistor M1 to turn on/off to let the rectified voltage VRECT charge the capacitor COUT, and maintain the output voltage VOUT in a desired range, such as within [11V, 15V] range.
Before the dimmer 102 is switched off, the return path control circuit 450 detects that the dimmer 102 is on, and control the return path circuit 440 to turn off the return path in the circuit 410. For example, the rectified voltage sensing circuit 451 detects the voltage level of the rectified voltage VRECT and the output voltage sensing circuit 452 detects the output voltage VOUT to determine the dimmer 102 is still on. As can be seen from the fourth waveform 640, no bleeding current passes the transistor M2 before the dimmer 102 is switched off.
When the dimmer 102 is switched off, the first conduction angle does not exists, the rectified voltage VRECT is only non-zero during the second conduction angle (at the beginning of each AC cycle). The rectified voltage VRECT can no longer charge the capacitor COUT to maintain the output voltage VOUT, and thus the output voltage VOUT drops to relatively low level, such as 2V. The control circuit 430 is no longer in operation, and cannot provide the control signal to turn on the transistor M3. Further, during the second conduction angle, the output voltage VOUT increases due to the non-zero rectified voltage VRECT. When the output voltage VOUT is larger than the threshold voltage of the transistor M2, the transistor M2 is turned on to form the return path.
The return path circuit 740 includes transistors M2 and M3, resistors R1, R3 and R4 and a capacitor C1. These elements are coupled together as shown in
During operation, in an example, when the dimmer 102 is turned on, the output voltage VOUT is maintained at a relatively high level, such as above 10V. The resistance ratio of the resistors R1 and R3 are suitably determined that the gate voltage of the transistor M3 is above its threshold, thus the transistor M3 is turned on to pull down the gate voltage of the transistor M2, thus the transistor M2 is turned off.
When the dimmer 102 is turned off, the output voltage VOUT drops. When the output voltage VOUT drops to a level that the gate voltage of the transistor M3 is below its threshold, the transistor M3 is turned off. The resistor R4 pulls up the gate voltage of the transistor M2 to a relatively high level to turn on the transistor M2. In an example, the transistor M2 stays on for about the turn on time T, and then the gate voltage of the transistor M2 is below its threshold voltage and the transistor M2 is turned off.
It is noted that the circuit 710 can be suitably modified. For example, the resistor R1 can be connected to node 721 or can be connected to node 722.
In the
As can be seen from the first waveform 810, before the dimmer 102 is switched off, during the first conduction angle and the second conduction angle, the rectified voltage VRECT follows the absolute value of the AC supply voltage.
Before the dimmer 102 is switched off, the control circuit 730 is in operation. As can be seen from the second waveform 820 and the third waveform 830, the gate control circuit 731 controls the transistor M1 to turn on/off to let the rectified voltage VRECT charge the capacitor COUT, and maintain the output voltage VOUT in a desired range, such as within [11V, 15V] range.
Before the dimmer 102 is switched off, because the output voltage VOUT is relatively high, and thus the gate voltage of the transistor M3 is larger than its threshold. The transistor M3 is turned on to pull down the gate voltage of the transistor M2. As can be seen from the fourth waveform 840, no bleeding current passes the transistor M2 before the dimmer 102 is switched off.
When the dimmer 102 is switched off, the first conduction angle does not exists, the rectified voltage VRECT is only non-zero during the second conduction angle (at the beginning of each AC cycle). The rectified voltage VRECT can no longer charge the capacitor COUT to maintain the output voltage VOUT, and thus the output voltage VOUT drops to relatively low level, such as below 10. Thus, during the second conduction angle, the output voltage VOUT increases due to the non-zero rectified voltage VRECT, and then drops. When the output voltage VOUT is relatively large, the transistor M3 is turned on and thus the transistor M2 is turned off. When the output voltage VOUT drops to a level that the transistor M3 is turned off, the transistor M2 is turned on for the turn-on time T to form the return path.
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, alternatives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.
This present disclosure claims the benefit of U.S. Provisional Application No. 61/525,644, “Startup Circuit for Special TRIAC Applications” filed on Aug. 19, 2011, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4350935 | Spira et al. | Sep 1982 | A |
7091672 | Steffie et al. | Aug 2006 | B2 |
7446486 | Steffie et al. | Nov 2008 | B2 |
8492992 | Otake et al. | Jul 2013 | B2 |
20040251884 | Steffie et al. | Dec 2004 | A1 |
20060238139 | Steffie et al. | Oct 2006 | A1 |
20060244392 | Taipale et al. | Nov 2006 | A1 |
20100259196 | Sadwick et al. | Oct 2010 | A1 |
20110074302 | Draper et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
1836193 | Sep 2006 | CN |
101595764 | Dec 2009 | CN |
102036458 | Apr 2011 | CN |
WO 2006118976 | Nov 2006 | WO |
Entry |
---|
U.S. Appl. No. 13/557,265, filed Jul. 25, 2012, by Siew Yong Chui et al., entitled “Start-Up Circuit.” |
U.S. Appl. No. 13/557,268, filed Jul. 25, 2012, by Siew Yong Chui, entitled “Protection Circuit in Triac Applications.” |
Combined Office Action and Search Report issued Jan. 29, 2015 in Chinese Patent Application No. 201280049543.1 (with English translation). |
International Preliminary Report on Patentability and Written Opinion issued Feb. 25, 2014 in PCT/IB2012/001836. |
Number | Date | Country | |
---|---|---|---|
20130043726 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61525644 | Aug 2011 | US |