Method and Apparatus for Triangle Rasterization with Clipping and Wire-Frame Mode Support

Information

  • Patent Application
  • 20080158252
  • Publication Number
    20080158252
  • Date Filed
    March 11, 2008
    16 years ago
  • Date Published
    July 03, 2008
    16 years ago
Abstract
Systems for performing rasterization are described. At least one embodiment includes a span generator for performing rasterization. In accordance with such embodiments, the span generator comprises functionals representing a scissoring box, loaders configured to convert the functionals from a general form to a special case form, edge generators configured to read the special case form of the scissoring box, whereby the special case form simplifies calculations by the edge generators. The span generator further comprises sorters configured to compute the intersection of half-planes, wherein edges of the intersection are generated by the edge generators and a span buffer configured to temporarily store spans before tiling.
Description
FIELD

The invention relates generally to rasterizers and, more particularly, to accelerating the conversion of primitives defined by vertexes to equivalent images composed of pixel patterns that can be stored and manipulated as sets of bits.


RELATED ART

Raster displays are commonly used in computer graphics systems. These displays store graphics images as a matrix of the smallest picture elements that can be displayed on a screen (“pixels”) with data representing each pixel being stored in a display buffer. This data specifies the display attributes for each pixel on the screen such as the intensity and color of the pixel. An entire image is read from the display buffer and displayed on the screen by sequentially scanning out horizontal rows of pixel data or “scan lines.”


Raster display systems commonly use polygons as basic building blocks or “primitives” for drawing more complex images. Triangles are a common basic primitive for polygon drawing systems, since a triangle is the simplest polygon and more complex polygons can be represented as sets of triangles. The process of drawing triangles and other geometric primitives on the screen is known as “rasterization.”


An important part of rasterization involves determining which pixels fall within a given triangle. Rasterization systems generally step from pixel to pixel in various ways and determine whether or not to “render,” i.e. to draw into a frame buffer or pixel map, each pixel as part of the triangle. This, in turn, determines how to set the data in the display buffer representing each pixel. Various traversal algorithms have been developed for moving from pixel to pixel in a way such that all pixels within the triangle are covered.


Rasterization systems sometimes represent a triangle as a set of three edge-functions. An edge function is a line equation representing a straight line, which serves to subdivide a two-dimensional plane. Edge functions classify each point within the plane as falling into one of three regions: the region “inside” of the triangle, the region “outside” of the triangle or the region representing the line itself. The type of edge function that will be discussed has the property that points “inside” of the triangle have a value greater than zero, points “outside” have a value less than zero, and points exactly on the line have a value of zero. This is shown in FIG. 1a. Applied to rasterization systems, the two-dimensional plane is represented by the graphics screen, points are represented by individual pixels, and the edge function serves to subdivide the graphics screen.


The union of three edges, or more particularly three half-planes, each of which is specified by edge functions, create triangles. It is possible to define more complex polygons by using Boolean combinations of more than three edges. Since the rasterization of triangles involves determining which pixels to render, a tiebreaker rule is generally applied to pixels that lie exactly on any of the edges to determine whether the pixels are to be considered interior or exterior to the triangle.


As shown in FIG. 1b, each pixel has associated with it a set of edge variables (e0, e1 and e2) which are proportional to the signed distance between the pixel and the three respective edges. The value of each edge variable is determined for a given triangle by evaluating the three edge functions, f0(x,y), f1(x,y) and f2(x,y) for the pixel location. It is important to note that it can be determined whether or not a pixel falls within a triangle by looking at only the signs of e0, e1 and e2.


In determining which pixels to render within a triangle, typical rasterization systems compute the values of the edge variables (e0, e1 and e2) for a given set of three edge functions and a given pixel position, and then use a set of increment values (Δeoutside, Δeinside, etc.) to determine the edge variable values for adjacent pixels. The rasterization system traverses the triangle, adding the increment values to the current values as a traversal algorithm steps from pixel to pixel.


With reference again to FIG. 1a, a line is illustrated that is defined by two points: (X,Y) and (X+dX, Y+dY). As noted above, this line can be used to divide the two dimensional space into three regions: all points “outside” of, “inside” of, and exactly on the line. The edge f(x,y) can be defined as f(x,y)=(x−X)dY−(y−Y)dX. This function has the useful property that its value is related to the position of the point (x,y) relative to the edge defined by the points (X,Y) and (X+dX, Y+dY):


f(x,y)>0 if (x,y) is “inside”;


f(x,y)=0 if (x,y) is exactly on the line; and


f(x,y)<0 if (x,y) is “outside”.


Existing rasterization systems commonly use this function, since it can be computed incrementally by simple addition: f(x+1,y)=f(x,y)+dY and f(x,y+1)=f(x,y)−dX.


A variety of different traversal algorithms are presently used by different rasterization systems in the rendering process. Any algorithm guaranteed to cover all of the pixels within the triangle can be used. For example, some solutions involve following the sides of the triangle while identifying a horizontal or vertical span of pixels therein. Following the sides of the triangle is adequate for the triangle edges, but if the triangle is clipped by a near or far plane, these boundaries are not known explicitly and cannot be followed as easily as the triangle edges. Other methods test individual pixels one at a time. In the recent past multiple pixels are tested in parallel to speed up the rasterization process.


Some conventional rasterizers use span-based pixel generation and contain edge and span interpolators based on the well-known Bresenham algorithm. The speed of those rasterizers depends on the interpolation speed. Furthermore, they require a complicated setup process. In most cases such rasterizers interpolate many associated parameters such as color, texture, etc. with appropriate hardware. Increasing the speed of such rasterizers requires a significant increase in the number and complexity of the interpolators, an approach not suitable for commercial products. In the case of clipping support, the structure of such rasterizers is too complex for efficient implementation.


Another approach is to use area rasterizers based on a definition of inner and outer pixels, grouped into blocks, with checking corner pixels' equation values to define inner, border and outer blocks. This approach may accelerate the generation of bit-masks of inner blocks, but the border blocks either need to be processed pixel by pixel or need a significant amount of dedicated hardware for processing those pixels in parallel.


Accordingly, there is a need for a low-cost high-speed rasterizer having a simple and uniform structure and capable of generating multiple spans per clock cycle.


SUMMARY

Invention describes a low-cost high-speed programmable rasterizer. The rasterizer accepts as input a set of functionals representing a triangle, clipping planes and a scissoring box, and produces multiple spans per clock cycle as output. A Loader converts the input set, as expressed in one of a number of general forms, to an expression conforming to a special case format as accepted by a set of Edge Generators. The restricted input format accepted by the Edge Generators contributes to their efficient hardware implementation.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1
a is a diagram illustrating a half-plane, according to an embodiment of the present invention.



FIG. 1
b is a diagram illustrating a triangle defined by three half-planes, according to an embodiment of the present invention.



FIG. 1
c is a diagram illustrating a polygon defined by a set of half-planes, according to an embodiment of the present invention.



FIG. 1
d is a diagram illustrating an opened half-plane and a closed half-plane, according to an embodiment of the present invention.



FIG. 2 is a diagram illustrating normals in quadrants and the definition of “right” and “left” half-planes, according to an embodiment of the present invention.



FIG. 3 is a diagram illustrating a wire-frame triangle, according to an embodiment of the present invention.



FIG. 4 is a flow diagram illustrating a method for the moving-down process in preparation the Bresenham setup, according to an embodiment of the present invention.



FIG. 5 is a flow diagram illustrating the foregoing method for the Bresenham setup process, according to an embodiment of the present invention.



FIG. 6 is a flow diagram illustrating a method for the Bresenham walk process, according to an embodiment of the present invention.



FIG. 7 is a block diagram illustrating a Span Generator, according to an embodiment of the present invention.



FIG. 8 is a block diagram illustrating a Loader (without shifters), according to an embodiment of the present invention.



FIG. 9 is a block diagram illustrating {tilde over (b)} and {tilde over (c)} values wrapping before they are loaded into an Edge Generator, according to an embodiment of the present invention.



FIG. 10
a is a block diagram illustrating an Edge Generator, according to an embodiment of the present invention.



FIG. 10
b is a block diagram illustrating an Edge Generator during the moving-down phase, according to an embodiment of the present invention.



FIG. 10
c is a block diagram illustrating an Edge Generator during the Bresenham setup phase, according to an embodiment of the present invention.



FIG. 11
a is a block diagram illustrating a Scissoring Box origin, according to an embodiment of the present invention.



FIG. 11
b is a block diagram illustrating a Scissoring Box, according to an embodiment of the present invention.





DETAILED DESCRIPTION

The following servers as a glossary of terms as defined herein:

  • Triangle Intersection of three half-planes, wherein each half-plane is “open” or “closed”.
  • Polygon Intersection of a triangle and the clipping half-planes (shown in FIG. 1c), wherein each clipping half-plane is “open” or “closed”.
  • “Open” half-plane A half-plane which satisfies the inequality (as shown in FIG. 1d)






a·x+b·y+c>0  (1)

  • “Closed” half-plane A half-plane which satisfies the inequality (as shown in FIG. 1d)






a·x+b·y+c>0  (2)

  • Half-plane functional An expression describing a half-plane or a line






f(x,y)=a·x+b·y+c  (3)

  • “Right” half-plane A half-plane described by a functional






f(x,y)=a·x+b·y+c, where a<0 a=0 ̂ b<0  (4)

  • “Left” half-plane A half-plane described by a functional






f(x,y)=a·x+b·y+c, where a<0 a=0 ̂ b<0  (5)

  • Scissoring box A rectangle representing a part of the view-port where polygon are actually drawn.
  • Bounding box A smallest rectangle to fit the intersection of a triangle and the scissoring box
  • Extended bounding box A bounding box, which horizontal size is the smallest power of 2, which is greater or equal to the size of the bounding box
  • w The horizontal size of the bounding box






w=x
max
−x
min  (6)

  • W The horizontal size of the extended bounding box, for which it could be expressed as:





W=2ceiling (log 2 w)  (7)

  • x Representation of the integer horizontal coordinate inside the bounding box expressed in current grid units
  • y Representation of the integer vertical coordinate inside the bounding box expressed in current grid units
  • xmin Representation of the minimal horizontal coordinate of the bounding box
  • ymin Representation of the minimal vertical coordinate of the bounding box
  • a, b, c Integer coefficients of the functional of the half-plane
  • ã, {tilde over (b)}, {tilde over (z)} Integer coefficients of the functional transformed to the bounding box relative coordinates according to the special case of the edge functional
  • “Edge” of a “left” half-plane The set of points (xi, yi) satisfying the expression










x
i

=


min

x

Z




{



x


:



a
·
x


+

b
·

y
i


+
c


0

}






(
8
)







where a>0 and i=0, 1, . . . , ymax−ymin, or










y
i

=


min

y

Z




{



y


:



a
·

x
i



+

b
·
y

+
c


0

}






(
9
)







where a=0 and b>0 and i=0, 1, . . . , xmax−xmin

  • “Left” edge “Edge” of a “left” half-plane
  • “Edge” of a “right” half-plane The set of points (xi, yi) satisfying the expression










x
i

=


max

x

Z




{



x


:



a
·
x


+

b
·

y
i


+
c

>
0

}






(
10
)







where a<0 and i=0, 1, . . . , ymax−ymin, or










y
i

=


max

y

Z




{



y


:



a
·

x
i



+

b
·
y

+
c

>
0

}






(
11
)







where a=0 and b<0 and i=0, 1, . . . , xmax−xmin

  • “Right” edge “Edge” of a “right” half-plane
  • “Edge” of a half-plane If the half-plane is a “right” half-plane, then the “edge” of the “right” half-plane, otherwise the “edge” of the “left” half-plane
  • “Edge” of a polygon “Edge” of one of the half-planes forming the polygon
  • Wire-frame A disjunction of three parallelograms based on the three edges of the triangle
  • “Width” of a wire-frame Integer number, which expresses in the current grid units projection of the width of the wire-frame line to a minor direction axis of the current grid.
  • d The width of the wire-frame line
  • Edge Generator EG State machine to generate an edge of a half-plane, which computes a sequence of x coordinate values in order of incrementing y coordinate associated with one of the functionals
  • Loader Pipelined device to transform input functionals to the form, which is convenient for EG to work
  • Sorter Pipelined device to compute the intersection of half-planes, edges of which are generated by several EG
  • Span buffer Temporary storage for spans before tiling
  • Tiling Process of making tiles
  • Tile Set of 8×8 pixels, aligned by x and y coordinates
  • Tile Generator TG State machine to produce tiles from spans in Span Buffer
  • Moving Down Phase of the EG when EG is adding {tilde over (b)} value to the functional value each clock until the functional value is positive
  • SHORT Data type to define signed 22-bit numbers
  • LONG Data type to define signed 42-bit numbers
  • BITN Data type to define unsigned N-bit numbers
  • BITNS Data type to define signed N-bit numbers


Triangle Edge Definition

We assume that triangle edge functions are defined as












F
i



(

x
,
y

)


=




a
i

·
x

+


b
i

·
y

+

c
i


=

det


(




x
j




x
k



x





y
j




y
k



y




1


1


1



)




,

i
=
0

,
1
,
2




(
12
)







wherein j=(i+1) mod 3, k=(i+2) mod 3 and [xi,yi], i=0, 1, 2 are triangle vertex coordinates in a standard window coordinate system expressed in the units of the main grid (see above). If the functionals are set up as “implicit” clipping functionals, they should be converted to this format as well.


End Points

For a right edge and a given span yi the interpolator should produce xi such that










x
i

=


max

x

Z




{



x


:



a
·
x


+

b
·

y
i


+
c

>
0

}






(
13
)







such an xi point for a≠0 is the last (inclusive) point of the span.


For a left edge and a given span yi the interpolator should produce xi such that










x
i

=


max

x

Z




{



x


:



a
·
x


+

b
·

y
i


+
c

>
0

}






(
14
)







such an xi point for a≠0 is the first (inclusive) point of the span.


If we have a=0 then the edge (left or right) is horizontal, thus the end points of the span for the functional will be x0=0 and x0=W.


General Cases for the Edge Generator

In general case we have opened right half-planes and closed left half-planes, classified as follows, also shown in FIG. 2:


















Normal




Case #
Half-plane
quadrant
A
B







1
Right open
II
<0
≧0


2
Right open
III
<0
<0


3
Right open
III
=0
<0


4
Left closed
IV
>0
≦0


5
Left closed
I
>0
>0


6
Left closed
I
=0
>0


7
Whole
n/a
=0
=0



bounding



box is



inside or



outside the



plane










A Loader 102 transforms a functional given according to a general case into a functional given by the special case, with the special case and the general cases described as follows:


Special Case for the Edge Generator


The Edge Generator 103 (shown in FIG. 7) operates within a discrete space with integer coefficients. To simplify the work of the Edge Generator 103, the Edge Generator 103 is designed to draw an edge of a closed right half-plane (i.e. a right edge), whose normal is located in quadrant II since we have a<0 and b≧0. For an edge with a<0 we have:










f


(

x
,
y

)


=



a
·
x

+

b
·
y

+
c

=


0









x

=



-

b
a


·
y

-

c
a








(
15
)







from which we calculate











x
0

=

floor


(

-

c
a


)










Δ





x

=

floor


(

-

b
a


)







(
16
)







The Edge Generator 103 works in a vertical stripe [xmin, xmax] using an x coordinate relative to xmin which satisfies 0≦x≦W, wherein W=2m is the size of the extended bounding box. As described below, the setup division starts as soon as the functional changes sign from negative to positive and f (0, y)>0 hence resulting in x0≧0. Also, Δx>0 according to the above assumption that a<0 and b≧0.


It is possible that the value of the functional f is negative when the Edge Generator 103 starts operating (i.e. when y=0). In this case, the x0 value could be negative and hence does not need to be computed, since we are only interested in the exact x0 values which satisfy 0≦x0≦W.


The completion of the moving-down process is followed by calculating x0=floor (−c/a) and Δx=floor (−b/a) using a division process performed by the divider. Since the divider starts operating when the functional value changes its sign from negative to positive, we can assume that at the start of the division process f (0, y)≧0. To calculate x0 and Δx the divider operates under the assumption that





a<0, b≧0  (17)


and uses a simple adder-based divider. Since a<0, we take






c
i−(−ai)≡ci+ai






b
i−(−ai)≡bi+ai  (18)


into consideration start with






c
0
=f(x,y), a0=ã·2m+1, b0={tilde over (b)}, x00=Δx0=0  (19)


and then iterate as follows:













c

i
+
1


=

c
i





+

{





a
i

,



c
i

+

a
i



0







0
,



c
i

+

a
i


<
0


















x


0

i

+
1


=


x


0

i







·
2





+

{




1
,



c
i

+

a
i



0







0
,



c
i

+

a
i


<
0


















b

i
+
1


=

b
i





+

{






a
i

,



b
i

+

a
i



0







0
,



b
i

+

a
i


<
0





,







i
=
0

,
1
,





,
m








Δ






x

i
+
1



=

Δ







x
i

·
2











+

{




1
,



b
i

+

a
i



0







0
,



b
i

+

a
i


<
0


















a

i
+
1


=


a
i

2


















(
20
)







describing the fully functional step-by-step integer divider.


Case 1: Right Open Half-Plane and A<0̂B≧0


The difference between this case and the special case is only that the half-plane is open. Therefore we need to find










x
0

=


max

x

Z




{



x


:



a
·
x


+

b
·
y

+
c

>
0

}






(
21
)







Since the coefficients and variables are integer,










x
0

=


max

x

Z




{



x


:



a
·
x


+

b
·
y

+
c
-
1


0

}






(
22
)







and therefore











x
0

=


max

x

Z




{



x


:



a
·
x


+

b
·
y

+

c
~



0

}



,


c
~

=

c
-
1






(
23
)







which reduces this case to the special case. Thus, in this case the Loader 102 (shown in FIG. 7) subtracts 1 from c before starting the Edge Generator 103.


Case 2: Right Open Half-Plane and A<0̂B<0


Again we need to find










x
0

=


max

x

Z




{



x


:



a
·
x


+

b
·
y

+
c

>
0

}






(
24
)







Substituting x=W−{tilde over (x)} we have










x
0

=

W
-


min


x
~


Z




{




x
~



:


-

a
·

x
~


+

b
·
y

+
c
+

W
·
a


>
0

}







(
25
)







and computing maximum in the complimentary semi-plane










x
0

=

W
-


max


x
~


Z




{




x
~



:


-

a
·

x
~


+

b
·
y

+
c
+

W
·
a



0

}


-
1





(
26
)







and rewriting the constraint and collecting appropriate terms we have










x
0

=

W
-
1
-


max


x
~


Z




{




x
~



:



a
·

x
~



-

b
·
y

-
c
-

W
·
a



0

}







(
27
)







and finally










x
0

=

W
-
1
-


max


x
~


Z




{




x
~



:




a
~

·

x
~



+


b
~

·
y

+

c
~



0

}







(
28
)







where





ã=a, {tilde over (b)}=−b, {tilde over (c)}=−c−W·a  (29)


which reduces this case to the special case.


Case 3: Right Open Half-Plane and A=0̂B<0


Whereas in the previous case for a<0̂b<0 we had










x
0

=

W
-
1
-


max


x

~
~



Z




{




x
~



:




a
~

·

x
~



+


b
~

·
y

+

c
~



0

}







(
30
)







wherein





ã=a, {tilde over (b)}=−b, {tilde over (c)}=−c−W·a  (31)


In this case we have a=0, which means that (30) does not have a maximum. However the division algorithm described above (16) is stable in the case of a zero denominator, producing in this case






x
0=2·W−1x0=W−1−{tilde over (x)}0=−W  (32)


after the completion of the division algorithm, indicating that the x value reaches the other edge of the bounding box and that the Edge Generator 103 will draw a horizontal line.


Case 4: Left Closed Half-Plane and A>0̂B≦0


Again we want to find










x
0

=


min

x

Z




{



x


:



a
·
x


+

b
·
y

+
c


0

}






(
33
)







or equivalently










x
0

=


min

x

Z




{



x


:


-

a
·
x

-

b
·
y

-
c


0

}






(
34
)







Substituting a =−ã, b=−{tilde over (b)} and computing the maximum in the complimentary semi-plane, we have










x
0

=



max

x

Z




{



x


:




a
~

·
x


+


b
~

·
y

-
c

>
0

}


+
1





(
35
)







Since the coefficients and variables are integer, we have










x
0

=



max

x

Z




{



x


:




a
~

·
x


+


b
~

·
y

-
c
-
1


0

}


+
1





(
36
)







and therefore










x
0

=



max

x

Z




{



x


:




a
~

·
x


+


b
~

·
y

+

c
~



0

}


+
1





(
37
)







wherein






ã=−a, {tilde over (b)}=−b, {tilde over (c)}=−c−1  (38)


reducing to the special case.


Case 5: Left Closed Half-Plane and A>0̂B>0


We want to find










x
0

=


min

x

Z




{



x


:



a
·
x


+

b
·
y

+
c


0

}






(
39
)







Substituting x=W−{tilde over (x)} we have










x
0

=

W
-


max


x
~


Z




{




x
~



:


-

a
·

x
~


+

b
·
y

+
c
+

W
·
a



0

}







(
40
)







and therefore










x
0

=

W
-


max


x
~


Z




{




x
~



:




a
~

·

x
~



+


b
~

·
y

+

c
~



0

}







(
41
)







wherein






ã=−a, {tilde over (b)}=b, {tilde over (c)}=c+W·a  (42)


reducing to the special case.


Case 6: Left Closed Half-Plane and A=0̂B>0


In the previous case for a>0̂b>0 we had










x
0

=

W
-


max


x
~


Z




{




x
~



:




a
~

·

x
~



+


b
~

·
y

+

c
~



0

}







(
43
)







wherein






ã=−a, {tilde over (b)}=b, ã=c+W·a  (44)


In this case we have a=0 resulting in (43) having no maximum. However, the division algorithm described above (16) is again stable in this case of zero denominator, resulting in






{tilde over (x)}
0=2·W−1x0=W−1−{tilde over (x)}0=0  (45)


after the division algorithm completes, indicating that the x value reaches the other edge of the bounding box and that the Edge Generator 103 will draw a horizontal line.


Case 7: The Plane of the Polygon is Parallel to the Clipping Plane and A=0̂B=0


This case indicates that the plane of the polygon is parallel to one of the clipping planes. In this case the sign of c determines whether the plane of the polygon is visible or not. If c<0, then the entire bounding box is invisible. The Edge Generator 103 will function normally, but all spans will be marked as being “outside the bounding box”. Otherwise, all spans will be marked as being “inside the bounding box”.


Wire-Frame Support

The next two cases involve wire-frame support. FIG. 3 is a diagram illustrating a wire-frame of a triangle, according to one embodiment of the present invention. The wire-frame of a triangle is a disjunction of three parallelograms, each of which represents an edge of the triangle. We assume that a wire-frame to be drawn comprises a one-pixel line width. The wire-frame support reliably works in the following conditions: (a) no over-sampling (i.e. the current grid is the same as the pixel grid), and (b) the width of the wire-frame is one unit of the current grid (i.e. one pixel according to the foregoing assumption). If the wire-frame support works for any other mode (either over-sampling is on or the width is more than one) we consider the availability of those modes a bonus, which we suppose to get almost for free.


We restrict the wire-frame mode as not comprising any clipping functionals besides a frustum. This means that a wire-framed triangle comprises (a) three functionals representing the triangle edges and (b) the bounding box.


A wire-framed triangle comprises three parameters for drawing:

  • Width The width of an edge, expressed as the number of pixels to be covered by a triangle edge in the minor direction. A Span Generator 101 (shown in FIG. 7) correctly processes a wire-frame with a one-pixel width.
  • Edge flag Draw-edge flag (one bit per edge). Each edge of the triangle is equipped with a draw-edge flag, indicating whether the edge is to be drawn.
  • Extension Bounding box extension. If the draw-edge flag is set for an edge, the bounding box is extended by half of the wire-frame line width.


    The wire-frame is an intersection of the “tight” bounding box and an exclusive intersection of two closed-edges triangles. Since the original functionals specify the center-line of each edge of the wire-framed triangle, the functionals for the wire-frame are offset by half of the wire-frame width in the “minor” direction, i.e. in the direction of that coordinate whose coefficient in the functional has a smaller absolute value:


Case 8: Right Closed Half-Plane for Wire-Frame and A<0̂B≧0


There is no difference between this case and the special case, so we need to make no corrections for this case










x
0

=


max

x

Z




{



x


:



a
·
x


+

b
·
y

+
c


0

}






(
46
)







Case 9: Right Closed Half-Plane for Wire-Frame and A≦0̂B<0


Again we need to find










x
0

=


max

x

Z




{



x


:



a
·
x


+

b
·
y

+
c


0

}






(
47
)







Substituting x=W−{tilde over (x)}










x
0

=

W
-


min


x
~


Z




{




x
~



:


-

a
·

x
~


+

b
·
y

+
c
+

W
·
a



0

}







(
48
)







and computing maximum in the complimentary semi-plane










x
0

=

W
-


max


x
~


Z




{




x
~



:


-

a
·

x
~


+

b
·
y

+
c
+

W
·
a


<
0

}


-
1





(
49
)







and rewriting the constraint and collecting appropriate terms we results in










x
0

=

W
-
1
-


max


x
~


Z




{




x
~



:



a
·

x
~



-

b
·
y

-
c
-

W
·
a


>
0

}







(
50
)







and finally










x
0

=

W
-
1
-


max


x
~


Z




{




x
~



:




a
~

·

x
~



+


b
~

·
y

+

c
~



0

}







(
51
)







wherein





ã=a, {tilde over (b)}=−b, {tilde over (c)}=−c−W·a−1  (52)


reducing once again to the special case.


The Loader

The Edge Generator 103 works under the assumption of the special case described above, allowing significant reduction of its hardware and resulting in faster operation. The Loader 102 is the element which transforms a general case to the special case, converting an input functional described by a general case into a form expected by the special case, thereby allowing the Edge Generator 103 to compute edge values correctly and efficiently.


The Loader 102 accepts as inputs a functional and a bounding box offset, and produces a set of coefficients a, b, and c according to the special case for the Edge Generator 103.


We have:






F(x,y)=a·x′+b·y′+c′





Xε[xmin, xmax], [ymin, ymax]  (53)


Since the functional coefficients are expressed in the main grid and the x, y coordinates are expressed in the over-sampling grid, we have a grid ratio of s=26+[0, 1, 2] and will convert the c′ value to the over-sampling grid. The particular conversion depends on the type of the half-plane at hand. For a closed half-plane the conversion is as follows:











f


(

x
,
y

)


=




a
·

x



+

b
·

y



+

c




0









a
·
s
·
x

+

b
·
s
·
y

+

c




0



,






x


=

s
·
x


,






y


=


s
·
y









a
·
x

+

b
·
y

+


c


s



0









a
·
x

+

b
·
y

+
c


0



,





c
=

floor


(


c


s

)







(
54
)







For an opened half-plane the conversion is as follows:











f


(

x
,
y

)


=




a
·

x



+

b
·

y



+

c



>
0









a
·
s
·
x

+

b
·
s
·
y

+

c



>
0



,


x


=

s
·
x


,


y


=


s
·
y









a
·
x

+

b
·
y

+


c


s


>
0









a
·
x

+

b
·
y

+
c

>
0



,

c
=

ceiling






(


c


s

)







(
55
)







It is an advantageous aspect of the present invention that two or more Edge Generators 103 may participate in span generation for the same functional. In one embodiment of the present invention, wherein k=1 (respectively 2 or 4) Edge Generators 103 participate in the span generation for the same functional, we want the first span of the 2 (respectively 4 or 8) spans generated per clock cycle to be aligned by y coordinate by 2 (respectively 4 or 8) accordingly. To accomplish this, denote









y
~

min

=


floor


(


y
min


k
·
2


)


·
k
·
2


,




and substitute {tilde over ({tilde over (x)}=x−xmin, {tilde over ({tilde over (y)}=y−{tilde over (y)}min, {tilde over ({tilde over (c)}=c−a·xmin−b·{tilde over (y)}min to obtain






f({tilde over ({tilde over (x)}, {tilde over ({tilde over (y)})=a·{tilde over ({tilde over (x)}+b·{tilde over ({tilde over (y)}+{tilde over ({tilde over (c)}  (56)


The size of the bounding box is (xmax−xmin)·(ymax−ymin). Here we take






m=ceiling (log 2(xmax−xmin))  (57)





W=2m  (58)


Observing the above cases, taking (23), (52), (38) and (42) in consideration and uniting common expressions results in










a
~

=

-


a







(
59
)







b

~
~


=


b






(
60
)







c
~

=

{






c

~
~


-
1

,




a
<

0

b


0








-

c

~
~



-

a
·
W


,




a


0

b

<
0








-

c

~
~



-
1

,




a
>

0

b


0








c

~
~


+

a
·
W


,




a


0

b

>
0









(
61
)







The number of c values generated according to the foregoing description corresponds to the number of spans that are to be generated per clock cycle, wherein an Edge Generator 103 generates two spans per clock cycle. Each Edge Generator's 103 spans are to be aligned by y such that the first span is even (i.e. ymin mod 2=0) and the second is odd (i.e. ymin mod 2=1). If the ymin of the bounding box is odd, span generation starts from ymin−1. To accomplish that, denote






c
0
0
={tilde over (c)}−{tilde over ({tilde over (b)}·(ymin mod 2)






c
1
0
=c
0
0
+{tilde over ({tilde over (b)}






{tilde over (b)}=2·{tilde over ({tilde over (b)}  (62)


In the case of more than one Edge Generator 103 participating in span generation for the functional, we need to have more than one set of initial values for the spans. Assuming the number of Edge Generators 103 is k (wherein k=1, 2 or 4), the set of initial values is given by






c
j
i
=c
j
0+2·{tilde over ({tilde over (b)}·i, i=1, . . . , k, j=0, 1






{tilde over (b)}=k·{tilde over ({tilde over (b)}  (63)


and the Edge Generators 103 participating in the span generation for the given functional are loaded with the initial values of cji, {tilde over (b)} and ã.


Moving Down

Before the Bresenham traversal, an Edge Generator 103 performs two operations: moving-down and Bresenham setup. The initial values are






f({tilde over (x)},{tilde over (y)})=ã·{tilde over (x)}+{tilde over (b)}·{tilde over (y)}+{tilde over (c)}, x=0, y=0  (64)


with the goal of computing for each given {tilde over (y)}












x
~

0

=

floor
(

-




b
~

·

y
~


+

c
~



a
~



)


,


c
~


0





(
65
)







Additionally, an Edge Generator 103 generates an {tilde over (x)} inside the bounding box. Therefore, if x0 is outside the bounding box, x0 is substituted by 0 or W such that










x
~

=

{




0
,






x
~

0

<
0








x
~

0

,






x
~

0



[

0
,
W

]







W
,






x
~

0

>
W









(
66
)







After converting to a special case within the bounding box, we have f({tilde over (x)},{tilde over (y)})<0 for the points above the edge (represented by the functional) and f({tilde over (x)},{tilde over (y)})≧0 on or below the edge, wherein “above” refers to smaller y coordinates and “below” refers to greater y coordinates. We also have b≧0 and a<0 as given by the special case conditions.



FIG. 4 is a flow diagram illustrating a method for the moving-down process in preparation the Bresenham setup, according to an embodiment of the present invention. The moving-down process starts 200 with {tilde over (y)}k=0. If 201 the functional value f(0,{tilde over (y)}k)≧0, the moving-down process is complete 202. Otherwise 203, move down along the {tilde over (x)}=0 border of the bounding box by adding 204 {tilde over (b)} to the functional value at the rate of one increment per clock cycle (wherein {tilde over (b)}≧0 and a {tilde over (b)} increment of the functional value corresponds to incrementing y by 1 until f(0, {tilde over (y)}k)≧0 201 (wherein k>i), at which point the moving-down process is 202 complete. The moving-down process is represented by the following iterative description:





{tilde over (y)}0=0






f
0
=f(0,0)=ã·0+{tilde over (b)}·0+{tilde over (c)}={tilde over (c)}






f
i
=f(0,i)={tilde over (b)}·i+f0={tilde over (b)}·(i−1)+{tilde over (b)}f0=fi−1+{tilde over (b)}  (67)


Bresenham Setup

The moving-down process is followed by the Bresenham setup process. The purpose of the Bresenham setup is to find the two values










x
0

=


max

x

Z




{




x
~



:




a
~

·

x
~



+


b
~

·


y
~

k


+

c
~



0

}






(
68
)







and










Δ





x

=

floor
(

-


b
~


a
~



)





(
69
)







Furthermore, since






{tilde over (b)}·{tilde over (y)}
k
+{tilde over (c)}=f(0,{tilde over (y)}k)  (70)


we obtain










x
0

=

floor


(


f


(

0
,


y
~

k


)



-

a
~



)






(
71
)







The division algorithm described above (see Special Case) is modified as follows for more efficient hardware implementation:






c
0
=f(0,{tilde over (y)}k), a0=ã·2m+1, b0={tilde over (b)}, x00=Δx0=0  (72)


with the following steps describing the iterations:














c

i
+
1


=

2
·

{






c
i

+

a
0


,






c
i

+

a
0



0







c
i

,






c
i

+

a
0


<
0













x


0

i

+
1


=


2
·

x

0

i



+

{




1
,






c
i

+

a
0



0






0
,






c
i

+

a
0


<
0













b

i
+
1


=

2
·

{






b
i

+

a
0


,






b
i

+

a
0



0







b
i

,






b
i

+

a
0


<
0













Δ






x

i
+
1



=



2
·
Δ







x
i


+

{




1
,






b
i

+

a
0



0






0
,






b
i

+

a
0


<
0










,

i
=

1
,
2


,





,

m
+
1





(
73
)







The values e0=cm+1=f(0, {tilde over (y)}k)mod|a| and r0=bm+1=|b|mod|a| are used in the Bresenham walk (described below) for calculating the Bresenham error. The value







x
0

=

floor


(


f


(

0
,


y
~

k


)



-

a
~



)






is the x value for the first span after the moving-down process. The value







Δ





x

=

floor
(

-


b
~


a
~



)





is the span-to-span x-increment value. FIG. 5 is a flow diagram illustrating the foregoing method for the Bresenham setup process, according to an embodiment of the present invention.


Bresenham Walk

The Bresenham walk is the process following the moving-down and Bresenham setup processes. After the Bresenham setup we have






ã·{tilde over (x)}+{tilde over (b)}·{tilde over (y)}+{tilde over (c)}=0  (74)


wherein











e
0

=


f


(

0
,


y
~

k


)







mod



a











x
0

=

floor


(


f


(

0
,


y
~

k


)



-

a
~



)










r
0

=



b







mod







a











Δ





x

=

floor
(

-


b
~


a
~



)






(
75
)







and






ã·{tilde over (x)}
n
+{tilde over (b)}·{tilde over (y)}
n+k
+{tilde over (c)}=ã·{tilde over (x)}
n
+{tilde over (b)}·{tilde over (y)}
n+k
+f(0,{tilde over (y)}k)−{tilde over (b)}·{tilde over (y)}k=0   (76)






ã·{tilde over (x)}
n
+{tilde over (b)}·{tilde over (y)}
n
+f(0,{tilde over (y)}k)=0  (77)


we want to find















x
~

n

=




-


b
~


a
~



·


y
~

n


-


f


(

0
,


y
~

k


)



a
~













x
~

n

=




f


(

0
,


y
~

0


)




a



+




b




a



·


y
~

n













x
~

n

=



x
0

+


e
0



a



+

Δ






x
·
n


+



r
0



a



·
n












x
~

n

=




x
~


n
-
I


+

Δ





x

+



e

n
-
1


+

r
0




a














x
~

n

=



x
~


n
-
1


+

Δ





x

+

{




0
,






e

n
-
1


+

r
0


<


a








1
,






e

n
-
1


+

r
0





a















e
n

=


e

n
-
1


+

r
0

-

{




0
,






e

n
-
1


+

r
0


<


a










a


,






e

n
-
1


+

r
0





a












,

n
=

1
,
2


,





,

h
-

y
k






(
78
)







wherein h represents a height of the bounding box and yk represents the value of the y coordinate at the Bresenham setup point. To simplify the hardware, the error value is decremented by |a| at the beginning of the Bresenham walk, after which en can be compared to 0, with the comparison being simpler to implement in hardware. We also calculate






r
1
=r
0
−|a|






{tilde over (e)}
0
=e
0
+r
0
−|a|  (79)


after which the Bresenham walk is more simply described as follows:















x
~

n

=



x
~


n
-
1


+

Δ





x

+

{




0
,






e
~


n
-
1


<
0






1
,






e
~


n
-
1



0














e
~

n

=



e
~


n
-
1


+

{





r
0

,






e
~


n
-
1


<
0







r
1

,






e
~


n
-
1



0










,

n
=

1
,
2


,





,

h
-

y
k






(
80
)








FIG. 6 is a flow diagram illustrating a method for the Bresenham walk process, according to an embodiment of the present invention.


Span Generator Structure


FIG. 7 is a block diagram illustrating the Span Generator 101, according to an embodiment of the present invention. The Span Generator 101 comprises

    • An Input Interface 105
    • 3 Loaders 102
    • 12 Edge Generators 103
    • 4 cascaded 3-input Sorters 104
    • An Output Interface 106
    • A scissoring box module 107


Input Interface 105 packs input functionals for passing to the three Loaders 102. Loaders 102 perform Edge Generator 103 initialization. Edge Generators 103 generate “left” and “right” edges, which are then sorted in tournament Sorters 104. The Sorters' 104 output is directed via Output Interface 106 to a Tile Generator (TG), the TG for converting a set of spans into a sequence of tiles, wherein a tile refers to a rectangle set of pixels to be rendered.


Advantageously, the Span Generator 101 solves the following issues:

    • 1. The Span Generator 101 produces spans for a triangle having up to 15 functionals. The X and Y clipping is performed by the scissoring box module 107, and thus 11 functionals remain. For reasons described in items 3 and 4, there are 12 Edge Generators 103 in the Span Generator 101 architecture.
    • 2. The Span Generator 101 generates at least two spans per clock cycle, presenting a doubling of performance when compared to generating one span per clock cycle, for 30% more cost.
    • 3. In the case of a reduced set of functionals (i.e. fewer than 7 or 8) the Span Generator 101 can generate more than two spans per clock cycle. In this case we use two Edge Generators 103 to process the same functional. The Loaders 102 setup the Edge Generators 103 at different spans according to the initial offsets of the respective Edge Generators 103. Analogously, in the case of fewer than 4 functionals, the span generation rate reaches eight spans per clock cycle.
    • 4. The Loaders 102 provide the maximal Span Generator 101 performance for the most general case, which is a case involving 3 functionals. Thus the Span Generator 101 comprises 3 Loaders 102, wherein a Loader 102 can load four Edge Generators 103 sequentially.
    • 5. For non-adaptive over-sampling with a rotating grid, the Span Generator 101 perform clipping by several half-planes with a known tangent, a process that can be done using a separate device.












EXTERNAL ASSUMPTIONS OF DATA FORMATS












Bits for




Range
representation
Comment














Window size,
[0 . . . 212 − 1] × [0 . . . 212 − 1]
12
To be able to draw into 4096 × 4096


pixels


texture


Maximum
22
2
Not the same as vertex subpixel grid, it


divisions of


is coarser. The functional coefficients


oversampling


will be given in the vertex subpixel grid


grid per pixel


while the x, y coordinates are in the





oversampling one.


Window size,
[0 . . . 214] × [0 . . . 214]
15
Extreme window's pixels in rotated grid


over-samples


coordinates


Vertex X, Y after
[0 . . . 214 + 1] × [0 . . . 214 + 1]
15
We need one more grid position on the


clipping, over-


right and bottom as otherwise the last


samples.


column (raw) of pixels cannot be drawn





(with tight clipping) because of





open/close convention, hence a value of





214 + 1 is possible here


Subpixel vertex
[0 . . . 28 − 1]
8
Main grid for the triangle setup


position, per pixel

(subpixel




bits)


Vertex X, Y after
[0 . . . 220 + 1] × [0 . . . 220 + 1]
21
We need one more grid position on the


clipping, subpixels


right and bottom as otherwise the last


units.


column (raw) of pixels cannot be drawn





(with tight clipping) because of





open/close convention, hence a value of





220 + 1 is possible here



















INTERNAL DATA FORMATS












Bits for




Range
representation
Comment














Edge functional
[−220 − 1 . . . 220 + 1]
21 + sign
See below


coefficients ai, bi,


see below


Edge functional
±(240 + 221 + 1)
41 + sign
See below


coefficients (in a


window


coordinate system


after setup) ci (see


below)


Bounding box
[0 . . . 214]
15
Bounding box origin is inclusive; it


origin (xmin, ymin)


values the first x position to draw and


in oversampling


the first span to draw (if span is not


grid units


empty).





The bounding box is defined as an





original bounding box of a triangle





intersected with the scissoring box. If no





scissoring box exists, then the window





box is used as a scissoring box.


Edge functional
±(240 + 235 + 221 + 215 + 1)
41 + sign


coefficients after


shifting to the


bounding box


system ci, see


below


Bounding box
[0 . . . 214 + 1]
15
Bounding box max point is inclusive; it


maximum point


values the last x position to draw and the


(xmax, ymax)


last span to draw (if span is not empty).


Non adjusted
[0 . . . 214 + 1]
15
The box with the width of 0 can have a


bounding box


single pixel column inside, since both


width xmax - xmin


sides of the box are inclusive.


Extended
2[0 . . . 15]
4
Adjusted (extended) bounding box is


bounding box


used in the interpolator, since the width


width xmax - xmin


is to have a value of a power of two.


rounded to the


Note: the extended box can be wider


next power of 2


then the window.









Input Interface

The Span Generator 101 has the following input interface:















Length,



Field name
bit
Description

















L
1
The signal to start loading the first three functionals


M
1
Mode: 0 - standard, 1 - wire-frame


R
8
The width of the wire-frame line in the current grid units


F
4
The number of the functionals. In the case of the wire-frame




mode, the three LSB are the mask for drawing the edges




(0 indicates do not draw, 1 indicates draw), and MSB is a request




to extent the bounding box by W/2 in all directions


A
22 × 3
The value of the a coefficients for the 11 functionals. 0




if the particular functional is not present


B
22 × 3
The value of the b coefficients for the 11 functionals. 0




if the particular functional is not present


C
42 × 3
The value of the c coefficients for the 11 functionals. 0




if the particular functional is not present


X0
15
The start x value for the left edge of the scissoring box


X1
15
The start x value for the right edge of the scissoring box


Y
15
The value of the y coordinate in the top corner of the




scissoring box


Y0
15
The value of the y coordinate in the left corner of the scissoring




box


Y1
15
The value of the y coordinate in the right corner of the scissoring




box


Y2
15
The value of the y coordinate in the bottom corner of




the scissoring box


T
2
The tangent of the slope of the left edge of the




scissoring box, according to the following:










00
The right edge is vertical



01
The tangent is 1



10
The tangent is 2



11
The tangent is 3









XMIN
15
The value of the x coordinate for the left edge of the




bounding box


XMAX
15
The value of the x coordinate for the right edge of the




bounding box


YMIN
15
The value of the y coordinate for the top edge of the




bounding box


YMAX
15
The value of the y coordinate for the bottom edge of the




bounding box









Wire-Frame

We assume the wire-frame will be done as three functionals for edges inside the tight bounding and scissoring boxes. That means we do not support clipping planes for wire-frame. The span generation for the wire-frame mode does not take anything special besides the Loader 102 should supply corrected functional values for two nested triangles. The inner triangle is a set of points on the current grid, which should be excluded from the outer triangle. For an edge f(x, y)=a·x+b·y+c, the functional values for that two triangles will be






f
1(x,y)=a·x+b·y+c+w/2—outer edge






f
2(x,y)=a·x+b·y+c−w/2—inner edge


where w is a width of the wireframe edges.


Loader


FIG. 8 is a block diagram illustrating a Loader 102 (without shifters), according to an embodiment of the present invention. Loader 102 comprises the following inputs:


SHORT xMin, yMin, xMax, yMax, a, b;


LONG c;

SHORT nF; // the number of the functionals


and outputs


SHORT c01, c0h, c1l, c1h, bl, bh, al, ah, m;


BOOL dir, cor


Initially, a Loader 102 determines the global values, which are the same for all of the functionals in the polygon. To accomplish this, the Loader 102 computes the parameters of the bounding box:


SHORT w=xMax−xMin;


m=ceiling (log 2 (w));


SHORT W=1<<m; // 2**m

SHORT h=yMax−yMin;


SHORT k=(nF>6)? 1 : (nF>3);


SHORT aT, bT; // ã and {tilde over (b)}


Then for each functional the Loader 102 computes


















nCase =
(a < 0 && b >= 0)? 1 :




(a <= 0 && b < 0)? 2 :




(a > 0 && b <= 0)? 4 :




(a >= 0 && b > 0)? 5 : 0;




         // but the “0” is redundant









BOOL cor = (nCase > 3)? 1 : 0;



BOOL dir = (nCase < 2 || nCase > 4)? 0 : 1;



LONG cT2 = c − a * xMin − b * yMin;  //



switch (nCase) {



 case 1:



  aT = a;



  bT = b;



  cT = cT2 − 1;               // {tilde over (c)}



  break;



 case 2:



  aT = a;



  bT = −b;



  cT = −cT2 − a * W;



 case 4:



  aT = −a;



  bT = −b;



  cT = −cT2 − a;



 case 5:



  aT = −a;



  bT = −b;



  cT = cT2 + a * W;



 }










The Loader 102 then computes two separate functional values for two sequential spans, and in the case of having k=1, 2, 4 Edge Generators 103 per functional, the Loader 102 also computes values for all other two or six sequential spans:

















c [0] = cT − bT * (yMin % 2);



c [1] = c [0] + bT;



for (i = 1; i < k; i ++) {



 c [i * 2  ] = c [i * 2 − 2] + 2 * bT;



 c [i * 2 + 1] = c [i * 2 − 1] + 2 * bT;



 }



bT <<= k;











FIG. 9 is a block diagram illustrating {tilde over (b)} and {tilde over (c)} values wrapping before they are loaded into an Edge Generator 103, according to an embodiment of the present invention. The division algorithm is described above (see Special Case). But if it is performed literally then the ã value needs to be scaled before division multiplying it by 2m, which scales ã out of short range. Nevertheless each clock of division effective length of subtraction is still in the short range, thus instead of scaling the ã value, the f(0, {tilde over (y)}k) value is scaled by 2−m before the division and then instead of dividing the scaled ã value by 2 each clock, the scaled f(0, {tilde over (y)}k) value is multiplied by 2. While a







Δ





x

=

floor


(

-


b
~


a
~



)






value is also needed, the {tilde over (b)} value is also pre-scaled. The scaled f(0, {tilde over (y)}k) value is longer than the non-scaled value. However, this does not necessitate a longer adder for performing the moving-down process: The least significant bits of the scaled f(0, {tilde over (y)}k) value are wrapped to the most significant bits (i.e. a cyclic rotation instead of an arithmetical shift), resulting in the scaled f(0, {tilde over (y)}k) value being expressed within the same bit-length as the non-scaled value. To avoid carry propagation from MSB to LSB, invert the sign bit before loading data into an Edge Generator 103. In the case of f(0, {tilde over (y)}k)<0 this bit would be 0 and would not propagate a carry. To detect if f(0, {tilde over (y)}k)≧0, compare this bit to 1. The {tilde over (b)} value is scaled in a similar way, with the difference that it is not wrapped.


At the first clock cycle of the division process, Edge Generator 103 determines whether one of the f(0, {tilde over (y)}k) or {tilde over (b)} values exceed the boundaries, i.e. it determines whether the division result would be greater than or equal to W. For that purpose, the real scale factor is not m, but m+1. The division works in the above-described way, but if the result is not below W, either x0 will be beyond the bounding box limit or the result after the first Bresenham step would be beyond the bounding box limit.


The Loader 102 loads the Edge Generators 103 sequentially, starting from the first three functionals of each triangle, with the first functional loaded into the first Edge Generator 103, and so on. If there are only three functionals, the Loader 102 loads other Edge Generators 103 with the functional values for other three groups of spans on the next sequential clock cycles.


Considering the input interface and the approach of loading several Edge Generators 103 at subsequent clock cycles, the pseudo-code for the Loader 102 is as follows:














template <int N>








void Loader<N> (
// pipelined, performed each clock









// input interface:










bool L,
// the first clock of loading the L = 1



bool M,
// M = 1 in the wire-frame mode



BIT2 Os,
// oversampling grid to pixel grid relation:









// 0 - 4x, 1 - 2x, 2 - 1x










BIT8 R,
// the width of a wire-frame line



BIT4 F,
// the number of functionals, edge mask in wire-







frame mode










SHORT
A, // the first coefficient



SHORT
B, // the second coefficient



LONG C,
// the free member











BIT21
XMIN,
// the left edge of the bounding box



BIT21
YMIN,
// the top edge of the bounding box



BIT21
XMAX,
// the right edge of the bounding box



BIT21
YMAX,
// the bottom edge of the bounding box



BIT21
XFUN,
// the X coordinate of the zero functional







point










BIT21
YFUN // the Y coordinate of the zero functional







point









) {










BIT3 toGo = (L)? 4 : toGo − 1;
// counts the







number of









// functionals to







load










BIT3 nClk = (L)? 0 : nClk + (toGo != 0);
// counts







loading









// clocks









if (L) {









bool wf = M,



BIT8 WW = R,



BIT15 XMIN = ((XMIN >> 5)



BIT4 nFunct = F,



BIT2 k = (wf)? 2 : (nFunct < 4)? 4 : (nFunct < 7)? 2 :







1;









BIT21 w = XMAX − XMIN;



BIT21 h = YMAX − YMIN;



BIT4 m = ceiling (log2 (w));










BIT16 W = 1 << m;
// 2**m



BIT15 xMin = XMIN;



BIT15 yMin = YMIN;



}









BIT3 nCase =









(A < 0 && B >= 0)? 1 :



(A <= 0 && B < 0)? 2 :



(A > 0 && B <= 0)? 4 :



(A >= 0 && B > 0)? 5 :



0; // redundant, not used









BOOL cor = nCase > 3;



BOOL dir = nCase >= 2 && nCase < 5;










SHORT aT = (A >= 0)? −A : A;
// ã



SHORT b2T = (B < 0)? −B : B;
//



LONG cT2 = C −
//









A * (xMin − XFUN) −










B * ((yMin & −(k << 1) − YFUN);
// align spans by Y










cT2 >>= (6 + Os);
// shift to







get










LONG cT = ((dir)? −cT2 : cT2)
// {tilde over (c)}









+ (nCase == 1 | | nCase == 4)? −1 :



(dir)? −A << m : A << m;









LONG c [8];



LONG b [4];










c [7] = c [5] + (b2T << 1);
// pipelining



c [6] = c [4] + (b2T << 1);



c [5] = c [3] + (b2T << 1);



c [4] = c [2] + (b2T << 1);



c [3] = c [1] + (b2T << 1);



c [2] = c [0] + (b2T << 1);



c [0] = cT − (yMin & 1)? b2T : 0;



c [1] = c [0] + b2T;



SHORT bT = b2T << (1 << k);
// << 2, 4, 8










Edge Generator


FIG. 10
a is a block diagram illustrating an Edge Generator, according to an embodiment of the present invention. The Edge Generator 103 comprises four 24-bit adders and eight 24-bit registers. An adder has the outputs of two registers as inputs, wherein the inputs of the registers are multiplexed:


SHORT reg [8];

bool carry [4];


SHORT add [4];

add [0]=reg [0]+reg [4]+carry [0];


add [1]=reg [1]+reg [5]+carry [1];


add [2]=reg [2]+reg [4]+carry [2];


add [3]=reg [3]+reg [7]+carry [3];


for (i=0; i<8; i ++)


reg [i]=some_function (add [k], reg [k], . . . );


The registers' outputs are supplied directly to inputs of adders to minimize a delay at the adders. The structure of multiplexers allows us to minimize a delay at them also, the maximal post-adder delay supposed to be not more than 3×1 multiplexer.


Besides the implementation of the general functionality, the multiplexers are also performing loading and stalling operations by writing a new set of data or a previous state of an Edge Generator 103 back to registers.


The basic functionality of an Edge Generator 103 comprises three main phases: moving-down, Bresenham setup and Bresenham walk. There are also seven interim states, which are: load, stall, first clock of moving down, transfer from moving down to Bresenham setup, two different clocks of transfer from Bresenham setup to Bresenham walk and finally first clock of the Bresenham.


An Edge Generator 103 has the following inputs:


SHORT c0l, c0h, c1l, c1h, bl, bh, al, ah, m;


BOOL dir, cor, load, stall;


When the load signal is set, the Edge Generator 103 stores the input values in internal registers and resets its state. When the stall signal is set, the Edge Generator 103 registers retain their content for the current clock cycle.


Edge Generator: Moving Down


FIG. 10
b is a block diagram illustrating an Edge Generator 103 during the moving-down phase, according to an embodiment of the present invention. The functional value is accumulated in the register, which was loaded with the value of {tilde over (c)} at the start. At this phase each Edge Generator 103 performs the following:

















while (c < 0) {









c = c + b;



}











Applying this to the hardware, we obtain:

















// at loading stage










SHORT mm
= bitlength (SHORT) − logm − 1;









SHORT mask_b = 1 << mm;



SHORT mask_a = mask_b − 1;



SHORT mask_o = −1 << (mm − 1);










short clock
= 0, repeat = 1;;









bool pl, ph, rl = 0, rh = 0;



while (repeat) {









pl = rl;



ph = rh;



if (clock == 0) {









clock = 1;



if (ch & mask_b) {









repeat = 0;



continue;



}









rl = carry (cl + bl + ph);



cl += bl;



}









else {









rl = carry (cl + bl + ph);



cl += bl + ph;










if ((ch & mask_a | mask_o) == −1 && rl)
{









repeat = 0;



continue;



}









rh = carry (ch + bh + pl);



ch += bh + pl;



}









}










The masks are for preliminary zero crossing detection, and their use allows avoiding “backing-down” the functional value, since the data is not written back to ch and the LSBs of ch remain intact. The masks also allow detection of a zero crossing one clock cycle earlier.


Setup


FIG. 10
c is a block diagram illustrating an Edge Generator during the Bresenham setup phase, according to an embodiment of the present invention. The division algorithm was described above under “Special Case”, and is implemented as follows:

















// after moving down



setup:



ch &= ~ (mask_a | mask_b);



// setup



while (m != 0) {



  BOOL c0l_c = carry (c0l + a);



  if (!c0l_c) c0l += a;



  c0l <<= 1;



  c0l |= carry (c0h << 1);



  c0h <<= 1;



  c0h  |= !c0l_c;



  BOOL c1l_c = carry (c1l + a);



  if (!c1l_c) c1l += a;



  c1l <<= 1;



  c1l |= carry (c1h << 1);



  c1h <<= 1;



  c1h  |= !c1l_c;



  BOOL bl_c = carry (bl + a);



  if (!c0l_c) c0l += a;



  bl <<= 1;



  bl |= carry (bh << 1);



  bh <<= 1;



  bh |= !bl_c;



  m = m − 1;



  }










Bresenham Walk

After the Bresenham setup process completes, the four values ch, cl, bh and bl are produced, indicating the Bresenham error, x0, positive correction value and Δx, respectively. To perform edge generation we also need a negative correction value r1. The Loader 102 sets the Boolean variables dir and cor. Setting the variable dir to 1 indicates that the Edge Generator 103 subtracts the x value from W. Setting the cor variable to 1 indicates that the Edge Generator 103 adds 1 to the x value. If the x value overflows, an appropriate flag is set depending on the value of the dir variable.














// after setup


SHORT fm = (1 << m) − 1;         // negation mask =


W − 1


SHORT nm = (dir)? fm : 0;          // negate if dir


== 1


SHORT om = ~fm;     //         overflow mask to


detect x < 0 or x >= W


#define er ch


#define x0 cl


#define r0 bh


#define r1 a


#define dx bl


x0 = (nm {circumflex over ( )} x0) + cor; // x0 = W − 1 − x0 + cor


if (dir)


  dx = ~dx;


r1 = a + b;    // a is negative, so r1 = |b| − |a|


// er = er + a; // but we perform it later at first clock of


//       // Bresenham


// at this point some values are moving to different


registers


// according to general structure of the EG


// first clock


SHORT clock = 0;


BOOL uf = false, ov = false;


while (1) {


  if (x0 & om)


   if (dir) uf = true;          //  x0 must be


negative


   else  ov = true;  //        x0 must be >= W


  if (uf || ov) continue;//         do not update


registers


  if (clock == 0) {


   clock = 1;


   x0 += dx + dir;


   er += r1;


   }


  else {


   x0 += dx + (er >= 0)? 1 − dir : dir;


   er += (er >= 0)? r1 : r0;


   }


  }









Divider-by-3

For the Scissoring Box, a divider-by-3 is used to multiply the y offset by ⅓. A pseudo-code for a 15-bit divider-by-3 is as follows:

















#define bit(a,n,m) ((a >> n) & ((1 << (m − n + 1)) − 1))



 // not correct in terms of the ANSI C, but works in our



case



#define bitrev(a) (((a & 2) >> 1) | ((a & 1) << 1))



#define simp(a,b,c,d) ((~d & ~c & b | c & a | d & ~b & ~a)



& 1)



  // single-bit operation



#define remh(a,b) simp (a, a >> 1, b, b >> 1)



#define reml(a,b) simp (a >> 1, a, b >> 1, b)



#define rems(a,b) ((remh (a, b) << 1) | reml (a, b))



#define sim1(a,b,c) ((~c & b | c & ~b & ~a) & 1)



  // single-bit operation



#define sim2(a,b,c) ((~c & a | c & b   ) & 1)



  // single-bit operation



#define remc(a,b) sim1 (a, a >> 1, b)



#define remd(a,b) sim2 (a, a >> 1, b)



#define reme(a,b) ((remc (a, b) << 1) | remd (a, b))



#define remf(a,b) bitrev (reme (bitrev (a), b))



bit16  div (bit15 a) {



bit15  c = a & 0x2aaa, d = a & 0x1555;



  c = (c & ~(d << 1)) | (~(c >> 1) & d);   // canonise



bit1



  a14 = bit (a, 14, 14),



  a13 = bit (a, 13, 13),



  a11 = bit (a, 11, 11),



  a09 = bit (a, 9, 9),



  a07 = bit (a, 7, 7),



  a05 = bit (a, 5, 5),



  a03 = bit (a, 3, 3),



  a01 = bit (a, 1, 1);



bit2  part0 [ 7] = {



  bit (c, 0, 1), // bits 00, 01



   bit (c, 2, 3), // bits 02, 03



  bit (c, 4, 5), // bits 04, 05



   bit (c, 6, 7), // bits 06, 07



  bit (c, 8, 9), // bits 08, 09



   bit (c, 10, 11), // bits 10, 11



  bit (c, 12, 13) // bits 12, 13



   },



bit2  part1 [ 8] = {



  rems (part0 [ 1], part0 [ 0]),



  reme (part0 [ 1], a01   ),



  rems (part0 [ 3], part0 [ 2]),



  reme (part0 [ 3], a05    ),



  rems (part0 [ 5], part0 [ 4]),



  reme (part0 [ 5], a09    ),



  remf (part0 [ 6], a14    ),



  a13 & ~a14



  },



bit2 part2 [ 8] = {



  rems (part1 [ 2], part1 [ 0]),



  rems (part1 [ 2], part1 [ 1]),



  rems (part1 [ 2], part0 [ 1]),



  reme (part1 [ 2], a03    ),



  rems (part1 [ 6], part1 [ 4]),



  remh (part1 [ 6], part1 [ 5]),



  reml (part1 [ 6], part0 [ 5]),



  remc (part1 [ 6], a11    ),



  },



bit2 part3 [8] = {



  rems (part2 [ 4], part2 [ 0]),



  remh (part2 [ 4], part2 [ 1]),



  reml (part2 [ 4], part2 [ 2]),



  remh (part2 [ 4], part2 [ 3]),



  reml (part2 [ 4], part1 [ 2]),



  remh (part2 [ 4], part1 [ 3]),



  reml (part2 [ 4], part0 [ 3]),



  remc (part2 [ 4], a07   )



  };



bit14  m = bit (a, 0, 13){circumflex over ( )} (



   ((part3 [ 0] & 1) << 0) |



   ((part3 [ 1] & 1) << 1) |



   ((part3 [ 2] & 1) << 2) |



   ((part3 [ 3] & 1) << 3) |



   ((part3 [ 4] & 1) << 4) |



   ((part3 [ 5] & 1) << 5) |



   ((part3 [ 6] & 1) << 6) |



   ((part3 [ 7] & 1) << 7) |



   ((part2 [ 4] & 1) << 8) |



   ((part2 [ 5] & 1) << 9) |



   ((part2 [ 6] & 1) << 10) |



   ((part2 [ 7] & 1) << 11) |



   ((part1 [ 6] & 1) << 12) |



   ((part1 [ 7] & 1) << 13));



  return (m << 2) | part3 [0]; // pack the reminder



together



  }










Scissoring Box and Synchronization


FIG. 11
a is a block diagram illustrating a Scissoring Box origin, according to an embodiment of the present invention. The Span Generator 101 comprises a Scissoring Box module 107 for providing scissoring by a view-port, rotated relative to the x and y axes by an angle with tangent 0, 1, ½ and ⅓ (hereinafter also referred to as tangent 0, 1, 2, 3, respectively). The vertical coordinate y0 of the upper-left corner of the rotated Scissoring Box is 0, and the horizontal coordinate x1 of the lower-left corner is also 0. Optionally, the Scissoring Box can be used in an optional embodiment of the present invention having an over-sampling scheme.


The Scissoring Box has its origin specified by four points. The coordinates of the points are calculated by the driver (i.e. the software controlling the graphics chip) and stored in registers. The y coordinate of the upper corner is y0=0. The Scissoring Box device performs calculation of the initial Scissoring Box coordinates for the first span. After that, the Scissoring Box device calculates up to eight Scissoring Box coordinates per clock cycle for current spans.



FIG. 11
b is a block diagram illustrating a Scissoring Box, according to an embodiment of the present invention. The device to draw the Scissoring Box generates spans between two edges of the Scissoring Box. Two parts of the Scissoring Box generate both edges using the information about starting values of x and y coordinates, y coordinates of corners and rotation angle tangent:

















void ScissoringBox (



  SHORT x0, // starting left x



  SHORT x1, // starting      right x



  SHORT y,  // starting y (Ymin)



  SHORT y0, // y coordinate for left corner



  SHORT y1, // y coordinate for right corner



  SHORT y2, // ending y (Ymax)



  char t) { // 2-bit tangent expression



  char cnt0 = t, cnt1 = t;



  while (y < y2) {



   bool m0 = y >= y0;



   x0 += (t)? ((m0)? t : (cnt0)? 0 : −1) : 0;



   cnt0 = (m0)? t : (cnt0)? cnt0 − 1 : cnt0;



   bool m1 = y < y1;



   x1 += (t)? ((m1)? t : (cnt1)? 0 : −1) : 0;



   cnt1 = (m1)? t : (cnt1)? cnt1 − 1 : cnt1;



   }



  }











The pair of the coordinates x0, x1 is then sorted among the edge coordinates by Edge Generator 103.


Sorter

As illustrated in FIG. 7, a Sorter 104 is a four-input tree compare/multiplex hardware device, three inputs of which are coupled to outputs of three Edge Generators 103 operating within the same clock cycle, and one input of which is coupled to an output of the Sorter 104 operating in the previous clock cycle. In an embodiment comprising four groups of Edge Generators 103 there are four Sorters 104. Each Edge Generator 103 delivers the direction of a half-plane (left or right) as a tag for the x coordinate value. A Sorter 104 compares x values for edges of different types separately.

















typedef struct { // the output of an EG



  int x,   // the position



  bool uf, ov; // beyond the bounding box



  bool dir;  // left (0) or right (1)



  } edge_out;



class temp_span {



public:



  int x0, x1; // left and right



  bool uf0, ov0;// left beyond the bounding box



  bool uf1, ov1;// right beyond the bounding box



  temp_span ( ) :



   x0 = 0, x1 = 0,



   uf0 = false, ov0 = false,



   uf1 = false, ov1 = false { };



  temp_span (edge_out ed) : temp_span ( )  {



   if (ed. dir) {// if the edge is right, then it is the



maximal x



     x1 = ed. x;



     uf1 = ed. uf;



     ov1 = ed. ov;



     }



   else     {// if the edge is left , then it is the



minimal x



     x0 = ed. x;



     uf0 = ed. uf;



     ov0 = ed. ov;



     }



   };



  };



temp_span sort_two (



  temp_span s0,



  temp_span s1



  ) {



  temp_span result;



  bool x0m = s0. uf0 || s1. ov0 ||  // compare flags



   (!s1. uf0 && !s0. ov0 && s0. x0 < s1. x0); // and



values



  bool x1m = s0. ov1 || s1. uf1 ||



   (!s1. ov1 && !s0. uf1 && s0. x1 >= s1. x1);



  result. x0 = (x0m)? s1. x0 : s0. x0;    // max of left



  result. uf0 = (x0m)? s1. uf0 : s0. uf0;



  result. ov0 = (x0m)? s1. ov0 : s0. ov0;



  result. x1 = (x1m)? s1. x1 : s0. x1;    // min of



right



  result. uf1 = (x1m)? s1. uf1 : s0. uf1;



  result. ov1 = (x1m)? s1. ov1 : s0. ov1;



  return result;



  }



temp_span sorter {



  temp_span s0, // The output of the previous Sorter



  edge_out  x1, // The first EG output



  edge_out  x2, // The second EG output



  edge_out  x3  // The third EG output



  ) {



  temp_span s1 (x1), s2 (x2), s3 (x3);



  return sort_two (



   sort_two (s0, s1),



   sort_two (s2, s3)



   );



  }










Span Buffer Interface

The Span Buffer interface (also known as the Output Interface 106 shown in FIG. 7) converts the last Sorter output to absolute coordinates (note that the values are bounding box relative from the Loaders 102 through the Sorters 104) and packs them into the Span Buffer.


At this point of the span generation process, the computed values comprise the output of the last Sorter s3 and the bypassed outputs of the three other Sorters s0, s1 and s2. Also available are the current y coordinate, the xmin and xmax parameters of the bounding box, and k=1, 2, 4 representing the number of Edge Generators 103 computing spans for the same functional. Also note that the Sorters 104 are doubled, since at the lowest rate there are two spans generated per clock cycle, and therefore two spans are processed per clock cycle in parallel.

















bool wf;     // wire-frame mode wf == true



bool update = true; // when a new triangle starts SB should



get new y



SHORT xMax, xMin;



SHORT y;      // from the current y counter



SHORT w = xMax − xMin;         // The real



bounding box size



typedef struct {



  x0, x1;    // the values −1 and −2 are reserved for



         // uf and ov accordingly.



  } span;



SHORT sb_cnt = 0; // the counter of position in SB row



span spare_buffer [16];



void WriteNextToSB (



  span sp, // span to write



  SHORT pos, // position in the SB row



  bool next // next row



  );



void move_sb_cnt ( ){



  sb_cnt ++;



  if (sb_cnt >= 8) {



   Span_Buffer. Write (         // see TG doc



for description



     spare_buffer,



     y & (0xfffffff0 || wf << 3),  // y is aligned



     update,  // update y if necessary



     wf,    // wire-frame



     update);



   update = false;



   sb_cnt = 0;



   }



  }



void sb_interface(



  temp_span s [8], // two first - from the first level



Sorter,



          // two next - from second level, etc.



  SHORT    y,  // from the y counter



SHORT   xmin,   // from the input



SHORT   xmax,  // from the input



SHORT   k   // from the input



) {



int j;



span sp [8];  // temporary spans



// actually the following is performed at Sorters outputs



for (j = 0; j < 8; j ++)       {



  sp [j]. x0 =



   (s [j]. ov0)? MAX_INT :



   (s [j]. uf0)? −1 :



   (s [j]. x0 > w)? MAX_INT : s [j]. x0 + xMin;



  sp [j]. x1 =



   (s [j]. ov1)? MAX_INT :



   (s [j]. uf1)? −1 :



   (s [j]. x1 > w)? MAX_INT : s [j]. x1 + xMin;



  }



if (update) {



  sb_cnt = y & (wf)? 0x7 : 0xf;



  for (j = 0; j < 16)



   spare_buffer [j]. x0 = spare_buffer [j]. x1 = 0;



  }



if (wf){



  bool empty [4];  // empty flags for all 4 spans of the



         // internal triangle



  for (j = 0; j < 4; j ++)       {



   empty [j] =



     s [j + 4]. x0 == MAX_INT ||



     s [j + 4]. x1 == −1 ||



     s [j + 4]. x0 > s [j + 4]. x1;



   spare_buffer [sb_cnt + j  ]. x0 = sp [j]. x0;



     if (empty [j]) {



      spare_buffer [sb_cnt + j  ]. x1 = sp [j  ].



x1;



      spare_buffer [sb_cnt + j + 8]. x0 = MAX_INT;



      spare_buffer [sb_cnt + j + 8]. x1 = −1;



      }



     else {



      spare_buffer [sb_cnt + j  ]. x1 = sp [j + 4].



x0;



      spare_buffer [sb_cnt + j + 8]. x0 = sp [j + 4].



x1;



      spare_buffer [sb_cnt + j + 8]. x1 = sp [j  ].



x1;



      }



     move_sb_cnt ( );



     }



     sb_cnt = (sb_cnt + 4);



     return;



     }



   for (j = (k − 1) * 2; j < k * 2; j ++)   {



     if (k == 2 && j == 4)      // when k == 2 we



  use first and third



      j == 6;     // sorters outputs



     spare_buffer [sb_cnt] = sp [j];



     move_sb_cnt ( );



     }



   }










Foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of invention described herein may be implemented equivalently in hardware, software, firmware, and/or other available functional components or building blocks, and that networks may be wired, wireless, or a combination of wired and wireless. The pseudo-code fragments represent high-level implementation examples and are intended to illustrate one way of implementing functionalities described herein. Other variations and embodiments are possible in light of above teachings, and it is thus intended that the scope of invention not be limited by this Detailed Description, but rather by Claims following.

Claims
  • 1. A span generator for performing rasterization, comprising: a scissoring box represented by functionals;loaders configured to convert the functionals from a general form to a special case form;edge generators configured to read the special case form of the scissoring box, whereby the special case form simplifies calculations performed by the edge generators;sorters configured to compute the intersection of half-planes, wherein edges of the intersection are generated by the edge generators; anda span buffer configured to temporarily store spans.
  • 2. The span generator of claim 1, further comprising programmable registers, wherein an origin of the scissoring box is defined by four coordinates calculated and then stored in the programmable registers.
  • 3. The span generator of claim 1, further comprising a tile generator for tiling the spans stored in the span buffer.
  • 4. The span generator of claim 1, wherein the general form comprises right half-planes and closed half-planes, and wherein the special case form comprises closed right-half planes.
  • 5. The span generator of claim 1, wherein the edge generators comprise four 24-bit adders and eight 24-bit registers.
  • 6. The span generator of claim 1, wherein the edge generators are configured to perform a moving down function, a Bresenham setup, and a Bresenham walk.
  • 7. The span generator of claim 6, wherein the moving down function comprises the edge generator adding a {tilde over (b)} coefficient value to the functionals until the functional is positive, wherein ã, {tilde over (b)}, {tilde over (c)} represent integer coefficients of the special case form functionals.
  • 8. The span generator of claim 6, wherein the Bresenham setup comprises deriving an x value and a span-to-span x-increment value, wherein the x value is utilized for a first span after the moving down function.
  • 9. The span generator of claim 1, wherein each sorter is a four input tree compare/multiplex hardware device, wherein three of the inputs are coupled to outputs of three edge generators operating within the same clock cycle, and wherein one input is coupled to an output of the sorter operating in a previous clock cycle.
  • 10. The span generator of claim 1, wherein the span buffer converts the last sorter output to absolute coordinates and packs them into the span buffer.
  • 11. A span generator for performing rasterization, comprising: a scissoring box module configured to perform x-y clipping of a triangle primitive comprising a plurality of functionals;an input interface configured to pack the functionals;a plurality of loaders for receiving the packed functionals from the input interface, wherein each of the loaders are configured to convert the functionals from a general form to a special case form;a plurality of edge generators initialized by the loaders, the edge generators configured to generate left and right edges;a plurality of cascaded sorters coupled to the edge generators, wherein each sorter comprises a four input tree compare/multiplex hardware device, wherein three of the inputs are coupled to outputs of three edge generators operating within the same clock cycle, wherein one input is coupled to an output of the sorter operating in a previous clock cycle, wherein the cascaded sorters are configured to compute the intersection of half-planes, wherein edges of the intersection are generated by the edge generators;an output interface configured to converts the output of the last cascaded sorter to absolute coordinates; anda tile generator for receiving the absolute coordinates from the output interface, wherein the tile generator is further configured to convert spans into a sequence of tiles, wherein each tile refers to a rectangle set of pixels to be rendered.
  • 12. The span generator of claim 11, wherein the plurality of loaders comprises three loaders for loading three functionals at a time.
  • 13. The span generator of claim 12, wherein the three loaders are each configured to load the functionals into four edge generators.
  • 14. The span generator of claim 11, wherein the edge generators comprise four 24-bit adders and eight 24-bit registers.
  • 15. The span generator of claim 14, wherein each adder receive outputs from two registers as inputs, wherein the inputs of the eight registers are multiplexed.
  • 16. The span generator of claim 14, wherein outputs of the eight registers are coupled directly to inputs of the adders.
  • 17. A rasterizer comprising: a span generator configured to accept an input set of functionals representing a triangle primitive, clipping planes and a scissoring box, wherein the span generator is further configured to produce multiple spans per clock cycle, wherein the span generator comprises: an input interface for packing the input functionals;a plurality of loaders configured to receive the input functionals from the input interface and convert the functionals from a general form to a simplified form;a plurality of edge generators coupled to each loader, the edge generators configured to receive the input set of functionals in the simplified form; anda plurality of sorters configured in a cascaded configuration, wherein each sorter comprises a four input tree compare/multiplex hardware device, wherein three of the inputs are coupled to outputs of three edge generators operating within the same clock cycle, and wherein one input is coupled to an output of the sorter operating in a previous clock cycle.
  • 18. The rasterizer of claim 17, further comprising a scissoring box module configured to perform x-y clipping of a triangle primitive comprising a plurality of functionals.
  • 19. The rasterizer of claim 17, wherein the plurality of loaders comprises three loaders for loading three functionals.
  • 20. The rasterizer of claim 17, wherein the edge generators comprise four 24-bit adders and eight 24-bit registers.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Ser. No. 10/746,055, filed Dec. 23, 2003, which is incorporated herein by reference in its entirety.

Continuations (1)
Number Date Country
Parent 10746055 Dec 2003 US
Child 12045776 US