Method and apparatus for tuning a communication device

Information

  • Patent Grant
  • 8655286
  • Patent Number
    8,655,286
  • Date Filed
    Friday, February 25, 2011
    13 years ago
  • Date Issued
    Tuesday, February 18, 2014
    10 years ago
Abstract
A system that incorporates teachings of the present disclosure may include, for example, a non-transitory computer-readable storage medium including computer instructions to obtain at least one operational parameter associated with a communication device and to adjust a steerable antenna of the communication device when the communication device does not satisfy an impedance threshold, where the satisfying of the impedance threshold is determined based on the at least one operational parameter. Additional embodiments are disclosed.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to communication devices, and more specifically to a method and apparatus for tuning a communication device.


BACKGROUND

The human body can reduce the overall efficiency of a radio. Two of the mechanisms for this loss can be mismatch loss and absorptive loss. As the phone's environment changes and the user holds the phone in various ways, the antenna of the radio is “de-tuned”, which can cause an impedance mismatch between the antenna and the rest of the radio. This results in power being reflected and wasted as heat. An even greater amount of power can also be lost due to absorption of energy into the human body.


Electrically steerable antennas for communication devices are known. Either the main lobe of the antenna or the null(s) of the antenna can be steered by means of altering the RF currents on the antenna or ground plane below the antenna, or changing the phase of the signal applied to the antenna(s). Furthermore, analog or digital components can be placed on the antenna itself to change the electrical characteristics and thus “steer” the antenna. Often, when the ground plane of the antenna is as small as the main circuit board found in typical mobile phones, the amount of steering achievable by such methods is limited. However, the amount of antenna pattern steering may be sufficient to steer a significant amount of the pattern away from near field objects, such as the user.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an illustrative embodiment of a communication device;



FIG. 2 depicts an illustrative embodiment of a portion of the communication device of FIG. 1 that can perform tuning for reducing absorption losses and SAR;



FIG. 3 depicts an illustrative embodiment of a mobile communication device with a steerable antenna used to move an antenna pattern away from a user or any object in close proximity to the antenna;



FIG. 4 depicts an exemplary method operating in portions of the communication devices of FIGS. 1-3;



FIG. 5 depicts another exemplary method operating in portions of the communication devices of FIGS. 1-3;



FIG. 6 depicts an illustrative embodiment of a portion of a transceiver of the communication device of FIG. 1;



FIGS. 7-8 depict illustrative embodiments of a tunable matching network of the transceiver of FIG. 6;



FIGS. 9-10 depict illustrative embodiments of a tunable reactive element of the tunable matching network; and



FIG. 11 depicts an exemplary diagrammatic representation of a machine in the form of a computer system within which a set of instructions, when executed, may cause the machine to perform any one or more of the methodologies disclosed herein.





DETAILED DESCRIPTION

One embodiment of the present disclosure entails a method including obtaining at least one operational parameter associated with a steerable antenna of a mobile communication device, determining whether the mobile communication device satisfies an impedance threshold based on the at least one operational parameter, and adjusting the steerable antenna when the mobile communication device does not satisfy the impedance threshold.


One embodiment of the present disclosure entails an apparatus operably coupled with a mobile communication device. The apparatus can include a memory and a controller. The controller can be configured for adjusting a steerable antenna of the mobile communication device to reduce obstruction in a near field of the steerable antenna, and adjusting a matching network of the mobile communication device in response to an antenna mismatch.


One embodiment of the present disclosure entails non-transitory computer-readable storage medium that include computer instructions to obtain at least one operational parameter associated with a communication device and to adjust a steerable antenna of the communication device when the communication device does not satisfy an impedance threshold, where the satisfying of the impedance threshold is determined based on the at least one operational parameter.



FIG. 1 depicts an exemplary embodiment of a communication device 100. The communication device 100 can comprise a wireless transceiver 102 (herein having independent transmit and receiver sections), a user interface (UI) 104, a power supply 114, and a controller 106 for managing operations thereof. The wireless transceiver 102 can utilize short-range or long-range wireless access technologies such as Bluetooth, WiFi, Digital Enhanced Cordless Telecommunications (DECT), or cellular communication technologies, just to mention a few. Cellular technologies can include, for example, CDMA-1x, WCDMA, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, and next generation cellular wireless communication technologies as they arise.


The UI 104 can include a depressible or touch-sensitive keypad 108 with a navigation mechanism such as a roller ball, joystick, mouse, or navigation disk for manipulating operations of the communication device 100. The keypad 108 can be an integral part of a housing assembly of the communication device 100 or an independent device operably coupled thereto by a tethered wireline interface (such as a flex cable) or a wireless interface supporting for example Bluetooth. The keypad 108 can represent a numeric dialing keypad commonly used by phones, and/or a Qwerty keypad with alphanumeric keys. The UI 104 can further include a display 110 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 100. In an embodiment where the display 110 is a touch-sensitive display, a portion or all of the keypad 108 can be presented by way of the display.


The power supply 114 can utilize common power management technologies (such as replaceable batteries, supply regulation technologies, and charging system technologies) for supplying energy to the components of the communication device 100 to facilitate portable applications. The controller 106 can utilize computing technologies such as a microprocessor and/or digital signal processor (DSP) with associated storage memory such a Flash, ROM, RAM, SRAM, DRAM or other like technologies.


Referring to FIG. 2, a mobile device 200 is shown which allows for antenna steering. The mobile device 200 can have an antenna 150 and an RF front end module 210 which are designed such that that their performance in free space is improved (e.g., optimized), and intentionally detuned when any objects (e.g., the user of the device) is near or touching the mobile device.


Mobile device 200 can include a closed loop system 225 to control the steerable antenna 150. The input to this closed loop system 225 can be various information, including information acting as a measure of how much energy is efficiently being transmitted and/or received by the mobile device 200 with respect to the intended communication point, such as a base station, as compared with how much energy is being wasted or lost due to absorption into near field objects, such as the user's hand or head. In one preferred embodiment, the information used for this comparison of the power properly transmitted versus absorbed, can be the impedance of the antenna 150.


In one embodiment, the closed-loop system 225 can include one or more bi-directional couplers 230 and RF sensors 240 which serve to monitor the antenna match. However, the present disclosure contemplates the use of other components for monitoring of the antenna match. In this exemplary embodiment, the antenna 150 can be designed with a 50 ohm match in free space, which allows deviations, including major deviations, from this “baseline antenna match” to be recognized as being caused by objects near the antenna such as the user's hand or head. However, the present disclosure contemplates the antenna 150 being designed with other matches in free space, which can be less than or greater than 50 ohms, resulting in a “baseline antenna match” which is not necessarily 50 ohms.


In another embodiment, a baseline of the actual antenna impedance in free space or other baseline values can be stored in a memory, (e.g., storing the antenna impedance and mismatch in free space), rather than using a perfect 50 ohm match as a baseline. For instance, the use of values stored in memory can be applied when the antenna 150 cannot be perfectly matched in free space for all required frequency bands or all mechanical configurations of the mobile phone 200. In one embodiment, this can be performed without using proximity sensors, and/or can be used in conjunction with various types of steerable antennas 150 under the control of the closed-loop controller 250. Impedance matching for the antenna 150 can be performed in addition to this closed-loop antenna steering, by using a tunable RF matching network 275, which can also be controlled by the same closed-loop controller 250 and/or other control devices.


Referring to FIG. 3, a mobile device 300 is shown having an internal steerable antenna 325. The mobile device 300 allows for adjustment to an antenna pattern of the internal steerable antenna 325, such that the pattern is adjusted, steered or moved away from a user 375. For example, the main steerable lobe 350 can be adjusted through movement away from the user and/or through moving a steerable null towards the user. Mobile device 300 can utilize the impedance of the antenna 325 as the feedback parameter to sense or otherwise determine if there is an object close to the mobile device.


In one embodiment, mobile device 300 does not rely upon the type of steerable antenna and/or the end product it is used in for determining if there is an object in close proximity to the antenna 325 or mobile device. In another embodiment, the determination of whether an object is in proximity to the antenna and/or the adjustment of the position of the steerable antenna 325 can be performed based only on monitoring impedance of the antenna. As an example, the antenna's impedance in free space can be used as the “baseline” impedance. Deviation from this impedance can be monitored as an indication that an object is detuning the antenna with power being either absorbed and/or reflected by the object.


In one embodiment, by measuring the reflected power with a coupler to determine magnitude and phase of the reflections, at any channel/frequency of operation, one can determine the impedance of the antenna in free space. Continuing with this example under normal use of the portable wireless device 300, a dual directional coupler can be used to continuously monitor the magnitude and phase of both the forward and reflected RF signal as the radio transmits and receives communication signals. This coupler can be placed in close proximity to the antenna's input port, with the output of the coupler fed into a detector to convert these RF signals to usable voltage levels which in turn are used in a closed loop feedback system to adjust the antenna steering.


Referring to FIG. 4, method 400 is generally illustrated which allows for adjusting of an antenna in a communication device, such as shown in FIGS. 1-3. Method 400 can begin with monitoring or otherwise determining the impedance and/or the mismatch of the antenna at 402. This determination can be performed in a number of different ways using a number of different components. For example, bi-directional couplers can be used to perform the monitoring. In another embodiment, the couplers can obtain both magnitude and phase information. In 404, if the impedance of the antenna is not equal to a baseline impedance of the same antenna in free space, then an assumption can be made that there is an object near the antenna which is either absorbing or reflecting the antenna's radiation.


In 406, the antenna can be steered or otherwise adjusted when the baseline impedance threshold is not satisfied. Method 400 can return to 402 to monitor the impedance and determine if the absorption or reflection of the object has been accounted for. The steering of the antenna can be performed in an analog manner and/or in discrete steps. For example, the antenna can be steered in a number of different directions while monitoring the antenna's impedance during steer to determine if any of the positions satisfy the baseline impedance threshold. In another embodiment, the impedance values for various positions can be utilized as feedback to determine other positions in which to steer the antenna to satisfy the baseline impedance threshold.


Method 400 allows for steering of the antenna based on antenna impedance, such as by rapidly steering the antenna until a minimum difference between the baseline impedance and measured impedance is achieved. Method 400 can be repeated periodically to further steer the antenna and optimize the system as objects around the antenna shift.


Method 400 illustrates a closed loop steerable system that can automatically reduce or minimize unwanted absorption of power into objects in close proximity to the antenna since the antenna will be steered away from the objects in order to achieve reduced or minimal de-tuning of the antenna. The system can seek to achieve iterative measurements that become closest to the baseline measurement of the antenna. By steering the antenna for minimum deviation from baseline free space conditions, the absorption into that same object can be minimized. This also can increase or maximize the energy radiated to the desired communication point and reduce or minimize the energy wasted as absorbed energy into nearby objects, such as the user. Method 400 can also reduce Specific Absorption Rate (SAR) for the mobile communication device. Method 400 can work with either a fixed match for the antenna, or an RF tunable match for the antenna, such as variable capacitor antenna tuners.


Referring to FIG. 5, method 500 is generally illustrated which allows for adjusting of an antenna in a communication device, such as shown in FIGS. 1-3. Method 500, similar to method 400, provides for monitoring antenna impedance, determining satisfaction of a baseline impedance threshold and steering of the antenna in 502, 504 and 506. In 508, it can be determined if the steering of the antenna has resulted in a minimum difference between the baseline impedance and the measured impedance so as to carry out impedance matching. The antenna steering position can be held constant while the antenna match is now optimized or otherwise improved.


In 510, information can be obtained or otherwise measured to determine the antenna mismatch. In 512, the antenna matching network can be tuned based on the obtained information to reduce or minimize mismatch loss. For example, the same bi-directional couplers can be used to obtain information for this closed loop network as was used for the antenna steering closed loop. In one embodiment, all of the components for the two closed loop algorithms can be shared, except for the RF tuning elements themselves, with the steering tuning elements on the antenna and the matching tuning elements in the antenna match network.


In method 500, once the antenna match has been improved or optimized, the method can return to 502 to further improve or optimize the antenna steering. Method 500 can be repeated, such as alternating between improvement or optimization of steering (minimizing absorption losses) and improvement or optimization of antenna match (minimizing mismatch losses).


Methods 400 and/or 500 can be implemented utilizing other parameters and/or other steps. For example, other parameters other than return loss may be used in conjunction with, or in place of, a direct measurement of antenna impedance through amplitude and phase measurement of the reflected power in the forward and reverse directions at or near the antenna port. For instance, the mobile device can have an internal measure of Received Signal Strength Indicator (RSSI). This is a measure of the reception of communication signals (data or voice) from a base station to a handheld device, such as mobile phone. The RSSI signal can be utilized to determine if the antenna is being blocked by the user or other objects such that signals are being absorbed. The steerable antenna can be steered, such as described in methods 400 and/or 500, until the RSSI signal is improved or maximized, and then the antenna can be further matched via a tunable RF matching network. This improvement or optimization can be repeated in a closed loop manner until the antenna performance is increased or maximized for both RSSI and antenna impedance.


In another embodiment, the base station (or similar infrastructure hub for any wireless device) to which the mobile device is communicating to, can be used as the controlling portion of the system. The base station can send out commands or instructions to the steerable antenna until it maximizes the RF link in transmit and/or receive directions (uplink/downlink) of communications.


The software utilized to perform methods 400 and/or 500 for closed loop control of the steerable antenna and/or the RF tunable antenna match can reside anywhere in the system. For example, the software can reside in dedicated microprocessors for this function, either in the portable device or the base station. In another embodiment, the software can reside in pre-existing microprocessors, such as those in the handset's baseband chipset or RF front end transceiver, or in one of many processors in the base station.


Methods 400 and/or 500 can reduce energy wasted as absorbed or reflected power due to objects/user in close proximity to the mobile device, and can maximize the energy reaching the base station as desired in the communication link. This optimization of transmitted and/or received energy can result in better communication quality for voice and/or data traffic, reduce dropped calls and missed pages, increase coverage/range, and improve battery life. Additional secondary benefits can also be realized, such as reduction in SAR. The steerable antenna of methods 400 and/or 500 can direct the majority of the radiation away from the user and towards the base station, as desired.


In one embodiment, less power wasted as absorbed energy into the user or reflected energy (e.g., in a purse or on a metal table) not reaching the base station, can also allow for reducing the power output of the main power amplifier in the portable device. The main power amplifier may not have to put out as much power if the steerable antenna directs the majority of the energy away from the user and towards the base station. As a result, smaller and more efficient main power amplifiers can be utilized, which will further save power/battery life, reduce cost of the power amplifier, and reduce the size of the power amplifier. Also, power amplifiers that have to generate high power levels also tend to generate significant heat in portable handheld devices. Smaller more efficient power amplifiers operating at lower power levels can also result in lower overall temperatures for these wireless products.


Methods 400 and/or 500 provide a steerable antenna to reduce absorption losses, regardless of which type of steerable antenna is used. Additionally, any type of RF tuning element may be used in the steerable antenna or the tunable RF antenna match. Such tuning technologies include, but are not limited to, doped BST, pure BST, RF switches, MEMS tunable capacitors and varactors, and so forth.


Methods 400 and/or 500 can also be applied to a variety of devices, which are not limited to mobile phones. For example, methods 400 and/or 500 can be applied to WLAN applications, military systems, Bluetooth accessories, notebooks, laptops, wireless gaming, private radio (emergency services) and so forth.


In another embodiment, methods 400 and/or 500 can also be applied to Multiple-Input-Multiple-Output, or MIMO systems. In one embodiment, multiple-antenna diversity systems (e.g., two antennas) can utilize methods 400 and/or 500 to reduce absorption losses.



FIG. 6 depicts an illustrative embodiment of a portion of the wireless transceiver 102 of the communication device 100 of FIG. 1. In GSM applications, the transmit and receive portions of the transceiver 102 can include common amplifiers 601, 603 coupled to a tunable matching network 602 and an impedance load 606 by way of a switch 604. The load 606 in the present illustration can an antenna as shown in FIG. 1 (herein antenna 606). A transmit signal in the form of a radio frequency (RF) signal (TX) can be directed to the amplifier 601 which amplifies the signal and directs the amplified signal to the antenna 606 by way of the tunable matching network 602 when switch 604 is enabled for a transmission session. The receive portion of the transceiver 102 can utilize a pre-amplifier 603 which amplifies signals received from the antenna 606 by way of the tunable matching network 602 when switch 604 is enabled for a receive session. Other configurations of FIG. 6 are possible for other types of cellular access technologies such as CDMA. These undisclosed configurations are contemplated by the present disclosure.



FIGS. 7-8 depict illustrative embodiments of the tunable matching network 602 of the transceiver 102 of FIG. 6. In one embodiment, the tunable matching network 602 can comprise a control circuit 702 and a tunable reactive element 710. The control circuit 702 can comprise a DC-to-DC converter 704, one or more digital to analog converters (DACs) 706 and one or more corresponding buffers 708 to amplify the voltage generated by each DAC. The amplified signal can be fed to one or more tunable reactive components 904, 906 and 908 such as shown in FIG. 9, which depicts a possible circuit configuration for the tunable reactive element 710. In this illustration, the tunable reactive element 710 includes three tunable capacitors 904-908 and an inductor 902 with a fixed inductance. Other circuit configurations are possible, and thereby contemplated by the present disclosure.


The tunable capacitors 904-908 can each utilize technology that enables tunability of the capacitance of said component. One embodiment of the tunable capacitors 904-908 can utilize voltage or current tunable dielectric materials such as a composition of barium strontium titanate (BST). An illustration of a BST composition is the Parascan® Tunable Capacitor. In another embodiment, the tunable reactive element 710 can utilize semiconductor varactors. Other present or next generation methods or material compositions that can support a means for a voltage or current tunable reactive element are contemplated by the present disclosure.


The DC-to-DC converter 704 can receive a power signal such as 3 Volts from the power supply 114 of the communication device 100 in FIG. 1. The DC-to-DC converter 704 can use common technology to amplify this power signal to a higher range (e.g., 30 Volts) such as shown. The controller 106 can supply digital signals to each of the DACs 706 by way of a control bus of “n” or more wires to individually control the capacitance of tunable capacitors 904-908, thereby varying the collective reactance of the tunable matching network 602. The control bus can be implemented with a two-wire common serial communications technology such as a Serial Peripheral Interface (SPI) bus. With an SPI bus, the controller 106 can submit serialized digital signals to configure each DAC in FIG. 7 or the switches of the tunable reactive element 804 of FIG. 8. The control circuit 702 of FIG. 7 can utilize common digital logic to implement the SPI bus and to direct digital signals supplied by the controller 106 to the DACs.


In another embodiment, the tunable matching network 602 can comprise a control circuit 802 in the form of a decoder and the tunable reactive element 804 comprising switchable reactive elements such as shown in FIG. 10. In this embodiment, the controller 106 can supply the control circuit 802 signals via the SPI bus which can be decoded with common Boolean or state machine logic to individually enable or disable the switching elements 1002. The switching elements 1002 can be implemented with semiconductor switches or micro-machined switches such as utilized in micro-electromechanical systems (MEMS). By independently enabling and disabling the reactive elements (capacitor or inductor) of FIG. 10 with the switching elements 1002, the collective reactance of the tunable reactive element 804 can be varied. Other components can also be utilized, such as piezoelectric components.


The tunability of the tunable matching networks 602, 604 provides the controller 106 a means to optimize performance parameters of the transceiver 102 such as, for example, but not limited to, transmitter power, transmitter efficiency, receiver sensitivity, power consumption of the communication device, a specific absorption rate (SAR) of energy by a human body, frequency band performance parameters, and so on.


From the foregoing descriptions, it would be evident to an artisan with ordinary skill in the art that the aforementioned embodiments can be modified, reduced, or enhanced without departing from the scope and spirit of the claims described below. A number of the embodiments described above, include a closed loop iterative system for steering the antenna and/or tuning the matching network. However, the present disclosure also contemplates utilizing an open loop system for steering the antenna and/or tuning the matching network which can include one or more of the steps described herein and/or utilize one or more of the components described herein. Methods 400 and/or 500 can be applied to innumerable combinations of use cases, bands, sub-channels of bands, and other performance parameters which have not been addressed in the present disclosure. These undisclosed combinations are contemplated by the present disclosure.


In one exemplary embodiment, the steering of the antenna can be optimized or otherwise adjusted for low SAR and maximizing or improving the link to a basestation, such as based on monitoring an antenna impedance and/or using a closed loop process. The exemplary embodiment can also further optimize or otherwise adjust antenna impedance match, using either or both of an open loop tuning methodology or a closed loop tuning methodology. The exemplary embodiments can utilize various components and combinations of components to perform antenna steering and/or impedance matching. The present disclosure also contemplates utilizing one or more techniques and/or components described herein with respect to the exemplary embodiments with other methods and/or components for RF tuning and/or antenna steering that are not described herein.


In one exemplary embodiment, the system can perform a number of iterations of the adjusting of the steerable antenna to satisfy an impedance threshold. However, the steerable antenna may not reach the threshold. An iteration threshold can be established. For example, a closed loop impedance matching process can be implemented when the number of iterations for adjusting the steerable antenna exceeds a pre-determined value. In one embodiment, the closed loop impedance matching process can utilize a last known antenna steering position when the pre-determined value was exceeded.


Other suitable modifications can be applied to the present disclosure. Accordingly, the reader is directed to the claims for a fuller understanding of the breadth and scope of the present disclosure.



FIG. 11 depicts an exemplary diagrammatic representation of a machine in the form of a computer system 1100 within which a set of instructions, when executed, may cause the machine to perform any one or more of the methodologies discussed above. In some embodiments, the machine operates as a standalone device. In some embodiments, the machine may be connected (e.g., using a network) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client user machine in server-client user network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet PC, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. It will be understood that a device of the present disclosure includes broadly any electronic device that provides voice, video or data communication. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


The computer system 1100 may include a processor 1102 (e.g., a central processing unit (CPU), a graphics processing unit (GPU, or both), a main memory 1104 and a static memory 1106, which communicate with each other via a bus 1108. The computer system 1100 may further include a video display unit 1110 (e.g., a liquid crystal display (LCD), a flat panel, a solid state display, or a cathode ray tube (CRT)). The computer system 1100 may include an input device 1112 (e.g., a keyboard), a cursor control device 1114 (e.g., a mouse), a disk drive unit 1116, a signal generation device 1118 (e.g., a speaker or remote control) and a network interface device 1120.


The disk drive unit 1116 may include a machine-readable medium 1122 on which is stored one or more sets of instructions (e.g., software 1124) embodying any one or more of the methodologies or functions described herein, including those methods illustrated above. The instructions 1124 may also reside, completely or at least partially, within the main memory 1104, the static memory 1106, and/or within the processor 1102 during execution thereof by the computer system 1100. The main memory 1104 and the processor 1102 also may constitute machine-readable media.


Dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement the methods described herein. Applications that may include the apparatus and systems of various embodiments broadly include a variety of electronic and computer systems. Some embodiments implement functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the example system is applicable to software, firmware, and hardware implementations.


In accordance with various embodiments of the present disclosure, the methods described herein are intended for operation as software programs running on a computer processor. Furthermore, software implementations can include, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.


The present disclosure contemplates a machine readable medium containing instructions 1124, or that which receives and executes instructions 1124 from a propagated signal so that a device connected to a network environment 1126 can send or receive voice, video or data, and to communicate over the network 1126 using the instructions 1124. The instructions 1124 may further be transmitted or received over a network 1126 via the network interface device 1120.


While the machine-readable medium 1122 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.


The term “machine-readable medium” shall accordingly be taken to include, but not be limited to: solid-state memories such as a memory card or other package that houses one or more read-only (non-volatile) memories, random access memories, or other re-writable (volatile) memories; magneto-optical or optical medium such as a disk or tape; and/or a digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. Accordingly, the disclosure is considered to include any one or more of a machine-readable medium or a distribution medium, as listed herein and including art-recognized equivalents and successor media, in which the software implementations herein are stored.


Although the present specification describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Each of the standards for Internet and other packet switched network transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) represent examples of the state of the art. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same functions are considered equivalents.


The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Figures are also merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.


The Abstract of the Disclosure is provided that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. An apparatus operably coupled with a mobile communication device, the apparatus comprising: a memory; anda controller coupled with the memory, wherein the controller performs operations comprising: adjusting an antenna pattern of a steerable antenna of the mobile communication device to reduce obstruction in a near field of the steerable antenna in response to a determination of an antenna mismatch, wherein the adjusting of the antenna pattern of the steerable antenna is based on a received signal strength indicator; andadjusting a matching network of the mobile communication device,wherein the adjusting of the antenna pattern of the steerable antenna and the adjusting of the matching network are based on closed loop iterations.
  • 2. The apparatus of claim 1, wherein the controller performs operations further comprising: obtaining an operational parameter associated with the steerable antenna; anddetermining whether the mobile communication device satisfies an impedance threshold based on the operational parameter.
  • 3. The apparatus of claim 2, wherein the operational parameter is obtained before and after the adjusting of the steerable antenna.
  • 4. The apparatus of claim 3, wherein changes in the operational parameter are utilized as feedback for determining a position for the steerable antenna during the adjusting of the steerable antenna.
  • 5. The apparatus of claim 2, wherein the operational parameter comprises a magnitude and a phase of a reflected power associated with the steerable antenna.
  • 6. The apparatus of claim 2, wherein the obtaining of the operational parameter is performed using a directional coupler.
  • 7. The apparatus of claim 2, wherein the adjusting of the matching network of the mobile communication device is in response to the antenna mismatch.
  • 8. The apparatus of claim 2, wherein the impedance threshold is based on one or more values stored in a memory of the mobile communication device.
  • 9. The apparatus of claim 1, wherein the adjusting of the matching network or the adjusting of the steerable antenna utilizes at least one of an electrically tunable capacitor, a semiconductor varactor, a micro-electro-mechanical systems (MEMS) varactor, a MEMS switched reactive element, a piezoelectric components or a semiconductor switched reactive element.
  • 10. The apparatus of claim 1, wherein the controller is configured to obtain an RF voltage associated with the steerable antenna, and wherein the adjusting of the steerable antenna and the adjusting of the matching network is based on the RF voltage.
  • 11. The apparatus of claim 10, wherein the RF voltage is obtained from a directional coupler operably coupled with the steerable antenna.
  • 12. The apparatus of claim 1, wherein the mobile communication device comprises a multiple antenna system.
  • 13. The apparatus of claim 1, wherein the controller is configured for: communicating steering data with a base station; andadjusting the steerable antenna based on the steering data.
  • 14. An apparatus operably coupled with a mobile communication device, the apparatus comprising: a memory; anda controller coupled with the memory, wherein the controller performs operations comprising: adjusting an antenna pattern of a steerable antenna of the mobile communication device to reduce obstruction in a near field of the steerable antenna in response to a determination of an antenna mismatch; andadjusting a matching network of the mobile communication device, wherein the adjusting of the matching network is performed while an antenna steering position is held constant.
  • 15. A non-transitory computer-readable storage medium, comprising computer instructions which, responsive to being executed by a processor, cause the processor to perform operations comprising: obtaining at least one operational parameter associated with a communication device;adjusting an antenna pattern of a steerable antenna of the communication device responsive to a determination that the communication device does not satisfy an impedance threshold, wherein satisfying of the impedance threshold is determined based on the at least one operational parameter; andadjusting a matching network of the communication device based on the at least one operational parameter, wherein the adjusting of the matching network is performed while an antenna steering position is held constant, wherein the adjusting of the steerable antenna is performed without using proximity sensors, and wherein the adjusting of the steerable antenna includes moving a steerable lobe pattern associated with the steerable antenna.
US Referenced Citations (310)
Number Name Date Kind
2745067 True May 1956 A
3117279 Ludvigson Jan 1964 A
3160832 Beitman Dec 1964 A
3390337 Beitman Jun 1968 A
3443231 Roza May 1969 A
3509500 McNair Apr 1970 A
3571716 Hill Mar 1971 A
3590385 Sabo Jun 1971 A
3601717 Kuecken Aug 1971 A
3794941 Templin Feb 1974 A
3919644 Smolka Nov 1975 A
3990024 Hou Nov 1976 A
3995237 Brunner Nov 1976 A
4186359 Kaegebein Jan 1980 A
4201960 Skutta May 1980 A
4227256 O'Keefe Oct 1980 A
4383441 Willis May 1983 A
4476578 Gaudin Oct 1984 A
4493112 Bruene Jan 1985 A
4777490 Sharma Oct 1988 A
4799066 Deacon Jan 1989 A
4965607 Wilkins Oct 1990 A
4980656 Duffalo Dec 1990 A
5032805 Elmer Jul 1991 A
5142255 Chang Aug 1992 A
5177670 Shinohara Jan 1993 A
5195045 Keane Mar 1993 A
5200826 Seong Apr 1993 A
5212463 Babbitt May 1993 A
5243358 Sanford Sep 1993 A
5258728 Taniyoshi Nov 1993 A
5276912 Siwiak Jan 1994 A
5301358 Gaskill Apr 1994 A
5307033 Koscica Apr 1994 A
5310358 Johnson May 1994 A
5312790 Sengupta May 1994 A
5334958 Babbitt Aug 1994 A
5371473 Trinh Dec 1994 A
5409889 Das Apr 1995 A
5427988 Sengupta Jun 1995 A
5430417 Martin Jul 1995 A
5446447 Carney Aug 1995 A
5448252 Ali Sep 1995 A
5451567 Das Sep 1995 A
5451914 Stengel Sep 1995 A
5457394 McEwan Oct 1995 A
5472935 Yandrofski Dec 1995 A
5479139 Koscica Dec 1995 A
5486491 Sengupta Jan 1996 A
5496795 Das Mar 1996 A
5502372 Quan Mar 1996 A
5524281 Bradley Jun 1996 A
5548837 Hess et al. Aug 1996 A
5561407 Koscica Oct 1996 A
5564086 Cygan Oct 1996 A
5589844 Belcher et al. Dec 1996 A
5593495 Masuda Jan 1997 A
5635433 Sengupta Jun 1997 A
5635434 Sengupta Jun 1997 A
5640042 Koscica Jun 1997 A
5679624 Das Oct 1997 A
5689219 Piirainen Nov 1997 A
5693429 Sengupta Dec 1997 A
5694134 Barnes Dec 1997 A
5699071 Urakami Dec 1997 A
5766697 Sengupta Jun 1998 A
5777581 Lilly Jul 1998 A
5778308 Sroka Jul 1998 A
5786727 Sigmon Jul 1998 A
5812572 King Sep 1998 A
5812943 Suzuki Sep 1998 A
5830591 Sengupta Nov 1998 A
5846893 Sengupta Dec 1998 A
5874926 Tsuru Feb 1999 A
5880635 Satoh Mar 1999 A
5886867 Chivukula Mar 1999 A
5892482 Coleman et al. Apr 1999 A
5929717 Richardson Jul 1999 A
5963871 Zhinong Oct 1999 A
5969582 Boesch Oct 1999 A
5990766 Zhang Nov 1999 A
6009124 Smith Dec 1999 A
6020787 Kim Feb 2000 A
6020795 Kim Feb 2000 A
6029075 Das Feb 2000 A
6045932 Jia Apr 2000 A
6061025 Jackson May 2000 A
6074971 Chiu Jun 2000 A
6096127 Dimos Aug 2000 A
6100733 Dortu Aug 2000 A
6101102 Brand Aug 2000 A
6115585 Matero Sep 2000 A
6133883 Munson Oct 2000 A
6172385 Duncombe Jan 2001 B1
6215644 Dhuler Apr 2001 B1
6281847 Lee Aug 2001 B1
6343208 Ying Jan 2002 B1
6377142 Chiu Apr 2002 B1
6377217 Zhu Apr 2002 B1
6377440 Zhu Apr 2002 B1
6384785 Kamogawa May 2002 B1
6404614 Zhu Jun 2002 B1
6408190 Ying Jun 2002 B1
6414562 Bouisse Jul 2002 B1
6415562 Donaghue Jul 2002 B1
6452776 Chakravorty Sep 2002 B1
6461930 Akram Oct 2002 B2
6466774 Okabe Oct 2002 B1
6492883 Liang Dec 2002 B2
6514895 Chiu Feb 2003 B1
6525630 Zhu Feb 2003 B1
6531936 Chiu Mar 2003 B1
6535076 Partridge Mar 2003 B2
6535722 Rosen Mar 2003 B1
6538603 Chen Mar 2003 B1
6556102 Sengupta Apr 2003 B1
6556814 Klomsdorf Apr 2003 B1
6570462 Edmonson May 2003 B2
6590468 du Toit et al. Jul 2003 B2
6590541 Schultze Jul 2003 B1
6597265 Liang Jul 2003 B2
6608603 Alexopoulos Aug 2003 B2
6624786 Boyle Sep 2003 B2
6640085 Chatzipetros Oct 2003 B1
6657595 Phillips et al. Dec 2003 B1
6661638 Jackson et al. Dec 2003 B2
6670256 Yang Dec 2003 B2
6710651 Forrester Mar 2004 B2
6724611 Mosley Apr 2004 B1
6724890 Bareis Apr 2004 B1
6737179 Sengupta May 2004 B2
6759918 Du Toit Jul 2004 B2
6765540 Toncich Jul 2004 B2
6768472 Alexopoulos Jul 2004 B2
6774077 Sengupta Aug 2004 B2
6795712 Vakilian Sep 2004 B1
6825818 Toncich Nov 2004 B2
6839028 Lee Jan 2005 B2
6845126 Dent Jan 2005 B2
6859104 Toncich Feb 2005 B2
6862432 Kim Mar 2005 B1
6864757 Du Toit Mar 2005 B2
6868260 Jagielski Mar 2005 B2
6888714 Shaw May 2005 B2
6905989 Ellis Jun 2005 B2
6907234 Karr Jun 2005 B2
6920315 Wilcox Jul 2005 B1
6943078 Zheng Sep 2005 B1
6946847 Nishimori Sep 2005 B2
6949442 Barth Sep 2005 B2
6961368 Dent Nov 2005 B2
6964296 Memory Nov 2005 B2
6965837 Vintola Nov 2005 B2
6993297 Smith Jan 2006 B2
7009455 Toncich Mar 2006 B2
7071776 Forrester Jul 2006 B2
7106715 Kelton Sep 2006 B1
7107033 D du Toit Sep 2006 B2
7113614 Rhoads Sep 2006 B2
7151411 Martin Dec 2006 B2
7176634 Kitamura Feb 2007 B2
7176845 Fabrega-Sanchez Feb 2007 B2
7180467 Fabrega-Sanchez Feb 2007 B2
7221327 Toncich May 2007 B2
7298329 Diament Nov 2007 B2
7312118 Kiyotoshi Dec 2007 B2
7332980 Zhu Feb 2008 B2
7332981 Matsuno Feb 2008 B2
7339527 Sager Mar 2008 B2
7426373 Clingman Sep 2008 B2
7427949 Channabasappa et al. Sep 2008 B2
7453405 Nishikido et al. Nov 2008 B2
7468638 Tsai Dec 2008 B1
7535080 Zeng et al. May 2009 B2
7535312 McKinzie May 2009 B2
7539527 Jang May 2009 B2
7596357 Nakamata Sep 2009 B2
7633355 Matsuo Dec 2009 B2
7667663 Hsiao Feb 2010 B2
7705692 Fukamachi et al. Apr 2010 B2
7711337 McKinzie May 2010 B2
7714678 du Toit May 2010 B2
7728693 du Toit Jun 2010 B2
7768400 Lawrence et al. Aug 2010 B2
7786819 Ella Aug 2010 B2
7795990 du Toit Sep 2010 B2
7852170 McKinzie Dec 2010 B2
7865154 Mendolia Jan 2011 B2
7907094 Kakitsu et al. Mar 2011 B2
7917104 Manssen et al. Mar 2011 B2
7969257 du Toit Jun 2011 B2
7991363 Greene Aug 2011 B2
8112043 Knudsen et al. Feb 2012 B2
8170510 Knudsen et al. May 2012 B2
8190109 Ali et al. May 2012 B2
8217732 McKinzie Jul 2012 B2
8299867 McKinzie Oct 2012 B2
8320850 Khlat Nov 2012 B1
8442457 Harel et al. May 2013 B2
20020008672 Gothard et al. Jan 2002 A1
20020030566 Bozler Mar 2002 A1
20020109642 Gee et al. Aug 2002 A1
20020118075 Ohwada Aug 2002 A1
20020145483 Bouisse Oct 2002 A1
20020167963 Joa-Ng Nov 2002 A1
20020187780 Souissi Dec 2002 A1
20020191703 Ling et al. Dec 2002 A1
20020193088 Jung Dec 2002 A1
20030060227 Sekine Mar 2003 A1
20030071300 Yashima Apr 2003 A1
20030114124 Higuchi Jun 2003 A1
20030142022 Ollikainen Jul 2003 A1
20030193997 Dent Oct 2003 A1
20030199286 D du Toit Oct 2003 A1
20030210206 Phillips Nov 2003 A1
20030232607 Le Bars Dec 2003 A1
20040009754 Smith Jan 2004 A1
20040090372 Nallo May 2004 A1
20040100341 Luetzelschwab May 2004 A1
20040127178 Kuffner Jul 2004 A1
20040137950 Bolin Jul 2004 A1
20040202399 Kochergin Oct 2004 A1
20040257293 Friedrich et al. Dec 2004 A1
20050007291 Fabrega-Sanchez Jan 2005 A1
20050032488 Pehlke Feb 2005 A1
20050032541 Wang Feb 2005 A1
20050042994 Otaka Feb 2005 A1
20050059362 Kalajo Mar 2005 A1
20050082636 Yashima Apr 2005 A1
20050085204 Poilasne et al. Apr 2005 A1
20050093624 Forrester et al. May 2005 A1
20050130608 Forse Jun 2005 A1
20050130699 Kim Jun 2005 A1
20050208960 Hassan Sep 2005 A1
20050215204 Wallace Sep 2005 A1
20050264455 Talvitie Dec 2005 A1
20050282503 Onno Dec 2005 A1
20060003537 Sinha Jan 2006 A1
20060009165 Alles Jan 2006 A1
20060160501 Mendolia Jul 2006 A1
20060183433 Mori Aug 2006 A1
20060183442 Chang et al. Aug 2006 A1
20060205368 Bustamante Sep 2006 A1
20060281423 Caimi et al. Dec 2006 A1
20070013483 Stewart Jan 2007 A1
20070035458 Ohba Feb 2007 A1
20070042725 Poilasne Feb 2007 A1
20070042734 Ryu Feb 2007 A1
20070080888 Mohamadi Apr 2007 A1
20070082611 Terranova et al. Apr 2007 A1
20070085609 Itkin Apr 2007 A1
20070142014 Wilcox Jun 2007 A1
20070149146 Hwang Jun 2007 A1
20070182636 Carlson Aug 2007 A1
20070184825 Lim et al. Aug 2007 A1
20070194859 Brobston Aug 2007 A1
20070197180 McKinzie et al. Aug 2007 A1
20070200766 McKinzie Aug 2007 A1
20070285326 McKinzie Dec 2007 A1
20070293176 Yu Dec 2007 A1
20080007478 Jung Jan 2008 A1
20080018541 Pang Jan 2008 A1
20080055016 Morris, III et al. Mar 2008 A1
20080081670 Rofougaran Apr 2008 A1
20080106350 McKinzie May 2008 A1
20080122553 McKinzie May 2008 A1
20080122723 Rofougaran May 2008 A1
20080129612 Wang Jun 2008 A1
20080158076 Walley Jul 2008 A1
20080261544 Blin Oct 2008 A1
20080274706 Blin Nov 2008 A1
20080300027 Dou et al. Dec 2008 A1
20080305749 Ben-Bassat Dec 2008 A1
20090002077 Rohani et al. Jan 2009 A1
20090027286 Ohishi Jan 2009 A1
20090082017 Chang et al. Mar 2009 A1
20090109880 Kim Apr 2009 A1
20090121963 Greene May 2009 A1
20090149136 Rofougaran Jun 2009 A1
20090180403 Tudosoiu Jul 2009 A1
20090215446 Hapsari et al. Aug 2009 A1
20090231220 Zhang et al. Sep 2009 A1
20090253385 Dent et al. Oct 2009 A1
20090264065 Song Oct 2009 A1
20090278685 Potyrailo Nov 2009 A1
20090323582 Proctor et al. Dec 2009 A1
20100041348 Wilcox et al. Feb 2010 A1
20100053009 Rofougaran Mar 2010 A1
20100073103 Spears et al. Mar 2010 A1
20100085260 McKinzie Apr 2010 A1
20100105425 Asokan Apr 2010 A1
20100156552 McKinzie Jun 2010 A1
20100232474 Rofougaran et al. Sep 2010 A1
20100285836 Horihata et al. Nov 2010 A1
20100302106 Knudsen et al. Dec 2010 A1
20100304688 Knudsen Dec 2010 A1
20110012790 Badaruzzaman Jan 2011 A1
20110086630 Manssen Apr 2011 A1
20110102290 Milosavljevic May 2011 A1
20110105023 Scheer et al. May 2011 A1
20110121079 Lawrence et al. May 2011 A1
20110133994 Korva Jun 2011 A1
20110183628 Baker Jul 2011 A1
20110183633 Ohba et al. Jul 2011 A1
20110256857 Chen et al. Oct 2011 A1
20110281532 Shin et al. Nov 2011 A1
20110299438 Mikhemar et al. Dec 2011 A1
20120075159 Chang Mar 2012 A1
20120100802 Mohebbi Apr 2012 A1
20120243579 Premakanthan et al. Sep 2012 A1
Foreign Referenced Citations (23)
Number Date Country
19614655 Oct 1997 DE
102008050743 Apr 2010 DE
0685936 Jun 1995 EP
0909024 Apr 1999 EP
1079296 Feb 2001 EP
1137192 Sep 2001 EP
1298810 Apr 2006 EP
2328233 Jun 2011 EP
03276901 Mar 1990 JP
9321526 Dec 1997 JP
10209722 Aug 1998 JP
100645526 Nov 2006 KR
10-0740177 Jul 2007 KR
0171846 Sep 2001 WO
2006031170 Mar 2006 WO
2008030165 Mar 2008 WO
WO-2009064968 May 2009 WO
2009155966 Dec 2009 WO
WO-2011044592 Apr 2011 WO
2011084716 Jul 2011 WO
WO-2011133657 Oct 2011 WO
WO-2011028453 Oct 2011 WO
2012085932 Jun 2012 WO
Non-Patent Literature Citations (32)
Entry
Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/056413, Jul. 27, 2011.
Bezooijen, A. et al., “A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches”, IEEE Journal of Solid-State Circuits, vol. 43, No. 10, Oct. 2008, 2259-2268.
Payandehjoo, Kasra , “Novel Techniques for Coupling Reduction in Multi-Antenna Hand-held Devices”, IEEE Student Member, 1-8.
Petit, Laurent , “MEMS-Switched Parasitic-Antenna Array for Radiation Pattern Diversity”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 9, Sep. 2009, 2624-2631.
Zuo, S. , “Eigenmode Decoupling for Mimo Loop-Antenna Based on 180 Coupler”, Progress in Electromagnetics Research Letters, vol. 26, 2011, 11-20.
Hyun, S. , “Effects of strain on the dielectric properties of tunable dielectric SrTi03 thin films”, Applied Physics Letters, 2004 American Institute of Physics.
Ida, I. et al., “An Adaptive Impedence Matching System and Its Application to Mobile Antennas”, TENCON 2004, IEEE Region 10 Conference, See Abstract ad p. 544, Nov. 21-24, 2004, 543-547.
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, International Applicaton No. PCT/US2010/046241, Mar. 2, 2011.
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, PCT Application No. PCT/US08/005085, Jul. 2, 2008.
Pervez, N.K. , “High Tunability barium strontium titanate thin films for RF circuit applications”, Applied Physics Letters, 2004 American Institute of Physics.
Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive COMA Transceivers”, IEEE, 2005.
Qiao, et al., “Measurement of Antenna Load Impedance for power Amplifiers”, The Department of Electrical and Computer Engineering, University of California, San Diego, Sep. 13, 2004.
Stemmer, Susanne , “Low-loss tunable capacitors fabricated directly on gold bottom electrodes”, University of California Postprints 2006.
Taylor, T.R. , “Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films”, Applied Physics Letters, 2002 American Institute of Physics.
Tombak, Ali , Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications. IEEE Microwave and Wireles Components Letters, vol. 12, Jan. 2002.
Xu, Hongtao , “Tunable Microwave Integrated Circuits using BST Thin Film Capacitors with Device”, Integrated Ferroelectrics, Department of Electrical Engineering and Computer Engineering, University of California, 2005.
Huang, Libo et al., “Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications”, IEEE, 09/07/205, 13-17.
Patent Cooperation Treaty, “International Search Report and Written Opinion”, Nov. 16, 2011, International Application No. PCT/US/2011/038543.
Du Toit, , “Tunable Microwave Devices with Auto Adjusting Matching Circuit”, U.S. Appl. No. 13/302,617, filed Nov. 22, 2011.
Du Toit, , “Tunable Microwave Devices with Auto-Adjusting Matching Circuit”, U.S. Appl. No. 13/302,649, filed Nov. 22, 2011.
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,463, filed May 16, 2011.
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,589, filed May 16, 2011.
Hoirup, , “Method and Apparatus for Radio Antenna Frequency Tuning”, U.S. Appl. No. 13/030,177, filed Feb. 18, 2011.
Mansse, , “Method and Apparatus for Managing Interference in a Communication Device”, U.S. Appl. No. 61/326,206, filed Apr. 20, 2010.
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 12/941,972, filed Nov. 8, 2010.
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 13/005,122, filed Jan. 12, 2011.
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,544, filed Nov. 10, 2011.
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,550, filed Nov. 10, 2011.
McKinzie, , “Method and Apparatus for Adaptive Impedance Matching”, U.S. Appl. No. 13/217,748, filed Aug. 25, 2011.
Mendolia, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/035,417, filed Feb. 25, 2011.
Paratek Microwave, Inc., “Method and Appartus for Tuning Antennas in a Communication Device”, International Application No. PCT/US11/59620; Filed Nov. 7, 2011.
Spears, , “Methods for Tuning an Adaptive Impedance Matching Network with a Look-Up Table”, U.S. Appl. No. 13/297,951, filed Nov. 16, 2011.
Related Publications (1)
Number Date Country
20120220243 A1 Aug 2012 US