The present disclosure relates generally to communication devices, and more specifically to a method and apparatus for tuning a communication device.
The human body can reduce the overall efficiency of a radio. Two of the mechanisms for this loss can be mismatch loss and absorptive loss. As the phone's environment changes and the user holds the phone in various ways, the antenna of the radio is “de-tuned”, which can cause an impedance mismatch between the antenna and the rest of the radio. This results in power being reflected and wasted as heat. An even greater amount of power can also be lost due to absorption of energy into the human body.
Electrically steerable antennas for communication devices are known. Either the main lobe of the antenna or the null(s) of the antenna can be steered by means of altering the RF currents on the antenna or ground plane below the antenna, or changing the phase of the signal applied to the antenna(s). Furthermore, analog or digital components can be placed on the antenna itself to change the electrical characteristics and thus “steer” the antenna. Often, when the ground plane of the antenna is as small as the main circuit board found in typical mobile phones, the amount of steering achievable by such methods is limited. However, the amount of antenna pattern steering may be sufficient to steer a significant amount of the pattern away from near field objects, such as the user.
One embodiment of the present disclosure entails a method including obtaining at least one operational parameter associated with a steerable antenna of a mobile communication device, determining whether the mobile communication device satisfies an impedance threshold based on the at least one operational parameter, and adjusting the steerable antenna when the mobile communication device does not satisfy the impedance threshold.
One embodiment of the present disclosure entails an apparatus operably coupled with a mobile communication device. The apparatus can include a memory and a controller. The controller can be configured for adjusting a steerable antenna of the mobile communication device to reduce obstruction in a near field of the steerable antenna, and adjusting a matching network of the mobile communication device in response to an antenna mismatch.
One embodiment of the present disclosure entails non-transitory computer-readable storage medium that include computer instructions to obtain at least one operational parameter associated with a communication device and to adjust a steerable antenna of the communication device when the communication device does not satisfy an impedance threshold, where the satisfying of the impedance threshold is determined based on the at least one operational parameter.
The UI 104 can include a depressible or touch-sensitive keypad 108 with a navigation mechanism such as a roller ball, joystick, mouse, or navigation disk for manipulating operations of the communication device 100. The keypad 108 can be an integral part of a housing assembly of the communication device 100 or an independent device operably coupled thereto by a tethered wireline interface (such as a flex cable) or a wireless interface supporting for example Bluetooth. The keypad 108 can represent a numeric dialing keypad commonly used by phones, and/or a Qwerty keypad with alphanumeric keys. The UI 104 can further include a display 110 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 100. In an embodiment where the display 110 is a touch-sensitive display, a portion or all of the keypad 108 can be presented by way of the display.
The power supply 114 can utilize common power management technologies (such as replaceable batteries, supply regulation technologies, and charging system technologies) for supplying energy to the components of the communication device 100 to facilitate portable applications. The controller 106 can utilize computing technologies such as a microprocessor and/or digital signal processor (DSP) with associated storage memory such a Flash, ROM, RAM, SRAM, DRAM or other like technologies.
Referring to
Mobile device 200 can include a closed loop system 225 to control the steerable antenna 150. The input to this closed loop system 225 can be various information, including information acting as a measure of how much energy is efficiently being transmitted and/or received by the mobile device 200 with respect to the intended communication point, such as a base station, as compared with how much energy is being wasted or lost due to absorption into near field objects, such as the user's hand or head. In one preferred embodiment, the information used for this comparison of the power properly transmitted versus absorbed, can be the impedance of the antenna 150.
In one embodiment, the closed-loop system 225 can include one or more bi-directional couplers 230 and RF sensors 240 which serve to monitor the antenna match. However, the present disclosure contemplates the use of other components for monitoring of the antenna match. In this exemplary embodiment, the antenna 150 can be designed with a 50 ohm match in free space, which allows deviations, including major deviations, from this “baseline antenna match” to be recognized as being caused by objects near the antenna such as the user's hand or head. However, the present disclosure contemplates the antenna 150 being designed with other matches in free space, which can be less than or greater than 50 ohms, resulting in a “baseline antenna match” which is not necessarily 50 ohms.
In another embodiment, a baseline of the actual antenna impedance in free space or other baseline values can be stored in a memory, (e.g., storing the antenna impedance and mismatch in free space), rather than using a perfect 50 ohm match as a baseline. For instance, the use of values stored in memory can be applied when the antenna 150 cannot be perfectly matched in free space for all required frequency bands or all mechanical configurations of the mobile phone 200. In one embodiment, this can be performed without using proximity sensors, and/or can be used in conjunction with various types of steerable antennas 150 under the control of the closed-loop controller 250. Impedance matching for the antenna 150 can be performed in addition to this closed-loop antenna steering, by using a tunable RF matching network 275, which can also be controlled by the same closed-loop controller 250 and/or other control devices.
Referring to
In one embodiment, mobile device 300 does not rely upon the type of steerable antenna and/or the end product it is used in for determining if there is an object in close proximity to the antenna 325 or mobile device. In another embodiment, the determination of whether an object is in proximity to the antenna and/or the adjustment of the position of the steerable antenna 325 can be performed based only on monitoring impedance of the antenna. As an example, the antenna's impedance in free space can be used as the “baseline” impedance. Deviation from this impedance can be monitored as an indication that an object is detuning the antenna with power being either absorbed and/or reflected by the object.
In one embodiment, by measuring the reflected power with a coupler to determine magnitude and phase of the reflections, at any channel/frequency of operation, one can determine the impedance of the antenna in free space. Continuing with this example under normal use of the portable wireless device 300, a dual directional coupler can be used to continuously monitor the magnitude and phase of both the forward and reflected RF signal as the radio transmits and receives communication signals. This coupler can be placed in close proximity to the antenna's input port, with the output of the coupler fed into a detector to convert these RF signals to usable voltage levels which in turn are used in a closed loop feedback system to adjust the antenna steering.
Referring to
In 406, the antenna can be steered or otherwise adjusted when the baseline impedance threshold is not satisfied. Method 400 can return to 402 to monitor the impedance and determine if the absorption or reflection of the object has been accounted for. The steering of the antenna can be performed in an analog manner and/or in discrete steps. For example, the antenna can be steered in a number of different directions while monitoring the antenna's impedance during steer to determine if any of the positions satisfy the baseline impedance threshold. In another embodiment, the impedance values for various positions can be utilized as feedback to determine other positions in which to steer the antenna to satisfy the baseline impedance threshold.
Method 400 allows for steering of the antenna based on antenna impedance, such as by rapidly steering the antenna until a minimum difference between the baseline impedance and measured impedance is achieved. Method 400 can be repeated periodically to further steer the antenna and optimize the system as objects around the antenna shift.
Method 400 illustrates a closed loop steerable system that can automatically reduce or minimize unwanted absorption of power into objects in close proximity to the antenna since the antenna will be steered away from the objects in order to achieve reduced or minimal de-tuning of the antenna. The system can seek to achieve iterative measurements that become closest to the baseline measurement of the antenna. By steering the antenna for minimum deviation from baseline free space conditions, the absorption into that same object can be minimized. This also can increase or maximize the energy radiated to the desired communication point and reduce or minimize the energy wasted as absorbed energy into nearby objects, such as the user. Method 400 can also reduce Specific Absorption Rate (SAR) for the mobile communication device. Method 400 can work with either a fixed match for the antenna, or an RF tunable match for the antenna, such as variable capacitor antenna tuners.
Referring to
In 510, information can be obtained or otherwise measured to determine the antenna mismatch. In 512, the antenna matching network can be tuned based on the obtained information to reduce or minimize mismatch loss. For example, the same bi-directional couplers can be used to obtain information for this closed loop network as was used for the antenna steering closed loop. In one embodiment, all of the components for the two closed loop algorithms can be shared, except for the RF tuning elements themselves, with the steering tuning elements on the antenna and the matching tuning elements in the antenna match network.
In method 500, once the antenna match has been improved or optimized, the method can return to 502 to further improve or optimize the antenna steering. Method 500 can be repeated, such as alternating between improvement or optimization of steering (minimizing absorption losses) and improvement or optimization of antenna match (minimizing mismatch losses).
Methods 400 and/or 500 can be implemented utilizing other parameters and/or other steps. For example, other parameters other than return loss may be used in conjunction with, or in place of, a direct measurement of antenna impedance through amplitude and phase measurement of the reflected power in the forward and reverse directions at or near the antenna port. For instance, the mobile device can have an internal measure of Received Signal Strength Indicator (RSSI). This is a measure of the reception of communication signals (data or voice) from a base station to a handheld device, such as mobile phone. The RSSI signal can be utilized to determine if the antenna is being blocked by the user or other objects such that signals are being absorbed. The steerable antenna can be steered, such as described in methods 400 and/or 500, until the RSSI signal is improved or maximized, and then the antenna can be further matched via a tunable RF matching network. This improvement or optimization can be repeated in a closed loop manner until the antenna performance is increased or maximized for both RSSI and antenna impedance.
In another embodiment, the base station (or similar infrastructure hub for any wireless device) to which the mobile device is communicating to, can be used as the controlling portion of the system. The base station can send out commands or instructions to the steerable antenna until it maximizes the RF link in transmit and/or receive directions (uplink/downlink) of communications.
The software utilized to perform methods 400 and/or 500 for closed loop control of the steerable antenna and/or the RF tunable antenna match can reside anywhere in the system. For example, the software can reside in dedicated microprocessors for this function, either in the portable device or the base station. In another embodiment, the software can reside in pre-existing microprocessors, such as those in the handset's baseband chipset or RF front end transceiver, or in one of many processors in the base station.
Methods 400 and/or 500 can reduce energy wasted as absorbed or reflected power due to objects/user in close proximity to the mobile device, and can maximize the energy reaching the base station as desired in the communication link. This optimization of transmitted and/or received energy can result in better communication quality for voice and/or data traffic, reduce dropped calls and missed pages, increase coverage/range, and improve battery life. Additional secondary benefits can also be realized, such as reduction in SAR. The steerable antenna of methods 400 and/or 500 can direct the majority of the radiation away from the user and towards the base station, as desired.
In one embodiment, less power wasted as absorbed energy into the user or reflected energy (e.g., in a purse or on a metal table) not reaching the base station, can also allow for reducing the power output of the main power amplifier in the portable device. The main power amplifier may not have to put out as much power if the steerable antenna directs the majority of the energy away from the user and towards the base station. As a result, smaller and more efficient main power amplifiers can be utilized, which will further save power/battery life, reduce cost of the power amplifier, and reduce the size of the power amplifier. Also, power amplifiers that have to generate high power levels also tend to generate significant heat in portable handheld devices. Smaller more efficient power amplifiers operating at lower power levels can also result in lower overall temperatures for these wireless products.
Methods 400 and/or 500 provide a steerable antenna to reduce absorption losses, regardless of which type of steerable antenna is used. Additionally, any type of RF tuning element may be used in the steerable antenna or the tunable RF antenna match. Such tuning technologies include, but are not limited to, doped BST, pure BST, RF switches, MEMS tunable capacitors and varactors, and so forth.
Methods 400 and/or 500 can also be applied to a variety of devices, which are not limited to mobile phones. For example, methods 400 and/or 500 can be applied to WLAN applications, military systems, Bluetooth accessories, notebooks, laptops, wireless gaming, private radio (emergency services) and so forth.
In another embodiment, methods 400 and/or 500 can also be applied to Multiple-Input-Multiple-Output, or MIMO systems. In one embodiment, multiple-antenna diversity systems (e.g., two antennas) can utilize methods 400 and/or 500 to reduce absorption losses.
The tunable capacitors 904-908 can each utilize technology that enables tunability of the capacitance of said component. One embodiment of the tunable capacitors 904-908 can utilize voltage or current tunable dielectric materials such as a composition of barium strontium titanate (BST). An illustration of a BST composition is the Parascan® Tunable Capacitor. In another embodiment, the tunable reactive element 710 can utilize semiconductor varactors. Other present or next generation methods or material compositions that can support a means for a voltage or current tunable reactive element are contemplated by the present disclosure.
The DC-to-DC converter 704 can receive a power signal such as 3 Volts from the power supply 114 of the communication device 100 in
In another embodiment, the tunable matching network 602 can comprise a control circuit 802 in the form of a decoder and the tunable reactive element 804 comprising switchable reactive elements such as shown in
The tunability of the tunable matching networks 602, 604 provides the controller 106 a means to optimize performance parameters of the transceiver 102 such as, for example, but not limited to, transmitter power, transmitter efficiency, receiver sensitivity, power consumption of the communication device, a specific absorption rate (SAR) of energy by a human body, frequency band performance parameters, and so on.
From the foregoing descriptions, it would be evident to an artisan with ordinary skill in the art that the aforementioned embodiments can be modified, reduced, or enhanced without departing from the scope and spirit of the claims described below. A number of the embodiments described above, include a closed loop iterative system for steering the antenna and/or tuning the matching network. However, the present disclosure also contemplates utilizing an open loop system for steering the antenna and/or tuning the matching network which can include one or more of the steps described herein and/or utilize one or more of the components described herein. Methods 400 and/or 500 can be applied to innumerable combinations of use cases, bands, sub-channels of bands, and other performance parameters which have not been addressed in the present disclosure. These undisclosed combinations are contemplated by the present disclosure.
In one exemplary embodiment, the steering of the antenna can be optimized or otherwise adjusted for low SAR and maximizing or improving the link to a basestation, such as based on monitoring an antenna impedance and/or using a closed loop process. The exemplary embodiment can also further optimize or otherwise adjust antenna impedance match, using either or both of an open loop tuning methodology or a closed loop tuning methodology. The exemplary embodiments can utilize various components and combinations of components to perform antenna steering and/or impedance matching. The present disclosure also contemplates utilizing one or more techniques and/or components described herein with respect to the exemplary embodiments with other methods and/or components for RF tuning and/or antenna steering that are not described herein.
In one exemplary embodiment, the system can perform a number of iterations of the adjusting of the steerable antenna to satisfy an impedance threshold. However, the steerable antenna may not reach the threshold. An iteration threshold can be established. For example, a closed loop impedance matching process can be implemented when the number of iterations for adjusting the steerable antenna exceeds a pre-determined value. In one embodiment, the closed loop impedance matching process can utilize a last known antenna steering position when the pre-determined value was exceeded.
Other suitable modifications can be applied to the present disclosure. Accordingly, the reader is directed to the claims for a fuller understanding of the breadth and scope of the present disclosure.
The machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet PC, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. It will be understood that a device of the present disclosure includes broadly any electronic device that provides voice, video or data communication. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
The computer system 1100 may include a processor 1102 (e.g., a central processing unit (CPU), a graphics processing unit (GPU, or both), a main memory 1104 and a static memory 1106, which communicate with each other via a bus 1108. The computer system 1100 may further include a video display unit 1110 (e.g., a liquid crystal display (LCD), a flat panel, a solid state display, or a cathode ray tube (CRT)). The computer system 1100 may include an input device 1112 (e.g., a keyboard), a cursor control device 1114 (e.g., a mouse), a disk drive unit 1116, a signal generation device 1118 (e.g., a speaker or remote control) and a network interface device 1120.
The disk drive unit 1116 may include a machine-readable medium 1122 on which is stored one or more sets of instructions (e.g., software 1124) embodying any one or more of the methodologies or functions described herein, including those methods illustrated above. The instructions 1124 may also reside, completely or at least partially, within the main memory 1104, the static memory 1106, and/or within the processor 1102 during execution thereof by the computer system 1100. The main memory 1104 and the processor 1102 also may constitute machine-readable media.
Dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement the methods described herein. Applications that may include the apparatus and systems of various embodiments broadly include a variety of electronic and computer systems. Some embodiments implement functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the example system is applicable to software, firmware, and hardware implementations.
In accordance with various embodiments of the present disclosure, the methods described herein are intended for operation as software programs running on a computer processor. Furthermore, software implementations can include, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
The present disclosure contemplates a machine readable medium containing instructions 1124, or that which receives and executes instructions 1124 from a propagated signal so that a device connected to a network environment 1126 can send or receive voice, video or data, and to communicate over the network 1126 using the instructions 1124. The instructions 1124 may further be transmitted or received over a network 1126 via the network interface device 1120.
While the machine-readable medium 1122 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.
The term “machine-readable medium” shall accordingly be taken to include, but not be limited to: solid-state memories such as a memory card or other package that houses one or more read-only (non-volatile) memories, random access memories, or other re-writable (volatile) memories; magneto-optical or optical medium such as a disk or tape; and/or a digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. Accordingly, the disclosure is considered to include any one or more of a machine-readable medium or a distribution medium, as listed herein and including art-recognized equivalents and successor media, in which the software implementations herein are stored.
Although the present specification describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Each of the standards for Internet and other packet switched network transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) represent examples of the state of the art. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same functions are considered equivalents.
The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Figures are also merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
The Abstract of the Disclosure is provided that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
2745067 | True | May 1956 | A |
3117279 | Ludvigson | Jan 1964 | A |
3160832 | Beitman | Dec 1964 | A |
3390337 | Beitman | Jun 1968 | A |
3443231 | Roza | May 1969 | A |
3509500 | McNair | Apr 1970 | A |
3571716 | Hill | Mar 1971 | A |
3590385 | Sabo | Jun 1971 | A |
3601717 | Kuecken | Aug 1971 | A |
3794941 | Templin | Feb 1974 | A |
3919644 | Smolka | Nov 1975 | A |
3990024 | Hou | Nov 1976 | A |
3995237 | Brunner | Nov 1976 | A |
4186359 | Kaegebein | Jan 1980 | A |
4201960 | Skutta | May 1980 | A |
4227256 | O'Keefe | Oct 1980 | A |
4383441 | Willis | May 1983 | A |
4476578 | Gaudin | Oct 1984 | A |
4493112 | Bruene | Jan 1985 | A |
4777490 | Sharma | Oct 1988 | A |
4799066 | Deacon | Jan 1989 | A |
4965607 | Wilkins | Oct 1990 | A |
4980656 | Duffalo | Dec 1990 | A |
5032805 | Elmer | Jul 1991 | A |
5142255 | Chang | Aug 1992 | A |
5177670 | Shinohara | Jan 1993 | A |
5195045 | Keane | Mar 1993 | A |
5200826 | Seong | Apr 1993 | A |
5212463 | Babbitt | May 1993 | A |
5243358 | Sanford | Sep 1993 | A |
5258728 | Taniyoshi | Nov 1993 | A |
5276912 | Siwiak | Jan 1994 | A |
5301358 | Gaskill | Apr 1994 | A |
5307033 | Koscica | Apr 1994 | A |
5310358 | Johnson | May 1994 | A |
5312790 | Sengupta | May 1994 | A |
5334958 | Babbitt | Aug 1994 | A |
5371473 | Trinh | Dec 1994 | A |
5409889 | Das | Apr 1995 | A |
5427988 | Sengupta | Jun 1995 | A |
5430417 | Martin | Jul 1995 | A |
5446447 | Carney | Aug 1995 | A |
5448252 | Ali | Sep 1995 | A |
5451567 | Das | Sep 1995 | A |
5451914 | Stengel | Sep 1995 | A |
5457394 | McEwan | Oct 1995 | A |
5472935 | Yandrofski | Dec 1995 | A |
5479139 | Koscica | Dec 1995 | A |
5486491 | Sengupta | Jan 1996 | A |
5496795 | Das | Mar 1996 | A |
5502372 | Quan | Mar 1996 | A |
5524281 | Bradley | Jun 1996 | A |
5548837 | Hess et al. | Aug 1996 | A |
5561407 | Koscica | Oct 1996 | A |
5564086 | Cygan | Oct 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5593495 | Masuda | Jan 1997 | A |
5635433 | Sengupta | Jun 1997 | A |
5635434 | Sengupta | Jun 1997 | A |
5640042 | Koscica | Jun 1997 | A |
5679624 | Das | Oct 1997 | A |
5689219 | Piirainen | Nov 1997 | A |
5693429 | Sengupta | Dec 1997 | A |
5694134 | Barnes | Dec 1997 | A |
5699071 | Urakami | Dec 1997 | A |
5766697 | Sengupta | Jun 1998 | A |
5777581 | Lilly | Jul 1998 | A |
5778308 | Sroka | Jul 1998 | A |
5786727 | Sigmon | Jul 1998 | A |
5812572 | King | Sep 1998 | A |
5812943 | Suzuki | Sep 1998 | A |
5830591 | Sengupta | Nov 1998 | A |
5846893 | Sengupta | Dec 1998 | A |
5874926 | Tsuru | Feb 1999 | A |
5880635 | Satoh | Mar 1999 | A |
5886867 | Chivukula | Mar 1999 | A |
5892482 | Coleman et al. | Apr 1999 | A |
5929717 | Richardson | Jul 1999 | A |
5963871 | Zhinong | Oct 1999 | A |
5969582 | Boesch | Oct 1999 | A |
5990766 | Zhang | Nov 1999 | A |
6009124 | Smith | Dec 1999 | A |
6020787 | Kim | Feb 2000 | A |
6020795 | Kim | Feb 2000 | A |
6029075 | Das | Feb 2000 | A |
6045932 | Jia | Apr 2000 | A |
6061025 | Jackson | May 2000 | A |
6074971 | Chiu | Jun 2000 | A |
6096127 | Dimos | Aug 2000 | A |
6100733 | Dortu | Aug 2000 | A |
6101102 | Brand | Aug 2000 | A |
6115585 | Matero | Sep 2000 | A |
6133883 | Munson | Oct 2000 | A |
6172385 | Duncombe | Jan 2001 | B1 |
6215644 | Dhuler | Apr 2001 | B1 |
6281847 | Lee | Aug 2001 | B1 |
6343208 | Ying | Jan 2002 | B1 |
6377142 | Chiu | Apr 2002 | B1 |
6377217 | Zhu | Apr 2002 | B1 |
6377440 | Zhu | Apr 2002 | B1 |
6384785 | Kamogawa | May 2002 | B1 |
6404614 | Zhu | Jun 2002 | B1 |
6408190 | Ying | Jun 2002 | B1 |
6414562 | Bouisse | Jul 2002 | B1 |
6415562 | Donaghue | Jul 2002 | B1 |
6452776 | Chakravorty | Sep 2002 | B1 |
6461930 | Akram | Oct 2002 | B2 |
6466774 | Okabe | Oct 2002 | B1 |
6492883 | Liang | Dec 2002 | B2 |
6514895 | Chiu | Feb 2003 | B1 |
6525630 | Zhu | Feb 2003 | B1 |
6531936 | Chiu | Mar 2003 | B1 |
6535076 | Partridge | Mar 2003 | B2 |
6535722 | Rosen | Mar 2003 | B1 |
6538603 | Chen | Mar 2003 | B1 |
6556102 | Sengupta | Apr 2003 | B1 |
6556814 | Klomsdorf | Apr 2003 | B1 |
6570462 | Edmonson | May 2003 | B2 |
6590468 | du Toit et al. | Jul 2003 | B2 |
6590541 | Schultze | Jul 2003 | B1 |
6597265 | Liang | Jul 2003 | B2 |
6608603 | Alexopoulos | Aug 2003 | B2 |
6624786 | Boyle | Sep 2003 | B2 |
6640085 | Chatzipetros | Oct 2003 | B1 |
6657595 | Phillips et al. | Dec 2003 | B1 |
6661638 | Jackson et al. | Dec 2003 | B2 |
6670256 | Yang | Dec 2003 | B2 |
6710651 | Forrester | Mar 2004 | B2 |
6724611 | Mosley | Apr 2004 | B1 |
6724890 | Bareis | Apr 2004 | B1 |
6737179 | Sengupta | May 2004 | B2 |
6759918 | Du Toit | Jul 2004 | B2 |
6765540 | Toncich | Jul 2004 | B2 |
6768472 | Alexopoulos | Jul 2004 | B2 |
6774077 | Sengupta | Aug 2004 | B2 |
6795712 | Vakilian | Sep 2004 | B1 |
6825818 | Toncich | Nov 2004 | B2 |
6839028 | Lee | Jan 2005 | B2 |
6845126 | Dent | Jan 2005 | B2 |
6859104 | Toncich | Feb 2005 | B2 |
6862432 | Kim | Mar 2005 | B1 |
6864757 | Du Toit | Mar 2005 | B2 |
6868260 | Jagielski | Mar 2005 | B2 |
6888714 | Shaw | May 2005 | B2 |
6905989 | Ellis | Jun 2005 | B2 |
6907234 | Karr | Jun 2005 | B2 |
6920315 | Wilcox | Jul 2005 | B1 |
6943078 | Zheng | Sep 2005 | B1 |
6946847 | Nishimori | Sep 2005 | B2 |
6949442 | Barth | Sep 2005 | B2 |
6961368 | Dent | Nov 2005 | B2 |
6964296 | Memory | Nov 2005 | B2 |
6965837 | Vintola | Nov 2005 | B2 |
6993297 | Smith | Jan 2006 | B2 |
7009455 | Toncich | Mar 2006 | B2 |
7071776 | Forrester | Jul 2006 | B2 |
7106715 | Kelton | Sep 2006 | B1 |
7107033 | D du Toit | Sep 2006 | B2 |
7113614 | Rhoads | Sep 2006 | B2 |
7151411 | Martin | Dec 2006 | B2 |
7176634 | Kitamura | Feb 2007 | B2 |
7176845 | Fabrega-Sanchez | Feb 2007 | B2 |
7180467 | Fabrega-Sanchez | Feb 2007 | B2 |
7221327 | Toncich | May 2007 | B2 |
7298329 | Diament | Nov 2007 | B2 |
7312118 | Kiyotoshi | Dec 2007 | B2 |
7332980 | Zhu | Feb 2008 | B2 |
7332981 | Matsuno | Feb 2008 | B2 |
7339527 | Sager | Mar 2008 | B2 |
7426373 | Clingman | Sep 2008 | B2 |
7427949 | Channabasappa et al. | Sep 2008 | B2 |
7453405 | Nishikido et al. | Nov 2008 | B2 |
7468638 | Tsai | Dec 2008 | B1 |
7535080 | Zeng et al. | May 2009 | B2 |
7535312 | McKinzie | May 2009 | B2 |
7539527 | Jang | May 2009 | B2 |
7596357 | Nakamata | Sep 2009 | B2 |
7633355 | Matsuo | Dec 2009 | B2 |
7667663 | Hsiao | Feb 2010 | B2 |
7705692 | Fukamachi et al. | Apr 2010 | B2 |
7711337 | McKinzie | May 2010 | B2 |
7714678 | du Toit | May 2010 | B2 |
7728693 | du Toit | Jun 2010 | B2 |
7768400 | Lawrence et al. | Aug 2010 | B2 |
7786819 | Ella | Aug 2010 | B2 |
7795990 | du Toit | Sep 2010 | B2 |
7852170 | McKinzie | Dec 2010 | B2 |
7865154 | Mendolia | Jan 2011 | B2 |
7907094 | Kakitsu et al. | Mar 2011 | B2 |
7917104 | Manssen et al. | Mar 2011 | B2 |
7969257 | du Toit | Jun 2011 | B2 |
7991363 | Greene | Aug 2011 | B2 |
8112043 | Knudsen et al. | Feb 2012 | B2 |
8170510 | Knudsen et al. | May 2012 | B2 |
8190109 | Ali et al. | May 2012 | B2 |
8217732 | McKinzie | Jul 2012 | B2 |
8299867 | McKinzie | Oct 2012 | B2 |
8320850 | Khlat | Nov 2012 | B1 |
8442457 | Harel et al. | May 2013 | B2 |
20020008672 | Gothard et al. | Jan 2002 | A1 |
20020030566 | Bozler | Mar 2002 | A1 |
20020109642 | Gee et al. | Aug 2002 | A1 |
20020118075 | Ohwada | Aug 2002 | A1 |
20020145483 | Bouisse | Oct 2002 | A1 |
20020167963 | Joa-Ng | Nov 2002 | A1 |
20020187780 | Souissi | Dec 2002 | A1 |
20020191703 | Ling et al. | Dec 2002 | A1 |
20020193088 | Jung | Dec 2002 | A1 |
20030060227 | Sekine | Mar 2003 | A1 |
20030071300 | Yashima | Apr 2003 | A1 |
20030114124 | Higuchi | Jun 2003 | A1 |
20030142022 | Ollikainen | Jul 2003 | A1 |
20030193997 | Dent | Oct 2003 | A1 |
20030199286 | D du Toit | Oct 2003 | A1 |
20030210206 | Phillips | Nov 2003 | A1 |
20030232607 | Le Bars | Dec 2003 | A1 |
20040009754 | Smith | Jan 2004 | A1 |
20040090372 | Nallo | May 2004 | A1 |
20040100341 | Luetzelschwab | May 2004 | A1 |
20040127178 | Kuffner | Jul 2004 | A1 |
20040137950 | Bolin | Jul 2004 | A1 |
20040202399 | Kochergin | Oct 2004 | A1 |
20040257293 | Friedrich et al. | Dec 2004 | A1 |
20050007291 | Fabrega-Sanchez | Jan 2005 | A1 |
20050032488 | Pehlke | Feb 2005 | A1 |
20050032541 | Wang | Feb 2005 | A1 |
20050042994 | Otaka | Feb 2005 | A1 |
20050059362 | Kalajo | Mar 2005 | A1 |
20050082636 | Yashima | Apr 2005 | A1 |
20050085204 | Poilasne et al. | Apr 2005 | A1 |
20050093624 | Forrester et al. | May 2005 | A1 |
20050130608 | Forse | Jun 2005 | A1 |
20050130699 | Kim | Jun 2005 | A1 |
20050208960 | Hassan | Sep 2005 | A1 |
20050215204 | Wallace | Sep 2005 | A1 |
20050264455 | Talvitie | Dec 2005 | A1 |
20050282503 | Onno | Dec 2005 | A1 |
20060003537 | Sinha | Jan 2006 | A1 |
20060009165 | Alles | Jan 2006 | A1 |
20060160501 | Mendolia | Jul 2006 | A1 |
20060183433 | Mori | Aug 2006 | A1 |
20060183442 | Chang et al. | Aug 2006 | A1 |
20060205368 | Bustamante | Sep 2006 | A1 |
20060281423 | Caimi et al. | Dec 2006 | A1 |
20070013483 | Stewart | Jan 2007 | A1 |
20070035458 | Ohba | Feb 2007 | A1 |
20070042725 | Poilasne | Feb 2007 | A1 |
20070042734 | Ryu | Feb 2007 | A1 |
20070080888 | Mohamadi | Apr 2007 | A1 |
20070082611 | Terranova et al. | Apr 2007 | A1 |
20070085609 | Itkin | Apr 2007 | A1 |
20070142014 | Wilcox | Jun 2007 | A1 |
20070149146 | Hwang | Jun 2007 | A1 |
20070182636 | Carlson | Aug 2007 | A1 |
20070184825 | Lim et al. | Aug 2007 | A1 |
20070194859 | Brobston | Aug 2007 | A1 |
20070197180 | McKinzie et al. | Aug 2007 | A1 |
20070200766 | McKinzie | Aug 2007 | A1 |
20070285326 | McKinzie | Dec 2007 | A1 |
20070293176 | Yu | Dec 2007 | A1 |
20080007478 | Jung | Jan 2008 | A1 |
20080018541 | Pang | Jan 2008 | A1 |
20080055016 | Morris, III et al. | Mar 2008 | A1 |
20080081670 | Rofougaran | Apr 2008 | A1 |
20080106350 | McKinzie | May 2008 | A1 |
20080122553 | McKinzie | May 2008 | A1 |
20080122723 | Rofougaran | May 2008 | A1 |
20080129612 | Wang | Jun 2008 | A1 |
20080158076 | Walley | Jul 2008 | A1 |
20080261544 | Blin | Oct 2008 | A1 |
20080274706 | Blin | Nov 2008 | A1 |
20080300027 | Dou et al. | Dec 2008 | A1 |
20080305749 | Ben-Bassat | Dec 2008 | A1 |
20090002077 | Rohani et al. | Jan 2009 | A1 |
20090027286 | Ohishi | Jan 2009 | A1 |
20090082017 | Chang et al. | Mar 2009 | A1 |
20090109880 | Kim | Apr 2009 | A1 |
20090121963 | Greene | May 2009 | A1 |
20090149136 | Rofougaran | Jun 2009 | A1 |
20090180403 | Tudosoiu | Jul 2009 | A1 |
20090215446 | Hapsari et al. | Aug 2009 | A1 |
20090231220 | Zhang et al. | Sep 2009 | A1 |
20090253385 | Dent et al. | Oct 2009 | A1 |
20090264065 | Song | Oct 2009 | A1 |
20090278685 | Potyrailo | Nov 2009 | A1 |
20090323582 | Proctor et al. | Dec 2009 | A1 |
20100041348 | Wilcox et al. | Feb 2010 | A1 |
20100053009 | Rofougaran | Mar 2010 | A1 |
20100073103 | Spears et al. | Mar 2010 | A1 |
20100085260 | McKinzie | Apr 2010 | A1 |
20100105425 | Asokan | Apr 2010 | A1 |
20100156552 | McKinzie | Jun 2010 | A1 |
20100232474 | Rofougaran et al. | Sep 2010 | A1 |
20100285836 | Horihata et al. | Nov 2010 | A1 |
20100302106 | Knudsen et al. | Dec 2010 | A1 |
20100304688 | Knudsen | Dec 2010 | A1 |
20110012790 | Badaruzzaman | Jan 2011 | A1 |
20110086630 | Manssen | Apr 2011 | A1 |
20110102290 | Milosavljevic | May 2011 | A1 |
20110105023 | Scheer et al. | May 2011 | A1 |
20110121079 | Lawrence et al. | May 2011 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20110183628 | Baker | Jul 2011 | A1 |
20110183633 | Ohba et al. | Jul 2011 | A1 |
20110256857 | Chen et al. | Oct 2011 | A1 |
20110281532 | Shin et al. | Nov 2011 | A1 |
20110299438 | Mikhemar et al. | Dec 2011 | A1 |
20120075159 | Chang | Mar 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120243579 | Premakanthan et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
19614655 | Oct 1997 | DE |
102008050743 | Apr 2010 | DE |
0685936 | Jun 1995 | EP |
0909024 | Apr 1999 | EP |
1079296 | Feb 2001 | EP |
1137192 | Sep 2001 | EP |
1298810 | Apr 2006 | EP |
2328233 | Jun 2011 | EP |
03276901 | Mar 1990 | JP |
9321526 | Dec 1997 | JP |
10209722 | Aug 1998 | JP |
100645526 | Nov 2006 | KR |
10-0740177 | Jul 2007 | KR |
0171846 | Sep 2001 | WO |
2006031170 | Mar 2006 | WO |
2008030165 | Mar 2008 | WO |
WO-2009064968 | May 2009 | WO |
2009155966 | Dec 2009 | WO |
WO-2011044592 | Apr 2011 | WO |
2011084716 | Jul 2011 | WO |
WO-2011133657 | Oct 2011 | WO |
WO-2011028453 | Oct 2011 | WO |
2012085932 | Jun 2012 | WO |
Entry |
---|
Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/056413, Jul. 27, 2011. |
Bezooijen, A. et al., “A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches”, IEEE Journal of Solid-State Circuits, vol. 43, No. 10, Oct. 2008, 2259-2268. |
Payandehjoo, Kasra , “Novel Techniques for Coupling Reduction in Multi-Antenna Hand-held Devices”, IEEE Student Member, 1-8. |
Petit, Laurent , “MEMS-Switched Parasitic-Antenna Array for Radiation Pattern Diversity”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 9, Sep. 2009, 2624-2631. |
Zuo, S. , “Eigenmode Decoupling for Mimo Loop-Antenna Based on 180 Coupler”, Progress in Electromagnetics Research Letters, vol. 26, 2011, 11-20. |
Hyun, S. , “Effects of strain on the dielectric properties of tunable dielectric SrTi03 thin films”, Applied Physics Letters, 2004 American Institute of Physics. |
Ida, I. et al., “An Adaptive Impedence Matching System and Its Application to Mobile Antennas”, TENCON 2004, IEEE Region 10 Conference, See Abstract ad p. 544, Nov. 21-24, 2004, 543-547. |
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, International Applicaton No. PCT/US2010/046241, Mar. 2, 2011. |
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, PCT Application No. PCT/US08/005085, Jul. 2, 2008. |
Pervez, N.K. , “High Tunability barium strontium titanate thin films for RF circuit applications”, Applied Physics Letters, 2004 American Institute of Physics. |
Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive COMA Transceivers”, IEEE, 2005. |
Qiao, et al., “Measurement of Antenna Load Impedance for power Amplifiers”, The Department of Electrical and Computer Engineering, University of California, San Diego, Sep. 13, 2004. |
Stemmer, Susanne , “Low-loss tunable capacitors fabricated directly on gold bottom electrodes”, University of California Postprints 2006. |
Taylor, T.R. , “Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films”, Applied Physics Letters, 2002 American Institute of Physics. |
Tombak, Ali , Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications. IEEE Microwave and Wireles Components Letters, vol. 12, Jan. 2002. |
Xu, Hongtao , “Tunable Microwave Integrated Circuits using BST Thin Film Capacitors with Device”, Integrated Ferroelectrics, Department of Electrical Engineering and Computer Engineering, University of California, 2005. |
Huang, Libo et al., “Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications”, IEEE, 09/07/205, 13-17. |
Patent Cooperation Treaty, “International Search Report and Written Opinion”, Nov. 16, 2011, International Application No. PCT/US/2011/038543. |
Du Toit, , “Tunable Microwave Devices with Auto Adjusting Matching Circuit”, U.S. Appl. No. 13/302,617, filed Nov. 22, 2011. |
Du Toit, , “Tunable Microwave Devices with Auto-Adjusting Matching Circuit”, U.S. Appl. No. 13/302,649, filed Nov. 22, 2011. |
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,463, filed May 16, 2011. |
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,589, filed May 16, 2011. |
Hoirup, , “Method and Apparatus for Radio Antenna Frequency Tuning”, U.S. Appl. No. 13/030,177, filed Feb. 18, 2011. |
Mansse, , “Method and Apparatus for Managing Interference in a Communication Device”, U.S. Appl. No. 61/326,206, filed Apr. 20, 2010. |
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 12/941,972, filed Nov. 8, 2010. |
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 13/005,122, filed Jan. 12, 2011. |
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,544, filed Nov. 10, 2011. |
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,550, filed Nov. 10, 2011. |
McKinzie, , “Method and Apparatus for Adaptive Impedance Matching”, U.S. Appl. No. 13/217,748, filed Aug. 25, 2011. |
Mendolia, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/035,417, filed Feb. 25, 2011. |
Paratek Microwave, Inc., “Method and Appartus for Tuning Antennas in a Communication Device”, International Application No. PCT/US11/59620; Filed Nov. 7, 2011. |
Spears, , “Methods for Tuning an Adaptive Impedance Matching Network with a Look-Up Table”, U.S. Appl. No. 13/297,951, filed Nov. 16, 2011. |
Number | Date | Country | |
---|---|---|---|
20120220243 A1 | Aug 2012 | US |