The instant invention is in the field of gas analysis, such as combustion gas analysis, and more specifically the instant invention is in the field of tunable diode laser spectroscopic analysis of a gas. A tunable diode laser emits near monochromatic light of a wavelength that is dependent on the current fed to the diode. Tunable diode laser spectroscopic analysis of combustion gases is known and described in the prior art, for example, by: Lackner et al., Thermal Science, V.6, p13-27, 2002; Allen, Measurement Science and Technology, V.9, p 545-562, 1998; Nikkary et al., Applied Optics, V.41(3), p 446-452, 2002; Upschulte et al., Applied Optics, V.38(9), p 1506-1512, 1999; Mihalcea et al., Measurement Science and Technology, V.9, p 327-338, 1998; Webber et al., Proceedings of the Combustion Institute, V.28, p 407-413, 2000; Ebert et al., Proceedings of the Combustion Institute, V.30, p 1611-1618, 2005; Nagali et al., Applied Optics, V.35(21), p 4027-4032, 1996; and U.S. Pat. Nos. 7,248,755 7,244936 and 7,217,121.
U.S. Patent Application Publication 2010-0028819 and www.yokogawa.com/us/ia/analytical/tdls200 describe the TruePeak® TDLS200 tunable diode laser spectroscopy analyzer from Yokogawa Corporation of America.
The laser beam 41 is passed through the combustion gas of the furnace and then through dual process isolation windows 33 to a near infrared light detector 38. The windows 33 are mounted in a pipe flange 39. The space between the windows 33 is preferably purged with nitrogen. The flange 39 is mounted through the wall of the furnace. Alignment plate 34 and adjustment rods 35 allow alignment of the detector optics with the laser beam 41. Detector electronics 36 are in electrical communication with the control unit 31 by way of cable 37a. The control unit 31 is also in electrical communication (by way of electrical cables 38a) with a process control system 32 for controlling the furnace 10.
The above described system of the '819 publication is broadly applicable to the analysis of any gas and operates by measuring the amount of laser light at specific wavelengths, which light is absorbed (lost) as it travels through the gas. For example, when the gas is combustion gas, carbon monoxide, gaseous water and hydrocarbons each have a spectral absorption of infrared light that exhibits unique fine structure. The individual features of the spectra are seen at the high resolution of the tunable diode laser.
The system described above is commercially successful and is used, for example, to optimize the operation of furnaces in oil refineries. However, problems remain with such systems. For example, the precise wavelength of the diode at a specific precise current fed to the diode and the slope of wavelength from the diode v. current fed to the diode can drift in time and with temperature, thereby complicating system calibration. Ideally, all diodes of a given specification would emit the same wavelength at the same current and would have the same slope of wavelength v. current. In practice they differ somewhat when new and drift as they age.
U.S. Pat. No. 5,572,031 discloses a tunable diode laser oxygen analyzer employing a reference cell containing oxygen to calibrate the analyzer and to lock the tunable diode laser to a specific oxygen absorption line. U.S. Pat. No. 7,586,613 discloses a tunable diode laser analyzer employing a separate two point calibration (preferably by determining the absorption maxima of two adjacent lines of a calibration gas) including the determination of calibration gas concentration thereby permitting not only the line locking function for two absorption lines but also offset and gain correction over time as the system ages. Despite the advance in the above-mention prior art, it would be an important advance in the art if a two point calibration system were developed that did not require a separate calibration or the determination of the concentration of the calibration gas.
The instant invention is a solution to the above-mentioned problem. The instant invention is a method for two point calibration of a tunable diode laser (TDL) spectrometer for the specific wavelength of light from the TDL v. the specific current fed to the TDL, for the slope of wavelength of light from the TDL v. the current fed to the TDL, to correct for any drifting of the wavelength of light from the TDL v. the specific current fed to the TDL and for any drifting of the slope of wavelength of light from the TDL v. the current fed to the TDL as the TDL ages and/or as the temperature of the TDL varies, characterized by the steps of: (a) directing a first portion of the light from the TDL through a known gas to a first light detector as the current fed to the TDL is varied so that current values are determined for at least two known absorption peaks of the known gas; (b) while concurrently directing a second portion of the light from the TDL through a gas to be analyzed to a second light detector.
In another embodiment, the instant invention is a laser module for use in a TDL analyzer, the module defining a cavity therein across which cavity light from a TDL is directed to collimation optics for collimating the light from the module, characterized by a gas reference cell positioned at least partially in the cavity so that a portion of the light from the TDL is directed through a gas in the gas reference cell to a light detector.
In yet another embodiment, the instant invention is a method for two point calibration of a tunable diode laser (TDL) spectrometer for the specific wavelength of light from the TDL v. the specific current fed to the TDL, for the slope of wavelength of light from the TDL v. the current fed to the TDL, to correct for any drifting of the wavelength of light from the TDL v. the specific current fed to the TDL and for any drifting of the slope of wavelength of light from the TDL v. the current fed to the TDL as the TDL ages and/or as the temperature of the TDL varies, characterized by the step of directing light from the TDL through a known gas and then through a gas to be analyzed to a light detector as the current fed to the TDL is varied so that current values are determined for at least two known absorption peaks of the known gas.
Two point calibration of a tunable diode laser (TDL) spectrometer for the specific wavelength of light from the TDL v. the specific current fed to the TDL, for the slope of wavelength of light from the TDL v. the current fed to the TDL, to correct for any drifting of the wavelength of light from the TDL v. the specific current fed to the TDL and for any drifting of the slope of wavelength of light from the TDL v. the current fed to the TDL as the TDL ages and/or as the temperature of the TDL varies is known as taught, for example, in U.S. Pat. No. 7,586,613. The instant invention is a two point method and apparatus for calibrating a TDL spectrometer. The method of the instant invention is characterized by the steps of: (a) directing a first portion of the light from the TDL through a known gas to a first light detector as the current fed to the TDL is varied so that current values are determined for at least two known absorption peaks of the known gas; (b) while concurrently directing a second portion of the light from the TDL through a gas to be analyzed to a second light detector. In an alternative embodiment, the instant invention is a method for two point calibration of a tunable diode laser (TDL) spectrometer for the specific wavelength of light from the TDL v. the specific current fed to the TDL, for the slope of wavelength of light from the TDL v. the current fed to the TDL, to correct for any drifting of the wavelength of light from the TDL v. the specific current fed to the TDL and for any drifting of the slope of wavelength of light from the TDL v. the current fed to the TDL as the TDL ages and/or as the temperature of the TDL varies, characterized by the step of directing light from the TDL through a known gas and then through a gas to be analyzed to a light detector as the current fed to the TDL is varied so that current values are determined for at least two known absorption peaks of the known gas. The known gas can be positioned in the cavity of a TDL laser module or in a cell positioned in the cavity of a TDL laser module or in a cell positioned in the collimated beam of light emitted from a TDL laser module.
Referring now to
The instant invention is not dependent on the concentration of the component present in the reference cell as long as at least two absorption peaks of the component are detected . The above-mentioned 763.73 and 763.84 nanometer wavelengths for oxygen are for example only. The instant invention is not limited to these absorption peak wavelengths or to the analysis of oxygen. It should also be understood that more that two known absorption peaks can be determined in the method of the instant invention.
Referring now to
Referring now to
A TruePeak® TDLS200 TDL spectroscopy analyzer from Yokogawa Corporation of America is used to determine the percent oxygen in a sample of air known to consist of 22.30% oxygen in nitrogen. The analyzer reports that the sample contains 22.30% oxygen. The span calibration (i.e., the absorption peak position v. the specific current fed to the TDL) of the analyzer then drifts as shown in
The laser module of the analyzer is modified as shown in
While the instant invention has been described above according to its preferred embodiments, it can be modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the instant invention using the general principles disclosed herein. Further, the instant application is intended to cover such departures from the present disclosure as come within the known or customary practice in the art to which this invention pertains and which fall within the limits of the following claim.
This application claims priority to U.S. Provisional Patent Application 61/690,281 filed 22 Jun. 2012 and to U.S. Provisional Patent Application 61/690,271 filed 22 Jun. 2012.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/000150 | 6/17/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61690271 | Jun 2012 | US | |
61690271 | Jun 2012 | US |