This invention relates to sports generally, and in particular, to a method and apparatus to improve the sport of golf by providing for uniquely identifying a prize-winning golf ball which is sunk in a target hole or otherwise lands on a designated target area. The methods described for identifying, for example, a unique hole-in-one golf ball may also be used to identify golf balls that successfully reach other targets areas or holes.
In the sport of golf, hitting a so-called hole-in-one is so rarely accomplished that its attainment elevates the status of the successful player. It is so difficult to achieve that often in professionally organized golf tournaments a hole-in-one earns the successful player a prize, independent of who wins the tournament overall. Such prizes may be very valuable, such as new cars and the like, in which case they are sometimes funded by insurance. That is, the tournament organizers purchase hole-in-one insurance and the insurance company only pays for the prize upon a successful hole-in-one shot. The insurance companies however place conditions on pay out for such prizes, one condition being that the tournament organizers provide spotters at each hole to witness and verify the legitimacy of an insurance claim. In this instance, and in many other instances in playing and practicing golf, the identification, verification and surveillance of prize winning golf balls would be advantageous, and it is an object of the present invention to provide same.
In the prior art, applicant is aware of various attempts to identify and locate golf balls, for example, Canadian Patent No. 2,324,541 which issued to Jolliffe, U.S. Pat. No. 5,423,549 which issued to Englmeier, U.S. Pat. No. 5,447,314 which issued to Yamazaki et al., U.S. Pat. No. 5,626,531 which issued to Little, U.S. Pat. No. 5,743,815 which issued to Helderman, U.S. Pat. No. 5,820,484 which issued to Terry, and U.S. Pat. No. 6,113, 504 which issued to Kuesters.
None of this prior art teaches, and it is an object of the present invention to provide, a golf ball identification system which allows golfers, for example in a driving range, to test their skill at sinking a golf ball in a hole-in-one or other supplied targets areas and to be uniquely identified for prize payouts upon successfully sinking a hole-in-one or hitting one of the other supplied targets.
In one embodiment of the present invention, a computer-controlled system causes a vending machine to distribute one uniquely marked/identified golf ball with, for example, each bucket of balls requested by a golfer. The marked ball is marked or otherwise identified to uniquely identify that golfer. Each golfer may purchase extra marked/identified balls from a centrally located kiosk, for example located on the tee-off floor. A confirmation system allows a central monitoring organization to confirm successful holes-in-one or success at hitting other targets, for example 6 foot diameter targets, or 2 foot diameter targets, through video or other interfaces (which may be digital) and, for example, by use of printing mechanisms to uniquely identify a particular golf ball.
Each system includes a pair of simulated green and cup/target assemblies, each having a video camera mounted on a pole associated with the cup for monitoring the opposite green and cup assembly, and an embedded video camera and/or other sensing means embedded beneath the green and cooperating with the cup for detecting and identifying any golf balls falling into the cup or other target areas. Alternatively, a single simulated green and cup/target assembly may be employed using a video camera positioned at a remote location for monitoring the green and cup assembly.
The object is for golfers to aim golf balls at the green and cup/target assemblies so as to sink one of the uniquely marked/identified balls into the cup or to hit other target areas. The cup video camera and/or other detectors allows for verifying that a ball falling into a cup or landing in a fixed area is a uniquely marked ball, and the video camera monitoring that particular green and cup assembly allows for verification that the ball was in fact likely legitimately shot by a golfer rather than being fraudulently deliberately placed into the cup by a golfer merely walking up to the green and cup assembly. A successful hole-in-one shot or other shot hitting a defined target area using a uniquely marked/identified ball results in a prize being awarded to the golfer.
According to one aspect of the present invention, in one arrangement a green and cup assembly is mounted into a green approximately 120 yards from the tee-off, and a second green and cup assembly is mounted into the green approximately 150 yards from the tee-off. This pair of green and cup assemblies may then cooperate by the pole-mounted video camera on one assembly monitoring the other assembly and vice versa. Because of the additional difficulty in successfully completing a hole-in-one shot on the 150 yard hole, as compared to the 120 yard hole, a larger prize may be awarded for the former as compared to the latter. Other larger target areas will have prizes consistent with the difficulty of hitting the target area.
Video monitoring and other administration of the system may be accomplished remotely from a central monitoring location or organization and may be accomplished as, for example, by use of secured socket layers over the Internet. This may provide for complete administration of all related financial data by the central monitoring organization. Further, such a real-time or live connection will allow the monitoring organization to conduct daily tests of the video and electromechanical devices associated with the green and cup assembly.
In summary, the apparatus for uniquely identifying a hole-in-one and other target golf balls includes in one embodiment, a pair of assemblies mountable into a golf green, or simulating such, spaced apart within a visual surveillance distance of one another. Each assembly of said pair of assemblies comprises a surveillance means, mounted to said assembly, for remote surveillance, by signal transmission to a remote location, of a second said assembly within said visual surveillance distance. Each said assembly also comprises a ball detection and identification means for detecting a golf ball in a cup in said assembly and for inspecting said ball to allow identification of the ball as, firstly, a uniquely marked/identified ball, and, secondly, as a particular uniquely marked/identified ball so as to allow correlation of the particular uniquely marked/identified ball to a corresponding successful golfer. In a related embodiment, a single remote surveillance means monitors a single target and ball detection/ID assembly.
The apparatus of the present invention for uniquely identifying a golf ball at a target includes a simulated golfing green first target area having a hole-in-one aperture therein. A ball collector is mounted under the aperture. A ball identification means cooperates with the ball collector for identifying uniquely identified game balls from non-uniquely identified golf balls and transmits identity information corresponding to each game ball of the game balls to a remote processing station for correlating the identity of a golfer with the identity information. A surveillance means cooperates with the first target area so as to provide for remote monitoring of the first target area. A first signal means is provided for signalling the golfer and a remote monitor when a uniquely identified game ball has entered the aperture. A first sensor means is provided for detecting when a uniquely identified game ball lands on the first target area and for signalling the golfer and a remote monitor upon such detection.
The simulated golfing green may further include at least a second target area which at least partially surrounds the first target area. A second sensor means is provided for detecting when a uniquely identified game ball lands on the second target area and for signalling the golfer and a remote monitor upon such detection. Identity correlation means identifying the game ball and correlating the game ball to a golfer. A ball collector strip may be mounted on the second target area.
The simulated golfing green may further include a landing zone adjacent the target areas and disposed so as to lie between the target areas and the golfer. The simulated golfing green may be inclined upwardly from the horizontal towards the golfer.
A second simulated golfing green may be provided which is substantially identical to the first simulated golfing green. The second golfing green is positioned apart from the first simulated golfing green. A second surveillance means cooperates with the second simulated golfing green. The first surveillance means has a first field of view which includes the second simulated golfing green and wherein the second surveillance means has a second field of view which includes the first simulated golfing green.
The ball identification means may include both radio frequency identification transponders mountable into the uniquely identified game balls and corresponding radio frequency identification sensors mounted into cooperation with the ball collector. The ball identification means may also comprise of or include both a unique color, icon, symbol or other marking applied to the uniquely identified game balls and a color or mark detecting sensor cooperating with the ball collector.
The ball collector may include a conduit leading to a ball manifold. The first target area may include a separate ball collector cooperating with the ball manifold via a second conduit. The first target area ball collector may be an elongate ball collecting trough mounted generally laterally across the first target area. A first ball collecting trough may be mounted laterally across the first target area, and a second ball collecting trough may be mounted laterally across the second target area. Multiple troughs may extend across multiple target zones. The first and second troughs may feed separate conduits which feed into the ball manifold. A ball separator may be mounted in cooperation with the ball manifold so as to detect uniquely identified game balls. Culling means may be provided for culling the game balls from the non-uniquely identified golf balls.
In an alternative embodiment, multiple ball collectors located under the hole-in-one aperture make up a multiple win zone configuration identifying uniquely identified game balls from non-uniquely identified golf balls and transmits identity information corresponding to each game ball of the game balls to a remote processing station for correlating the identity of a golfer with the identity information.
The method of the present invention for uniquely identifying a golf ball at a target includes the steps of:
The method may further include the step of providing at least a second target area which at least partially surrounds the first target area, and providing a second sensor means and detecting by the second sensor means when a uniquely identified game ball lands on the second target area and signalling the golfer and a remote monitor upon the detection, and correlating the identity of the game ball to a golfer.
The method may further include providing a second simulated golfing green substantially identical to the first simulated golfing green and positioning the second simulated golfing green apart from the first simulated golfing green, providing a second surveillance means cooperating with the second simulated golfing green. Aligning the surveillance means so that the first surveillance means has a first field of view which includes the second simulated golfing green and so that the second surveillance means has a second field of view which includes the first simulated golfing green. The second surveillance means monitors the first simulated golfing green and the first surveillance means simultaneously monitors the second simulated golfing green.
The method may also include identifying the game balls by radio frequency identification, and may also include sensing the game balls' colors and selecting game balls from other golf balls based on the color of the ball.
In the method of the present invention the identifying step includes sensing the movement of the ball to be analyzed as it enters into an analysis area of the ball identification means. Provided therein are multiple pairs of optical sensors. A first pair of optical sensors determine that a ball is entering the area. A second pair of optical sensors, spaced downstream, sense that the ball has continued in its downstream motion.
Color or contrast sensors may be provided for sensing the color or contrast of a golf ball to determine whether the golf ball is of a selected color or contrast. The sensor data is processed to remove interference of extraneous markings, so as to provide differentiation data of the color or contrast of a range ball or a game ball. That information is retained, for example in a processor's memory. A third pair of optical sensors are arranged to detect when a golf ball is in an eject location and, based on the differentiation data, eject game balls from a normal range ball flow path.
a is, in enlarged partially cut-away perspective view, a green and cup assembly such as seen in
The following describes a system which avoids the use of complex and difficult to install ball return systems, and the use of complex and expensive ball identification systems such as found in the prior art.
Each system according to the present invention may contain the following elements:
Golf Ball Identification—Golf balls are labeled and/or printed with identification marks on each ball to ensure verification at the cup via video transfer while administering the time and clarity of each purchased marked ball. A number of techniques are described below. One method includes the use of radio frequency identification (RFID) transponders encapsulated within the golf ball.
Green Clearing System—With the addition of the system at a driving range, it is anticipated that a majority of the range balls will be directed to the marked ball greens in preparation for the skills challenge for the winning prize. This creates a situation where the greens will become cluttered with balls making it an unacceptable degree of difficulty to get a hole-in-one. A number of techniques/systems are described below that will clear the green with little or no interference or interruption to the golfer.
Winning Golf Ball Verification—As described further below, golf balls as they enter the green's cup are received and identified as to whether it is a normal range ball or one of the recently dispensed uniquely identifiable marked balls. This information is transmitted to the Point of Sale (POS) Kiosk Terminal where the unique identification can be verified by the dispensing/marking equipment, the local operator and, via the Internet, the equipment provider.
System Administration—A system comprising a computer, software, wireless telemetry techniques, hardware interfaces and the Internet, allow the system operators to monitor all aspects of the system's functionalities, usage, prize allocation and accounting from a remote location.
Green and Cup Assembly—A green and cup assembly allows rapid installation into a green. It is contained in one rugged package including:
In the embodiment a pair of green and cup assemblies, two identical green and cup assemblies are located on the green approximately 75 feet from each other. Each assembly provides for example both the monitoring of its own cup and surveillance of the cup on the other assembly.
The green area assembly is modular so as to improve the ease of installation, repair and replacement of the assembly. The video surveillance cameras, for example, which are mounted on poles on each green and cup assembly, are integrated in the green area assembly so as to obviate the need to mount further video surveillance cameras at other locations on the green, and thus simplifying the transmitter and power requirements of the assemblies. In one preferred embodiment, the video and data transmission from the green and cup assemblies is wireless thereby reducing the requirement of complex wiring. Thus also, each green and cup assembly is self-sufficient, preferably having its own optional solar and/or battery power, a wireless video transmitter, an embedded ball identification camera or other ball identification sensor means, and a ball clearing system.
Golf Ball Identification/Marking—Techniques—Washable paints: balls are imprinted with unique codes that remain on the ball for the duration of play and are removed by the normal washing and scrubbing of the ball prior to reuse.
Chemically altered paint, whereby an imprinted ink is erased by being passed through a chemically treated wash, i.e. acidic, caustic or neutral ph composition (compounds that change color depending on the ph—phenol red, etc).
Substrate plus paint: a dry compound (water soluble) is applied to the ball. The ball is imprinted on the substrate material. The substrate is washed off in a conventional ball wash/scrubber.
Light alterable paint: inks that disappear in the presence of high-intensity and/or coherent light (i.e. ultraviolet, laser light).
Labels: self adhesive labels printed with unique identification codes/marks are applied to the golf ball. Normal washing/scrubbing removes the water-soluble label.
RFID: radio frequency identification transponders are encapsulated within each golf ball.
Green Clearing System—Techniques—Articulated green area assembly: a target green area approximately 16 feet in diameter that moves in such a manner to apply a convexity or slope(s) and/or vibrates thereby causing the balls to move to the outer diameter of the green area.
An integrated wiper arm rotating about the green area center, thereby moving balls by rotation and centrifugal force to the peripheral of the green area.
A robotic device automatically wanders the green area and bumps into balls, thereby moving the balls to the periphery of the green area.
An above ground target platform, sloped so that golf balls automatically clear the target area. Such an above ground target platform may also be provided with an actuator to provide increased slope to the platform at timed intervals, to assist in the clearing of golf balls from the platform.
Winning Golf Ball Verification—Techniques—Range and marked/identified balls captured in the greens area cup/targets are processed by components located in compartments below the target platform. Sensors detect the presence of the captured ball, photograph/read and transmit the identification data record (for example the photo) to the computer system. Photographed marked balls may be identified by the computer as being unique by the optical recognition of the identification code. Where a code can not be reliably identified, the operator of the driving range and/or the system administrator may review the photographic image(s). Images may be viewed locally and via the Internet. In the alternate method, RFID receivers detect the presence and read the unique electronic serial number of the golf ball and transmit the unique serial number identification to the computer system.
POS Vending Kiosk Assembly—An all-in-one vending machine packaging may include:
The system is self-reporting, provides daily usage and accounting information to equipment developer/distributor through its Internet (or local network) connection.
The complete system is self diagnosing, providing the operating status of the system, reporting over the Internet (network) on a scheduled regular basis. Should the system not report as scheduled, corrective action may be initiated.
Thus as illustrated by way of example in
Each green and cup assembly 14 has a large target or green area 16, simulating a golf green, toward which golfers drive their golf balls. Green area 16 surrounds a generally centrally disposed cup 18. A flag pole 20 (or other suitable pole) is mounted in or adjacent to cup 18 so as to provide a rigid vertical support for a surveillance video camera 22 mounted atop flag pole 20. A rigid housing 24 is mounted beneath green target area 16 so as to define a cavity under and around cup 18 of sufficient size to allow mounting therein of an electronics and battery assembly 26, a ball presence sensor 28, a ball identification video camera or RFID detector/reader 30 and a ball collector 32. Moisture entering into housing 24, for example through cup 18, is allowed to drain into drain field 34 beneath housing 24 through drain 36. Green area 16 may be of layered construction comprising a first layer 16a of material simulating a golf green surface, such as, for example Astro Turf™, an underlying layer 16b of an energy absorbing material such as a sheet of porous resilient compound, with a further underlying area 16c of a more rigid material. The layers may be securely bonded together or otherwise fasteners to inhibit slippage. Green area 16 may be inclined generally toward tee boxes 12 at an angle “B” of for example nine degrees downwardly from the horizontal. This presentation towards the tee boxes provides greater visibility for the golfer and also provides for self clearing of for balls landing on green area 16.
A spaced-apart pair of green and cup assemblies 14, for example, spaced apart approximately 30 yards as would be the case where a first green and cup assembly is mounted into the green 120 yards from tee-boxes 12 and a second green and cup assembly is mounted into the green 150 yards from tee-boxes 12, provide for cross-surveillance by video cameras 22 of the opposite green areas 16. The cross-surveillance is illustrated diagrammatically in
Each video camera 22, whether it be video camera 22a or video camera 22b, has associated with it and typically mounted cooperating with its associated video camera, wireless transmitter 42 for communicating the video signal to a remote monitoring station. As an example, transmitters 42 may communicate with terminals 44 by wireless communication via antennae 46. The data or signal may be communicated from terminals 44 to a remote monitor, terminal server 48 or the like as, for example, by transmission over the internet interface illustrated as 50, or otherwise.
As also seen in
Terminal 44 will then provide a ball identification service. Upon payment by the golfer, or otherwise as part of a promotion or playing of the game as may be arranged by the operator of the driving range, a golf ball will be provided or dispensed with a unique identification. Thus a golfer may insert one of his own golf balls 60 into cavity 62 so that, for example, a ball imprinting device 64 incorporating one or more of various identification or marking techniques may uniquely identify ball 60. Alternately, the terminal will dispense a golf ball with an imbedded unique RFID transponder.
Thus a successful golfer will drive ball 60 from tee-box 12 so that in a hole-in-one shot golf ball 60 lands in or otherwise rolls into cup 18. Ball sensor 28 senses the presence of a golf ball in cup 18 and sends a notification signal via transmitter 42 so that an operator may view the video signal from ball identification video camera 30. A memory or storage device may record the video signal for playback. Review of the video signal allows for checking to see whether, firstly, the golf ball in cup 18 is a marked ball 60, and, if it is a marked ball, for recording of the unique identification of that ball so as to correlate the ball to the successful golfer as part of the verification process prior to awarding prize money. Alternatively, camera 30 may cooperate with ball collector 32 for inspection of golf balls falling from cup 18 into the ball collector. Alternatively the ball collector would include a sensor for the detection and identification of a golf ball with a unique RFID transponder. The identification information would be transmitted by transmitter 42.
Target Assemblies—In the alternative embodiment of
The targets may be trapezoidal in shape so as to provide a large landing and play area, for example typically twenty-eight feet wide in the front, twelve feet wide at the rear and approximately twenty-four feet in depth. The first eight feet of the target provides a landing area 102 for golf balls as they continue their approach to the target zones of targets 104, 106 and 108.
The target surfaces may be multiple layered, providing firstly, a synthetic golf green surface, secondly, multiple layers of for example resilient materials sandwiched into a sub layer 105, and, thirdly, a solid platform or base 107. The solid platform is presented to the golfer at a typical inclined angle of nine degrees from the horizontal so that the target is visually better presented to the golfer while providing the ‘self clearing’ feature. A sandwich of resilient materials provides a landing surface that emulates that of a golf green, whereby the energy a golf ball striking the target surface is absorbed, inhibiting the ball from erratic bouncing or otherwise in an abnormal way.
Ball collector strips 110 of varying sizes (for example 16, 9 and 3 feet wide by approximately 4 inches) and a hole-in-one (H-I-O) cup 112 provide multiple ‘win’ zones for the golfer. The strips are releasably mounted so that their ball collector arrangement may be easily changed to provide different target formats.
Ball collector strips 110 may be constructed of metal rods and/or metal profiles separated by approximately 1.25″ to act as ball collector troughs whereby the golf balls span the two rods or metal profiles. The tracks are inclined at approximately 4 degrees so that balls, once they are collected, roll towards the ball sensing and identifying sub systems. The open trough created by the rods or metal profiled tracks allow debris (i.e. leaves, rocks etc.) to fall through. The hole-in-one cup assembly is especially designed to trap golf balls and divert them to the ball sensor and identification sub systems. A combination of rods or metal profile guides as described above, act as the ball guides, while allowing any debris to fall out of the system.
The ball collectors (including the H-I-O cup) are provided with ball sensors (not shown). When a golf ball is sensed, multicolored strobe lights 114 are flashed, indicating to the golfer that a ball has successfully entered the ball collector and whether the ball is a ‘game ball’ (that is, a uniquely identified ball) or a normal range ball. Any ball entering the collector operates a first strobe light (for example amber). Upon internal processing of the received ball and determination that it is a ‘game ball’, another strobe light (for example red) is operated to indicate a ‘win’. The multicolored strobe light is located on the target area in such a way so that it is physically close to the associated target collector/cup. The immediate visual feedback to the golfer provides information regarding the golfer's performance.
An impact sensor and associated multicolored strobe assembly 116 senses the impact of any golf ball landing on the target assembly, whether it enters the ‘win’ target zones or not. This multicolored (for example blue/white) strobe light provides visual feedback to the golfer that the golfer has achieved landing a golf ball anywhere on the target assembly.
Video surveillance cameras 118 are located at the rear of the target assembly looking towards the ‘tee off’ area. A video camera (not shown) located at the ‘tee off’ area is aimed towards the target area. The two cameras provide a full view to the front and rear of the target assembles.
RFID Reading Techniques—These techniques apply to both the Kiosk Ball Dispenser and the Target Receivers. ‘Game’ golf balls (as opposed to range balls) are uniquely identified with embedded conventional RFID tags (transmitters). The golf ball RFID tag is interrogated (read and registered) as the ball is dispensed and also when it is received by one of the target ‘win zone’ collectors. Each RFID tag has a sensitive axis whereby, when oriented perpendicular to the reading antenna coil winding can be readily read by the receiver coil and electronics. There also exists an axis of orientation of the tag where it is least sensitive, when the tags transmitting antenna coil is in axial alignment with the receiving antenna coil and this results in poor reading reliability. The tag is located within a spherically shaped golf ball, therefore there is no control over the orientation of the ball as it rolls though a read antenna coil. This will result in some balls rolling through the coil such that the tag-transmitting axis rotates concentrically (or near to being concentric) with the rolling axis of the ball and therefore will be in its worst possible read orientation as it passes through the receiving antenna coil. In applicant's experience, approximately one percent of the game balls read will result in a ‘non read’ due to this orientation limitation. To reduce this problem the golf ball is motivated to roll through reading antenna coil 121 on a curved path such that it changes its normal path direction by ninety degrees (such as seen in
Kiosk Assembly—Customer Identification Cards are credit card sized RFID tags and are used to identify specific users of the system. The status of the individually provided RFID cards allows the golfer to purchase game credits, which are recorded against his/her account. The Kiosk RFID ball dispenser/reader system is designed such that it also able to read the golfer's user card ID and provide the golfer with dispensed balls as requested. The history of the user's purchases and win activity is maintained within the computer database. This allows the system to record not only purchase/credit and win activity, but also rewards the golfer for loyalty. For example, performance over a period of time could be rewarded with prizes, which increase in value based on usage and performance.
Ball Sorting System—Ball identification means, previously described, which include marking or otherwise identifying normal range balls, do not require any special sorting systems. The RFID identification technique however, has the further requirement of sorting the uniquely RFID identified game balls from the normal range balls so that they may be directed to the Kiosk ball dispensing system. Two systems have been developed based on sensing the embedded RFID tag and a second method based on sensing and sorting by color/contrast of the ball. To provide the least possible interruption to the normal flow of the golf ball collection, ball washing and ball dispensing in the driving range environment, as seen in
Sorting by sensing color of a ball has proven to work at higher rates; rates as high as 15 balls per second have proven to be very reliable by using the following techniques. Firstly, game balls are of a different color than the normal range ball and may be sorted based on their color or contrast irrespective of whether they contain embedded RFID tags or use other identification means. Secondly, sensors are used to sense the movement of the balls out of the ball washer into the ball sorter analysis area. Thirdly, sensors are used to determine whether a ball is of one color/contrast or the other, such means being intelligent enough to ignore random markings of different colors, which may be the case for company logos, whether applied to either the range or game ball. Fourthly, processing means are provided to determine that a ball is precisely in the position needed so that it may be ejected from the normal flow if it is determined to be a game ball.
Sensing techniques include:
A game ball having passed thorough all of the sensors and being determined to be a valid game ball 122 color/contrast is ejected from the normal range ball path by use of a mechanical impulse device such as a solenoid 124. Game balls are either stored until required or may be routed automatically to the Kiosk dispensing hopper.
As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof. Accordingly, the scope of the invention is to be construed in accordance with the substance defined by the following claims.
This application claims priority from U.S. Provisional Patent Application No. 60/301,473 filed Jun. 29, 2001 entitled Method and Apparatus for Uniquely Identifying a Hole-in-One Golf Ball and U.S. Provisional Patent Application No. 60/336,098 filed Dec. 6, 2001 entitled Method and Apparatus for Uniquely Identifying a Golf Ball at a Target.
Number | Name | Date | Kind |
---|---|---|---|
5102140 | Vincent | Apr 1992 | A |
5184824 | Riedinger | Feb 1993 | A |
5370389 | Reising | Dec 1994 | A |
5439224 | Bertoncino | Aug 1995 | A |
5445374 | Clark, Jr. | Aug 1995 | A |
5513841 | Takagi | May 1996 | A |
5582550 | Foley | Dec 1996 | A |
5626531 | Little | May 1997 | A |
5653642 | Bonacorsi | Aug 1997 | A |
5798519 | Vock et al. | Aug 1998 | A |
5860648 | Petermeier et al. | Jan 1999 | A |
6320173 | Vock et al. | Nov 2001 | B1 |
6322455 | Howey | Nov 2001 | B1 |
6569028 | Nichols et al. | May 2003 | B1 |
6607123 | Jollifee et al. | Aug 2003 | B1 |
20010021673 | Cleveland | Sep 2001 | A1 |
20020177490 | Yong et al. | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
2324541 | Sep 1999 | CA |
8112387 | May 1996 | JP |
2002-126149 | May 2002 | JP |
2002-159608 | Jun 2002 | JP |
PCTUS9916496 | Jul 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030004005 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
60336098 | Dec 2001 | US | |
60301473 | Jun 2001 | US |