The present invention relates to optical input device, and more particularly to a method of configuring an optical input device, a configuration device, and a related optical input system.
Typically, a tactile feel over a keyboard depends on individual characteristics of keys on the keyboard. Since there are minor differences between individual structures of the keys, the user may have an inconsistent tactile feel over the whole keyboard. On the other hand, a pressure of a valid press for each key has been determined and configured before leaving in the factory. The user cannot customize the pressure of the valid press for each key according to his/her favor or habit. In view of this, the conventional keyboards still have some shortcomings.
In order to improve existing keyboard products, the present invention provides a configuration device and a related method, which are able to achieve the consistent tactile feel over different keys on the keyboard, and realize customization of tactile responses of the keys.
According to one embodiment of the present invention, a method for operating an optical input system that is adopted to a host is provided. The optical input system includes a plurality of optical input devices, each having a movable unit and a sensing device. The movable unit is arranged to move within a predetermined movement range, and the sensing device being arranged to detect a position within the predetermined movement range at which the movable unit is located to generate a sensed value. The method comprises: receiving, by a driver running on the host, a plurality of sensed values generated by the plurality of optical input device; respectively adjusting an optical setting of the sensing device of each optical input device to obtain an optimal dynamic range of the sensing device of each optical input device; determining a valid input threshold of each optical input device based on the optimal dynamic range; determining, by the driver running on the host, whether a valid press occurs on one of the optical input device based on the sensed value and a valid input threshold corresponding to the one of the optical input device; and performing, by an operating system or an application running on the host, specific operations in response to the valid press. Particularly, the driver running on the host determines at least two valid presses occur on a first optical input device and a second optical input device even if the movable unit of the first input device and the movable unit of the second input device are located at different positions within the predetermined movement range.
According to one embodiment of the present invention, an electronic device is provided. The electronic device comprises an optical input system, a host and a configuration device. The optical input system includes a plurality of optical input devices, each having a movable unit and a sensing device. The movable unit is arranged to move within a predetermined movement range, and the sensing device is arranged to detect a position within the predetermined movement range at which the movable unit is located to generate a sensed value. The host comprises a driver and an application or an operating system. The driver is arranged to receive a plurality of sensed values generated by the plurality of optical input device, and arranged to determine whether a valid press occurs on one of the optical input device based on the sensed value and a valid input threshold corresponding to the one of the optical input device. The application or the operating system is arranged to perform specific operations in response to the valid press. The configuration device comprises: a parameter setting unit, arranged to respectively adjust an optical setting of the sensing device of each optical input device to obtain an optimal dynamic range of the sensing device of each optical input device; and a threshold setting unit, arranged to determine the valid input threshold of each optical input device based on the optimal dynamic range. Particularly, the driver of the host determines at least two valid presses occur on a first optical input device and a second optical input device even if the movable unit of the first input device and the movable unit of the second input device are located at different positions within the predetermined movement range.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the following descriptions and claims to refer to particular system components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not differ in functionality. In the following discussion and in the claims, the terms “include”, “including”, “comprise”, and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” The terms “couple” and “coupled” are intended to mean either an indirect or a direct electrical connection. Thus, if a first device couples to a second device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
According to one embodiment, a configuration device is provided. A possible application of the configuration device is illustrated in
Detailed structure of one of optical input devices 10 is illustrated in
There are two stages in the configuration performed by the configuration device 30 of the present invention. A first stage of the configuration is to adjust optical settings of the sensing device 200 to have the sensing device 200 operated within an optimal dynamic range. The dynamic range of the sensing device 200 is affected by a light intensity of the light source 220 and a light sensitivity of the sensor 210.
When determining the dynamic range, the parameter setting unit 310 in the configuration device 30 needs to configure the light intensity of the light source 220 first. Please refer to the flow regarding configuring the light intensity as illustrated in
After configuring the light intensity of the light source 220 by the above-mentioned flow, the light source 220 will be operated with the obtained optimal light intensity. Afterwards, the parameter setting unit 310 starts to configure the light sensitivity of the sensor 210. The light sensitivity of the sensor 210 represents the sensor 210's sensitivity to the received reflected light. For a fixed light intensity, the higher the light sensitivity, the greater the sensed value LOD_Value will be.
After the light sensitivity and light intensity configuration, the optimal light intensity LED_intensity_optimal of the light source 220 and the light sensitivity LOD_Sensitivity_optimal of the sensor 210 can be set, which leads to the optimal dynamic range of the sensing device 200. Accordingly, the configuration device 30 determines a correspondence between the sensed values LOD_Value and the positions of the movable unit 110 and also determines a valid input threshold LOD_Threshold for identifying user's valid press based on the optimal dynamic range. The threshold setting unit 320 in the configuration device 30 records sensed values LOD_Value that are obtained by the sensor 210 when the movable unit 110 is moved from the release position P_release to the extreme position P_full, thereby obtaining the correspondence. Such correspondence specifies the sensed value upper limit LOD_Value_UB with respect to the movable unit 110 at the extreme position P_full, the sensed value lower limit LOD_Value_LB with respect to the movable unit 110 at the release position P_release, and sensed values LOD_Value with respect to each position between the release position P_release and the extreme position P_full. The above-mentioned correspondence may be similar to the curve illustrated in part (c) of
For guaranteeing each optical input device 10 has same response when being pressed. In a factor test, a jig is used to press each optical input device 10 with identical pressure. That is, each movable unit 110 of the optical input devices 10 are moved to a same position (e.g. the position P_default). Then, the threshold setting unit 320 sets the sensed values LOD_Value that are respectively read from each optical input device 10 (; these values may not be identical because the optical input devices 10 may have difference in their characteristics/structures) to be the valid input threshold LOD_Threshold for each optical input device 10. Accordingly, the driver 22 or the control unit 11 of the optical input system 1 is configured with the valid input threshold LOD_Threshold. Alternatively, the threshold setting unit 320 may refer to the correspondence of each optical input device 10 to derive a sensed value LOD_Value for each movable unit 110 at the same position P_default and accordingly configures the valid input threshold LOD_Threshold with the sensed value LOD_Value derived from the correspondence of each optical input device 10. In such case, the threshold setting unit 320 does not need to read sensed values LOD_Value generated by the sensors 210 and the jig can be omitted. Instead, a specific press distance is directly selected to achieve the consistency of the tactile responses of the optical input devices 10.
Furthermore, the configuration device 30 may provide a configuration interface for the user (in conjunction with operations performed by the host 20) for setting the valid input threshold LOD_Threshold. The configuration interface may notify the user to press one or more movable unit 110 with user's habitual pressure, such as, to the position P_user. Accordingly, the threshold setting unit 320 sets the sensed value LOD_Value that is currently read to be the valid input threshold LOD_Threshold and accordingly configures the driver 22 or the control unit 11 of the optical input system 1.
In addition to the user's actual press to determine the valid press threshold, the present invention also provides a smart configuration. That is, the threshold setting unit 320 can divide the correspondence of each optical input device 10 into multiple steps. By providing a configuration interface (in conjunction with operations performed by the host 20) to the user, the user is asked to select one of multiple pressure levels (from heavy to light). According to user's selected pressure level, the threshold setting unit 320 finds out a corresponding step and a corresponding sensed value LOD_Value for each optical input device 10, thereby to determine the valid input threshold LOD_Threshold and configure the driver 22 or the control unit 11 of the optical input system 1.
In addition to above-mentioned ways, the present invention can also configure the optical input device in a machine learning way. That is, the threshold setting unit 320 records positions that one or more movable unit 110 have ever located in the user's daily uses, thereby finding out user's habitual pressure. The threshold setting unit 320, based on an average value, a maximum value and/or a minimum value of the recorded positions, to determine a proper sensed value LOD_Value (by referring to the correspondence). Accordingly, the previously determined valid input threshold LOD_Threshold could be replaced or fixed. Such way can satisfy user's habitual pressure more precisely.
Please refer to
When the optical input system 1 is a keyboard and the optical input device 10 are keys on the keyboard. The configuration can be performed in a batch way to improve the efficiency. As illustrated by
In conclusion, the present invention adjusts the optical setting for the sensing device to obtain the optimal dynamic range for each optical input device. As such, the consistent tactile feel can be realized (; if some optical input devices have more differences in their structures than others, these optical input devices may have different dynamic ranges, which makes it difficult to achieve the consistent tactile feel. For example, the intended press distance does not fall within the dynamic range of these optical input devices, and the tactile responses of these optical input devices will be quite different from others). Furthermore, the present invention also provides various ways of configuring the valid input threshold. For example, the configuration for the consistent tactile feel, the configuration for providing user customization, the configuration for learning user's habit, and the batch configuration. All these different configurations can effectively improve the user experience.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an implementation. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment. Thus, although embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that claimed subject matter may not be limited to the specific features or acts described. Rather, the specific features and acts are disclosed as sample forms of implementing the claimed subject matter.
An embodiment of the invention may include functionality that may be implemented as software executed by a processor, hardware circuits or structures, or a combination of both. The processor may be a general-purpose or dedicated processor. The software may comprise programming logic, instructions or data to implement certain functionality for an embodiment of the invention. The software may be stored in a medium accessible by a machine or computer-readable medium, such as read-only memory (ROM), random-access memory (RAM), magnetic disk (e.g., floppy disk and hard drive), optical disk (e.g., CD-ROM) or any other data storage medium. In one embodiment of the invention, the media may store programming instructions in a compressed and/or encrypted format, as well as instructions that may have to be compiled or installed by an installer before being executed by the processor. Alternatively, an embodiment of the invention may be implemented as specific hardware components that contain hard-wired logic for performing the recited functionality, or by any combination of programmed general-purpose computer components and custom hardware components.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
105136754 | Nov 2016 | TW | national |
This application is a continuation of U.S. patent application Ser. No. 15/613,262, filed on 2017 Jun. 2004, the disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15613262 | Jun 2017 | US |
Child | 17349944 | US |