Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance

Information

  • Patent Grant
  • 9577864
  • Patent Number
    9,577,864
  • Date Filed
    Thursday, October 3, 2013
    10 years ago
  • Date Issued
    Tuesday, February 21, 2017
    7 years ago
Abstract
In a software receiver, a received electromagnetic signal is sampled in “slices”, each having a duration of some multiple of a reference frequency. The samples of each slice are correlated with values in a pair of reference signals, such as sine and cosine, at the reference frequency. This yields a two-tuple for each slice, which two-tuples may be stored. The stored two-tuples can be simply added to arrive at a correlation value of narrower bandwidth than that of any slice taken alone. The stored two-tuples can be taken in sequence, each rotated by some predetermined angle relative to its predecessor in sequence, and the rotated two-tuples summed to arrive at a correlation value with respect to a frequency that is offset from the reference frequency to an extent that relates to the predetermined angle. In this way, the receiver is able to proceed despite the transmitted frequency not being known exactly in advance and does not require prodigious storage or computational resources.
Description
BACKGROUND

Some real-life situations involving reception of electromagnetic signals are relatively easy, for example where the transmitted signal is known to be at a particular exact frequency due to its being crystal controlled. As another example a signal that lasts a long time is relatively easy to receive and analyze. A signal that is repeated as often as necessary, for example in a system where packets are acknowledged and an unacknowledged packet is retransmitted, can be relatively easily received. As another example if a transmitter has the luxury of a high power level and the further luxury of an optimally sized antenna, this makes the signal easier to receive relative to ambient noise. Another thing that can make reception of an electromagnetic signal easier is if the designer is able to assume that the receiver has plenty of storage and high computational bandwidth as well as a generous power source.


Some real-life situations, however, do not offer any of these factors that would make reception of signals easy. Suppose, for example, that the transmitter is not crystal controlled and thus the designer of the receiver is not permitted to assume that the transmitted signal is at any particular exact frequency. Suppose that the transmitter is required to be physically small in form factor and thus that any antenna elements are severely constrained in size. Suppose the transmitter has a power source that does not last very long, so that any transmitted signal lasts only for a limited duration. Suppose further that the power source is not very strong, so that the transmitted signal is of only very limited strength. Suppose that the transmitter is not also a receiver, so that there is no prospect of defining a packet acknowledgment protocol that would permit selective retransmission of particular packets only when needed.


Suppose that the designer is not able to assume that the receiver has arbitrarily large data storage and is not able to assume that the receiver has arbitrarily high computational bandwidth. Suppose further that the receiver cannot be assumed to have an arbitrarily generous power source.


In such circumstances, few if any prior-art approaches turn out to provide suitable reception of the transmitted signals.


These circumstances do present themselves in real life, for example if a pill contains an IEM (ingestible event marker) and if the would-be receiver is a patch or other detector affixed to or nearby to the body of a subject that is to ingest the IEM. Such IEMs are not crystal controlled and so their transmitted signal cannot be assumed to be at any particular exact frequency. Such IEMs are powered by contact with gastric juices or other fluids within the body of the subject, and the contact-powered power source only lasts for a limited duration.


In recent times it has become commonplace to carry out reception of electromagnetic signals in what might be termed a “software receiver”. As shown in FIG. 2, an input signal 201 is received (for example by an antenna) and the signal is amplified at 202. The amplified signal is passed through a bandpass filter 204 which eliminates most or all noise at frequencies above and below the edges of the filter. The filtered signal is again amplified at 205 and is digitized in an analog-to-digital converter 206, yielding a digital sample stream 207 about which more will be said.


The signal-to-noise ratio is one of the strongest predictors of success in reception of any transmitted signal. One way to improve the signal-to-noise ratio is to sharpen the bandpass filter shown in FIG. 1 as filter 203. Narrowing the filter 203 (as compared with the filter 204 of FIG. 2) has the advantage that noise that is outside of the limits of filter 203 (but that was inside of the limits of filter 204) is noise that will not clutter up the analyzed signal in FIG. 1 even though such noise would have cluttered up the analyzed signal in FIG. 2.


But if the filter 203 is narrowed, there is the risk that the actual transmitted signal is outside of the limits of filter 203, in which case the receiver of FIG. 1 will miss the signal completely and will never pick it up.


In situations (such as the IEM situation mentioned above) where one does not have the luxury of being able to assume that the signal to be detected is at some particular exact frequency, the narrower filter 203 cannot be employed. Instead there is no choice but to leave filter 204 (FIG. 2) so very broad as to be able to pass the signal-to-be-detected at any of its possible frequencies. Any application of a narrower bandpass filter will have to be relegated to a controllable filter that is able to be adjusted upwards and downwards in frequency (“hunting”) until the actual frequency of the signal is determined. In a typical present-day software receiver, such a controllable filter is accomplished in software.


Only when the frequency (or frequencies, in the case of frequency-shift keying) has been discovered can further analysis be carried out for example to extract data from the signal. Such data might be phase-shift keyed, or amplitude keyed, or frequency-shift keyed, or communicated by some other more complex modulation.


The alert reader may be familiar with some of the ways that a present-day software receiver gets programmed to carry out digital filtering and further analysis. FIG. 3 shows one approach, namely storage in mass storage 208 of the entirety of the digital sample stream 207. Analysis at block 209 is carried out on the data stored at 208. It will be appreciated that depending on the sample rate of the ADC 206, and the resolution (number of bits per sample) of the ADC 206, even just a few minutes of storage of raw data can require an enormous storage device 208. But in situations (such as described above) where the receiver has limited memory resources, the storage of the entirety of the digital sample stream (raw data) is just not possible.


The alert reader may also be familiar with some of the design decisions made by designers of analysis 209. Such designers may, for example, assume that multiple analyses can be carried out one after the other (or may be run in parallel with suitable parallel hardware) on the entirety of the data in mass storage 208. One analysis tries to pick out one would-be signal frequency, a subsequent analysis tries another frequency, until (hopefully) the hunt succeeds and the actual transmitted frequency is determined. Such analyses require substantial computational bandwidth and corresponding amounts of power for the analytical hardware. But in situations (such as described above) where the receiver has limited computational bandwidth or limited power or both, it is just not possible to proceed in this way.


A further big challenge presents itself when the sought-after transmitted signal is ephemeral, that is, it does not persist for very long after it has started. Prior-art approaches that attempt to pick out the signal by means of a “hunting” process are approaches that run the risk of taking so long to succeed at the hunt that the signal may have come and gone. Some prior-art systems when faced with an ephemeral signal of frequency that is not known in advance will run a massively parallel set of relatively narrow-band receivers so that no matter which frequency turns out to be the transmitted frequency, one or another of the receivers will have picked up the entire transmission. Other prior-art systems when faced with an ephemeral signal of frequency that is not known in advance will run a single relatively broad-band receiver and will attempt to store absolutely everything that was received (digitally) and then to conduct post-receipt analysis over and over again until some digital filter happens to have picked out the signal from the noise. These approaches require lots of hardware, and lots of power. These approaches are expensive and cannot be reduced in size to desirably small form factors.


It would be very helpful if an approach could be devised which would permit picking out a signal even when one is not able to know in advance exactly what frequency the signal will be at, and to do this in a way that does not require prodigious data storage capacity, and that does not require prodigious computational bandwidth.


SUMMARY OF THE INVENTION

In a software receiver, a received electromagnetic signal is sampled in “slices”, each having a duration of some multiple of a reference frequency. The samples of each slice are correlated with values in a pair of reference signals, such as sine and cosine, at the reference frequency. This yields a two-tuple for each slice, which two-tuples may be stored. The stored two-tuples can be simply added to arrive at a correlation value of narrower bandwidth than that of any slice taken alone. The stored two-tuples can be taken in sequence, each rotated by some predetermined angle relative to its predecessor in sequence, and the rotated two-tuples summed to arrive at a correlation value with respect to a frequency that is offset from the reference frequency to an extent that relates to the predetermined angle. In this way, the receiver is able to proceed despite the transmitted frequency not being known exactly in advance and does not require prodigious storage or computational resources.





DESCRIPTION OF THE DRAWING

The invention is described with respect to a drawing in several figures, of which:



FIG. 1 shows a software receiver with a relatively narrow-band filter;



FIG. 2 shows a software receiver with a relatively broad-band filter;



FIG. 3 shows a prior-art approach using mass storage of the entirety of a digital sample stream;



FIG. 4 shows a prior-art approach using prior-art analysis approaches;



FIG. 5 shows an approach according to the invention in which “slicing” is carried out and two-tuples are stored indicative of a correlation calculation relative to a reference frequency;



FIG. 6 shows an approach according to the invention in which two-tuples corresponding to a number of slices are simply added up, the result being a narrower bandwidth result than that of any single slice taken alone;



FIG. 7 shows an approach according to the invention in which two-tuples corresponding to a number of slices are rotated, each more than its predecessor, and then the rotated two-tuples are added, the result being a correlation with respect to a different frequency than the reference frequency;



FIG. 8 shows a sample received signal and “sine” and “cosine” reference waveforms for a “slice”; and



FIG. 9 shows a time sequence of several slices.





Where possible, like reference numerals have been employed to denote like items.


SPECIFICATION

As mentioned above, according to the invention, in a software receiver, a received electromagnetic signal is sampled in “slices”, each having a duration of some multiple of a reference frequency. The samples of each slice are correlated with values in a pair of reference signals, such as sine and cosine, at the reference frequency. This yields a two-tuple for each slice, which two-tuples may be stored. The stored two-tuples can be simply added to arrive at a correlation value of narrower bandwidth than that of any slice taken alone. The stored two-tuples can be taken in sequence, each rotated by some predetermined angle relative to its predecessor in sequence, and the rotated two-tuples summed to arrive at a correlation value with respect to a frequency that is offset from the reference frequency to an extent that relates to the predetermined angle. In this way, the receiver is able to proceed despite the transmitted frequency not being known exactly in advance and does not require prodigious storage or computational resources.



FIG. 5 shows an approach according to the invention in which “slicing” is carried out and two-tuples are stored indicative of a correlation calculation relative to a reference frequency. The digital sample stream 207 is subjected to a “slice” analysis 211 which will be discussed in greater detail below in connection with FIG. 8. The result of the slicing is the development of a two-tuple (an ordered pair of two scalar values) for each slice, and the two-tuples are stored at step 212.



FIG. 6 shows an approach according to the invention in which two-tuples (stored at 212) corresponding to a number of slices are simply added up (step 213), the result being a narrower bandwidth result 214 than that of any single slice taken alone. This will be discussed in more detail below.



FIG. 7 shows an approach according to the invention in which two-tuples (stored at 212) corresponding to a number of slices are rotated, each more than its predecessor (part of step 215), and then the rotated two-tuples are added (also part of step 215), the result being a correlation with respect to a different frequency than the reference frequency (result 216). This will be discussed in more detail below.



FIG. 8 shows a sample received signal 102 and “sine” and “cosine” reference waveforms, 103 and 104 respectively, for a “slice”. This portrayal shows what happens in box 211 of FIG. 5. The received signal 102 is, in this case, shown as a sinusoidal waveform correlating strongly with waveform 103, but this is shown simply as an example. In this case the unaided eye can readily pick out that the waveform 102 is fundamentally sinusoidal at very nearly the same frequency of reference waveforms 103 and 104, and that it is very nearly in phase with reference waveform 103. Although a modest amount of noise is portrayed for signal 102 in FIG. 8, the noise does not keep the unaided eye from readily discerning the waveform. In real-life situations of course the invention has the goal of dealing with received signals 102 that may not yield to the unaided eye at all, that may not be of any particular readily discerned frequency, and that may at least at first glance have noise that overwhelms any supposed signal.


The system makes use of reference waveforms 103 and 104. In FIG. 8 these are sinusoidal waveforms one of which lags the other by 90 degrees. It is convenient to define a term “slice” which represents some period of time, perhaps four or eight cycle times of the reference frequency. In FIG. 8 we can see five cycle times of the reference frequency as shown in waveforms 103 and 104, extending from the left side of the figure to the right side of the figure. Line 105 is intended to portray a number of sampling moments in time during the slice. In this figure what is shown is N sampling moments between the start of the first cycle (at the reference frequency) and the end of the fifth cycle (at the reference frequency). For example at the tenth sampling moment (shown by dotted line 106) the instantaneous magnitude of the waveform 102 is multiplied by the instantaneous magnitude of the waveform 103. (This may be termed a “dot product”.) The scalar result of this multiplication associated with the tenth sampling moment is indicative to some limited extent of the degree of correlation between the waveform 102 and the waveform 103. At this same tenth sampling moment (shown by dotted line 106) the instantaneous magnitude of the waveform 102 is multiplied by the instantaneous magnitude of the waveform 104. (This may likewise be termed a “dot product”.) The scalar result of this multiplication associated with the tenth sampling moment is indicative to some limited extent of the degree of correlation between the waveform 102 and the waveform 104.


The dot-product or multiplication is carried out not only for sampling moment ten (at line 106) but also at N−1 other sampling moments, developing N dot products associated with the sine wave (waveform 103) and the cosine wave (waveform 104). As shown by the summation formulas at the bottom of FIG. 8, the dot products associated with waveform 103 are summed to yield a single scalar number “s” and the dot products associated with waveform 104 are summed to yield a single scalar number “c”. These two scalar values form a two-tuple associated with the particular slice portrayed in this FIG. 8.


In the very artificial example shown here, with received signal 102 being shaped so that the unaided eye has no problem picking out that it correlates very strongly with waveform 103, the value “s” will be a big number. Assuming that waveforms 102 and 103 have been normalized so that the peaks are at a value of unity, then the value “s” will be about N. It may be convenient likewise to scale the result of the summation with a scaling factor 1/N so that the maximum value for “s” is approximately unity. But the normalization or scaling is merely a matter of computational convenience and is not required for the invention to deliver its benefits, as will be better understood as the explanation herein continues.


The alert reader will appreciate that in the case (a case thought to be optimal) where the waveforms 103 and 104 are 90 degrees out of phase, any similar set of samples and dot products between waveforms 103 and 104 would sum to a value very chose to zero. Said differently, in such a case waveforms 103 and 104 are orthogonal to each other. From this we can see that in the very artificial example shown here, where received signal 102 correlates strongly with reference waveform 103, we can guess what value “c” would turn out to have. Value “c” would turn out to be close to zero.


In the more general case, s and c would assume any of a range of values rather than the artificial “1” and “0” values that follow from the waveforms shown in FIG. 8.


In any event, after the slice of FIG. 8 is analyzed (box 211 in FIG. 5) to yield a two-tuple (s, c) that is stored (box 212 in FIG. 5), then successive slices can be analyzed to yield more two-tuples that may be stored. The result can be a large number of two-tuples. Later we will discuss in some detail the things that can be done with the stored two-tuples.


The alert reader will appreciate that even if it is thought to be optimal for the reference waveforms to be sinusoidal, the invention can be made to work with reference waveforms of other periodic shapes such as sawtooth, triangle, or square waves. (This might simplify computations for some choices of hardware.) The correlations that permit working out the frequency of the received signal, and that permit working out its phase if needed, can be correlations between the received signal and almost any periodic shape. One is probably discarding some information by correlating to a non-sinusoidal periodic waveform rather than to a sinusoidal waveform, but even if some information is discarded it may be possible to extract the desired frequency and phase information from the received signal.


The alert reader will also appreciate that even if it is thought to be optimal for the reference waveforms to be 90 degrees out of phase with each other, the teachings of the invention offer their benefits for other possible phase relationships. For example the two reference waveforms could be 89 degrees or 91 degrees out of phase with very little loss of analytical power.


It may be helpful to return briefly to the receiver of FIG. 2 to say more about the hardware. First the analog-to-digital converter 206 might have any of a range of resolutions—from as much as 16-bit or 10-bit resolution down to a mere one bit of resolution. (In the latter case the A/D converter is simply a comparator.) The digital sample stream passes to a processor 402 by a general-purpose parallel data bus 401, and is slice-analyzed and the two-tuples stored in memory 403. Results of the frequency and phase analysis get communicated at I/O 404 to points that are external to the receiver. The processor 402 carries out the steps of the method according to the invention by executing instructions stored in memory 403.


But the reader will immediately appreciate that many types of hardware could deliver the benefits of the invention. The hardware designer might pick a microcontroller that contains both the processor 402 and the memory 403 as well as I/O 404. The hardware designer might relegate some of the steps of the method to one or more field-programmable gate arrays or to one or more application-specific integrated circuits. As yet another example the designer might make use of a DSP (digital signal processor) to carry out some or all of the described functions. Any of these hardware choices, or others not mentioned, could be employed without departing from the invention itself.


By the term “processor” it is intended to encompass any hardware carrying out the computations just discussed, for example a processor within a microcontroller, as just mentioned, or circuitry within a field-programmable gate array, or circuitry within one or more application-specific integrated circuits, or circuitry within a DSP.


The sampling rate at the A/D converter (box 206 in FIG. 2) may for simplicity of operation be the same as the sampling rate for the “slice” analysis (line 105 in FIG. 8). Generally one would wish to pick a sampling rate that is at least as often as Nyquist would suggest (twice the frequency of interest) and it is thought that a higher sampling rate (perhaps five or more times the frequency of interest) may be preferable. In one embodiment the receiver system (located in a path affixed to the abdomen of the subject) carries out about forty or more samples per slice.


In one embodiment the signal emitted by the IEM may last for a few minutes (perhaps 4 or 7 or 10 minutes) but will likely not last longer than that. The signal emitted by the IEM might be around 12 kHz or around 20 kHz, in which case a slice duration might be around 400 microseconds.


In one implementation example the carrier frequency emitted by the IEM is around 20 kHz. The reference frequency is 20 kHz. The ADS samples 160 samples per cycle of the carrier, which is 3.2 million samples per second. The microcontroller in this example is able to execute 16 million instructions per second. A slice, in this implementation, is defined as four cycles of the reference frequency. This means there are 640 samples per slice. There are thus about 21 processor cycles available between each cycle.


In a prior-art analysis such as that of box 4 of FIG. 4, the 21 processor cycles would be completely inadequate to keep up with the digital sample stream 207. But it is within grasp to carry out the dot products and the two summations of FIG. 8 within the 21 processor cycles.


The amount of data storage required is also worthy of discussion. The prior-art approach of FIG. 3 might require storing 640 digital words per slice. The approach of FIG. 8 might require a mere two digital words. The compression benefit of the slice analysis might be 640 to 2 or 320 to 1, which is two orders of magnitude of reduction in memory requirements.



FIG. 3 reminds us that in some applications (where memory, computational bandwidth, and power are all plentiful and cost-free) one might in the first instance store in bulk all of the data developed by the ADS 206 (FIG. 1 or 2). Such storage at 208 could easily add up to millions of samples and tens of millions of bits for just a second or two of captured signal. Stored digital data for several minutes could add up to gigabits of data to be stored and later analyzed. Such analysis at box 209 (FIG. 3) requires much computation.



FIG. 4 proposes that the prior-art analysis (at box 210) be done in real time, and with respect to a digital sample stream of some millions or tens of millions of bits per second.


Returning briefly to the subject of digital filter bandwidth, the slice correlation calculation represents a filter with a bandwidth of something like 1 over the slice time, which is 20000/4 or about 5 kHz. This is relatively broad bandwidth, when compared with the carrier of perhaps 20 kHz.


But when several slices are combined (by adding up the respective two-tuples of the slices) the bandwidth gets narrower. Combining five slices means the effective slice time is five times as long, so that the bandwidth is closer to 1 kHz, a relatively narrow bandwidth when compared with the same carrier of perhaps 20 kHz.


The reader will appreciate that this permits “hunting” for a frequency that is offset by some amount from the reference frequency. If the reference frequency is 20 kHz and if the one-slice bandwidth is 5 kHz then one has a chance of picking up a carrier (in a received signal) that is in the range of perhaps 18-22 kHz. (Depending on ambient noise and other factors the range might be even more forgiving.) Once the carrier has been picked up, then the slices can be combined, thus applying a narrower filter to the identified frequency.


The teaching of the invention is, once again, a powerful one. If we collect some data in five slices, we can start with a broad bandwidth filter and then go back into the past (the data already collected) and nearly effortlessly apply a much narrower filter to the data already collected, just by adding up two sets of five numbers.



FIG. 8 provides a visual sense of the prior-art data storage needs and the data storage needs for the present invention. The prior-art storage approach would call for storing the entirety of waveform 102. Depending on the sample rate and the A/D resolution this might add up to 40 bits or 600 bits of data, or more. In contrast according to the invention one might store only the two scalars “s” and “c”. This might be 16 bits.



FIG. 9 shows a time sequence of several slices 1, 2, 3, and 4. Suppose that we wish that we had done a single slice that lasts as long as the four slices when laid out in time sequence? Because the calculations (the summation formulas in FIG. 8) are simply additive, then we can simply add together the four two-tuples (one for each of the four slices) and we end up with a two-tuple that is just what we would have gotten if we had done a single slice that had lasted as long as the four slices.


The adding-up of the four slices (that is, the adding-up of the four two-tuples) yields a result that represents a narrower filter (narrower bandwidth) as compared with the filter (or bandwidth) associated with any one of the four original slices. In this way one may arrive at a narrower-band filter result by simply manipulating information that was already in memory.


This discussion helps to show one of the advantages of the inventive slice-based approach as compared with some prior-art approaches. In the prior-art approach of FIG. 3, if we were first to do some wide-band filtering and analysis, and if later we were to determine that we wish to do some narrow-band filtering and analysis, this might well require substantial computation (including operations such as multiplication that consume more computational resources as compared with mere addition) and might require manipulating much more data (for example some or all of the x and y data points of the waveform 102 in FIG. 8). The computation 209 might not lend itself to being done in real time, but might lag behind the flow of the digital data stream 207.


In contrast the approach of the invention might only require adding up a few simple numbers. This might be accomplished at real time or much faster than real time.


It is helpful to say a few more words about the sequence of slices suggested by FIG. 9. For the slices to be combinable as discussed here, the reference signals 103-1, 103-2, and so on need to be coherent, meaning that they are in phase with each other. The same is required of the reference signals 104-1, 104-2 and so on.


For convenience of hardware design and convenience of calculation, the starting times of the slices 1, 2, 3, and 4 and so on will probably be selected to be periodic according to some fixed interval. The slices might be contiguous in time (slice 2 starting the instant that slice 1 ended). But many of the teachings of the invention offer their benefits even if (as suggested in FIG. 9) there are brief periods of time between slices when no sampling is going on and no data being captured.


The discussion up to this point in connection with FIGS. 8 and 9 treats the idealized case where through some good luck the received signal (at 102) happened to be at the same frequency as the reference frequency (at 103 and 104). As has been mentioned above, however, the teachings of the invention are intended to address situations where the frequency of the received signal is not known accurately in advance but is only known very approximately or roughly. It will now be helpful to discuss how the approach of the invention permits detecting a frequency that is not the same as the reference frequency. This rather remarkable result turns out to be achievable without requiring storing large amounts of data, and turns out to be achievable without requiring enormous computational bandwidth or large amounts of power.


To understand how this approach can detect a frequency that is not the same as the reference frequency, it may be helpful to review the notion of how we rotate a vector. To rotate a vector by an angle θ, we multiply it by a rotation matrix






R
=

[




cos





θ





-
sin






θ






sin





θ




cos





θ




]





So for example suppose the incoming signal is a 12600 Hz. Of course we do not yet know that it is at that frequency. Our goal will be to figure out what its frequency is. Suppose further that the reference frequency that was employed in the slice analysis was 12500 Hz. This means we hope to “retune” our data by 100 Hz.


We can then apply the rotation matrix to the two-tuples, one after the next. The two-tuple for the first slice is left unchanged (no rotation). We take the two-tuple for the second slice and we rotate it by some angle θ. We take the two-tuple for the third slice and we rotate it by 2θ. We take the two-tuple for the fourth slice and we rotate it by 3θ. We then add up all the first two-tuple and we add up the rotated two-tuples (the second through fourth two-tuples in this case). This yields a narrow-band filter of the incoming data that is narrowly focused on some other frequency (perhaps the 12600 Hz frequency).


The mathematical relationship between θ and the desired offset (here, 100 Hz) is straightforward and depends upon depends for example upon such things as the size of the gaps in FIG. 9 between the end of one slice and the start of the next slice.


Again suppose the reference frequency used in the slice analysis was 12500 Hz, but suppose we wish to go hunting to try to see if the incoming signal is actually at 12400 Hz. If previously we had worked out which angle θ was the correct angle to retune the filter to 12600 Hz, then this tells us that we can use −θ (the opposite of the previous angle) to retune the filter to 12400 Hz.


Repeating a point made earlier, this permits the system to go hunting around for the actual frequency of the incoming signal by trying out various values for θ until a value is found that yields a high correlation value (the sum of the rotated two-tuples turns out to be high). When this value has been found, then we have succeeded at the hunt—we have determined the frequency of the incoming signal.


Such hunting can be easily done, based upon an astonishingly small amount of stored data. A half a dozen or a dozen two-tuples (memorializing what was extracted from the data of half a dozen or a dozen slices) might permit hunting up and down in frequency until the actual incoming frequency has been found. All of this can be done with quite modest data storage and fairly undemanding calculations. Importantly there is no need to go back to the original raw data stream (for example data 102 in FIG. 8) nor is there any need to wait for a new raw data stream to arrive.


The alert reader will now appreciate one of the some of the very interesting of the invention. Suppose the incoming data is modulated with an FSK (frequency shift keying) modulation with two frequencies, one representing a “0” and the other representing a “1”. The approach just described can permit hunting for and locating the two frequencies, and can then permit easy detection of the presence of the one frequency or the other so as to detect 0s and 1s in a data stream. All of this can be done with only modest computational resources and can be done based upon mere stored two-tuples. Again there is no need to go back to the original raw data stream (for example data 102 in FIG. 8) nor is there any need to wait for a new raw data stream to arrive.


It will be recalled that where IEMs are involved, the signal of interest may last only a few minutes such as four or seven or ten minutes. It may turn out to be possible to capture and store slice data for several minutes, and then even if the signal ends, it may be possible to go back and analyze and re-analyze the stored slice data at a later time after the signal has ended. Such analyzing and re-analyzing may permit detecting the frequencies involved even though the signal has ended. The stored data to permit going back and analyzing and re-analyzing will be modest in size (as mentioned above, maybe 1/320th of the data that would have needed to be stored using prior-art approaches) and the analysis and re-analysis will require only modest computational bandwidth as compared with that required for prior-art approaches that direct themselves to the raw data.


It is interesting to consider the detection of a data stream that has been phase-shift-keyed (“PSK”). Once the carrier frequency for a PSK signal has been determined using the hunting approach discussed above, it will then be desired to detect the phase shifts. This can be done by closely following the magnitudes of the first elements of each two-tuple and comparing them with the magnitudes of the second elements of each two-tuple. These comparisons may permit working out when the phase has shifted to one keying value and when it has shifted to the other keying value.


A related approach is to use the phase angle (defined by the two elements of each two-tuple) detected during one interval to define an initial phase in the received signal. Then during some later interval the phase angle (again defined by the two elements of each two-tuple) might be about the same, in which case we will say that the keying is the same as during the initial interval. Then during some third interval the phase angle (yet again defined by the two elements of each two-tuple) might be notably different (perhaps advanced or lagged by some phase angle such as 90 degrees) in which case we will say that the keying has changed to a different keyed value.

Claims
  • 1. A method for use with respect to a received electromagnetic signal, the method carried out with respect to a reference frequency, the method comprising: passing the received electromagnetic signal through an analog front end;passing the signal thence to an analog-to-digital converter having an output, the output defining a resolution thereof;sampling the output of the analog-to-digital converter at a sampling rate, the sampling rate being at least as frequent as twice the reference frequency, the samples thereby defining a time series of samples;for a first number of samples exceeding the duration of one cycle at the reference frequency, said first number of cycles defining a first slice, carrying out a first correlation calculation arriving at a first scalar correlation value with respect to the first slice relative to a first reference waveform at the reference frequency;for the samples defining the first slice, carrying out a second correlation calculation arriving at a second scalar correlation value with respect to the first slice relative to a second reference waveform at the reference frequency, the second reference waveform having a non-zero phase difference from the first reference frequency;the first scalar correlation value with respect to the first slice and the second scalar correlation value with respect to the first slice defining a two-tuple for the first slice; andstoring the two-tuple for the first slice in a physical memory.
  • 2. The method of claim 1 further comprising the steps of: for a second number of samples exceeding the duration of one cycle at the reference frequency, said second number of cycles defining a second slice, carrying out a first correlation calculation arriving at a first scalar correlation value with respect to the second slice relative to the first reference waveform;for the samples defining the second slice, carrying out a second correlation calculation arriving at a second scalar correlation value with respect to the second slice relative to the second reference waveform;the first scalar correlation value with respect to the second slice and the second scalar correlation value with respect to the second slice defining a two-tuple for the second slice; andstoring the two-tuple for the second slice in the physical memory.
  • 3. The method of claim 2 wherein the carrying-out of correlation calculations and the storage in the physical memory are repeated n−2 times, thereby resulting in storage of n two-tuples, one for each of n respective slices, in the physical memory.
  • 4. The method of claim 3 comprising the further step of summing the two-tuples.
  • 5. The method of claim 4 wherein a correlation result with respect to a single slice defines a respective bandwidth, and wherein a consequence of the summing of the two-tuples is that any correlation result with respect to the reference frequency is of narrower bandwidth as compared with the respective bandwidth for a single slice.
  • 6. The method of claim 3 comprising the further steps of: selecting a first rotation rate associated with a first frequency offset from the reference frequency, the first rotation rate defining a first rotation angle;for each of the n two-tuples, applying the first rotation angle n times to the two-tuple thus defining a rotated two-tuple corresponding to each of the two-tuples;summing the rotated two-tuples corresponding to the each of the n two-tuples.
  • 7. The method of claim 6 wherein the sum of the rotated two-tuples is indicative of a correlation with the first frequency.
  • 8. The method of claim 6 comprising the further steps of: selecting a second rotation rate associated with a second frequency offset from the reference frequency, the second rotation rate defining a second rotation angle;for each of the n two-tuples, applying the second rotation angle n times to the two-tuple thus defining a rotated two-tuple corresponding to each of the two-tuples;summing the rotated two-tuples corresponding to the each of the n two-tuples.
  • 9. The method of claim 8 wherein the sum of the rotated two-tuples is indicative of a correlation with the second frequency.
  • 10. The method of claim 8 wherein the first frequency is higher than the reference frequency and wherein the second frequency is lower than the reference frequency.
  • 11. The method of claim 6, further comprising analyzing the first elements of the rotated two-tuples, and the second elements of the rotated two-tuples, to identify at least first and second phases among various time intervals, thereby detecting a phase-shift-keyed signal.
  • 12. Apparatus for use with respect to a received electromagnetic signal, and with respect to a reference frequency, the apparatus comprising: an analog front end disposed to receive the electromagnetic signal and having an output;an analog-to-digital converter receiving the output of the analog front end, the analog-to-digital converter having an output, the output defining a resolution thereof;computational means having a processor responsive to the output of the analog-to-digital converter for sampling the output of the analog-to-digital converter at a sampling rate, the sampling rate being at least as frequent as twice the reference frequency, the samples thereby defining a time series of samples;the computational means disposed, for a number of samples exceeding the duration of one cycle at the reference frequency, the number of cycles defining a first slice, to carry out a first correlation calculation arriving at a first scalar correlation value relative to a first reference waveform at the reference frequency;the computational means disposed to carry out a second correlation calculation defining the first slice, arriving at a second scalar correlation value relative to a second reference waveform at the reference frequency, the second reference waveform having a non-zero phase difference from the first reference frequency;the first scalar correlation value with respect to the slice and the second scalar correlation value with respect to the slice defining a two-tuple for the slice;the computational means disposed to store the two-tuple in a memory.
  • 13. The apparatus of claim 12 wherein the number of samples amounts to at least two cycles at the reference frequency.
  • 14. The apparatus of claim 13 wherein the number of samples amounts to at least four cycles at the reference frequency.
  • 15. The apparatus of claim 14 wherein the number of samples amounts to at least eight cycles at the reference frequency.
  • 16. The apparatus of claim 12 wherein the resolution is one-bit resolution.
  • 17. The apparatus of claim 12 wherein the sampling rate is at least two times the reference frequency.
  • 18. The apparatus of claim 12 wherein the first and second reference waveforms are each sinusoidal.
  • 19. The apparatus of claim 18 wherein the first and second reference waveforms are in a phase relationship of sine and cosine.
  • 20. The apparatus of claim 12 wherein the output of the analog-to-digital converter defines raw data, the apparatus further characterized by being disposed to discard each item of raw data after the first correlation calculation and the second correlation calculation have been carried out with respect to the item of raw data.
  • 21. The apparatus of claim 12 wherein the analog front end comprises in sequence a first amplifier, a bandpass filter, and a second amplifier having an output, the output of the second amplifier coupled with the analog-to-digital converter.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a U.S. national phase application filed under 35 U.S.C. §371 of International Patent Application No. PCT/IB2013/059084, entitled METHOD AND APPARATUS FOR USE WITH RECEIVED ELECTROMAGNETIC SIGNAL AT A FREQUENCY NOT KNOWN EXACTLY IN ADVANCE, filed Oct. 3, 2013, which application claims the benefit under 35 U.S.C. §119 (e) of U.S. Provisional Application No. 61/881,555 entitled METHOD AND APPARATUS FOR USE WITH RECEIVED ELECTROMAGNETIC SIGNAL AT A FREQUENCY NOT KNOWN EXACTLY IN ADVANCE filed Sep. 24, 2013, the disclosures of which are herein incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2013/059084 10/3/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2015/044722 4/2/2015 WO A
US Referenced Citations (802)
Number Name Date Kind
3607788 Adolph Sep 1971 A
3642008 Bolduc Feb 1972 A
3679480 Brown et al. Jul 1972 A
3682160 Murata Aug 1972 A
3719183 Schwartz Mar 1973 A
3828766 Krasnow Aug 1974 A
3837339 Aisenberg et al. Sep 1974 A
3989050 Buchalter Nov 1976 A
4067014 Wheeler et al. Jan 1978 A
4077397 Ellis Mar 1978 A
4077398 Ellis Mar 1978 A
4082087 Howson Apr 1978 A
4090752 Long May 1978 A
4106348 Auphan Aug 1978 A
4121573 Crovella et al. Oct 1978 A
4129125 Lester Dec 1978 A
4166453 McClelland Sep 1979 A
4185172 Melindo et al. Jan 1980 A
4239046 Ong Dec 1980 A
4269189 Abraham May 1981 A
4331654 Morris May 1982 A
4333150 Matty et al. Jun 1982 A
4345588 Widder et al. Aug 1982 A
4418697 Tama Dec 1983 A
4425117 Hugemann Jan 1984 A
4494950 Fischell Jan 1985 A
4513385 Muri Apr 1985 A
4559950 Vaughan Dec 1985 A
4578061 Lemelson Mar 1986 A
4635641 Hoffman Jan 1987 A
4654165 Eisenber Mar 1987 A
4669479 Dunseath Jun 1987 A
4725997 Urquhart et al. Feb 1988 A
4749575 Rotman et al. Jun 1988 A
4763659 Dunseath Aug 1988 A
4784162 Ricks Nov 1988 A
4793825 Benjamin et al. Dec 1988 A
4809705 Ascher Mar 1989 A
4844076 Lesho Jul 1989 A
4858617 Sanders Aug 1989 A
4896261 Nolan Jan 1990 A
4975230 Pinkhasov Dec 1990 A
4987897 Funke Jan 1991 A
5016634 Vock et al. May 1991 A
5079006 Urquhart Jan 1992 A
5113859 Funke May 1992 A
5167626 Casper Dec 1992 A
5176626 Soehendra Jan 1993 A
5232383 Barnick Aug 1993 A
5245332 Katzenstein et al. Sep 1993 A
5261402 DiSabito Nov 1993 A
5263481 Axelgaard et al. Nov 1993 A
5281287 Lloyd Jan 1994 A
5283136 Peled et al. Feb 1994 A
5318557 Gross Jun 1994 A
5394882 Mawhinney Mar 1995 A
5458141 Neil et al. Oct 1995 A
5485841 Watkin et al. Jan 1996 A
5511548 Riazzi et al. Apr 1996 A
5551020 Flax et al. Aug 1996 A
5596302 Mastrocola et al. Jan 1997 A
D377983 Sabri et al. Feb 1997 S
5634466 Gruner Jun 1997 A
5634468 Platt Jun 1997 A
5645063 Straka et al. Jul 1997 A
5720771 Snell Feb 1998 A
5724432 Bouvet et al. Mar 1998 A
5740811 Hedberg Apr 1998 A
5792048 Schaefer Aug 1998 A
5802467 Salazar Sep 1998 A
5833716 Bar-Or Nov 1998 A
5845265 Woolston Dec 1998 A
5862803 Besson Jan 1999 A
5862808 Albarello Jan 1999 A
5868136 Fox Feb 1999 A
5921925 Cartmell et al. Jul 1999 A
5925030 Gross et al. Jul 1999 A
5925066 Kroll et al. Jul 1999 A
5957854 Besson et al. Sep 1999 A
5974124 Schlueter, Jr. et al. Oct 1999 A
5981166 Mandecki Nov 1999 A
5999846 Pardey et al. Dec 1999 A
6023631 Cartmell et al. Feb 2000 A
6038464 Axelgaard et al. Mar 2000 A
6042710 Dubrow Mar 2000 A
6047203 Sackner Apr 2000 A
6076016 Feierbach Jun 2000 A
6081734 Batz Jun 2000 A
6095985 Raymond et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6117077 Del Mar et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6141592 Pauly Oct 2000 A
6200265 Walsh et al. Mar 2001 B1
6200625 Beckett Mar 2001 B1
6204764 Maloney Mar 2001 B1
6206702 Hayden et al. Mar 2001 B1
6217744 Crosby Apr 2001 B1
6231593 Meserol May 2001 B1
6238338 DeLuca et al. May 2001 B1
6245057 Sieben et al. Jun 2001 B1
6275476 Wood Aug 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6287252 Lugo Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6301298 Kuntz Oct 2001 B1
6315719 Rode et al. Nov 2001 B1
6317714 Del Castillo Nov 2001 B1
6358202 Arent Mar 2002 B1
6364834 Reuss Apr 2002 B1
6366206 Ishikawa et al. Apr 2002 B1
6371927 Brune Apr 2002 B1
6374670 Spelman Apr 2002 B1
6380858 Yarin et al. Apr 2002 B1
6394953 Devlin et al. May 2002 B1
6394997 Lemelson May 2002 B1
6409674 Brockway et al. Jun 2002 B1
6426863 Munshi Jul 2002 B1
6432292 Pinto et al. Aug 2002 B1
6440069 Raymond et al. Aug 2002 B1
6441747 Khair Aug 2002 B1
6477424 Thompson et al. Nov 2002 B1
6482156 Lliff Nov 2002 B2
6494829 New et al. Dec 2002 B1
6496705 Ng et al. Dec 2002 B1
6526315 Inagawa Feb 2003 B1
6544174 West Apr 2003 B2
6564079 Cory May 2003 B1
6577893 Besson et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6605038 Teller et al. Aug 2003 B1
6605046 Del Mar Aug 2003 B1
6609018 Cory Aug 2003 B2
6612984 Kerr Sep 2003 B1
6632175 Marshall Oct 2003 B1
6632216 Houzego et al. Oct 2003 B2
6643541 Mok et al. Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6663846 McCombs Dec 2003 B1
6673474 Yamamoto Jan 2004 B2
6680923 Leon Jan 2004 B1
6689117 Sweeney et al. Feb 2004 B2
6694161 Mehrotra Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6720923 Hayward et al. Apr 2004 B1
6738671 Christophersom et al. May 2004 B2
6740033 Olejniczak et al. May 2004 B1
6745082 Axelgaard et al. Jun 2004 B2
6755783 Cosentino Jun 2004 B2
6757523 Fry Jun 2004 B2
6800060 Marshall Oct 2004 B2
6801137 Eggers et al. Oct 2004 B2
6814706 Barton et al. Nov 2004 B2
6822554 Vrijens et al. Nov 2004 B2
6836862 Erekson et al. Dec 2004 B1
6839659 Tarassenko et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6842636 Perrault Jan 2005 B2
6845272 Thomsen Jan 2005 B1
6856832 Matsumura et al. Feb 2005 B1
6864780 Doi Mar 2005 B2
6879810 Bouet Apr 2005 B2
6882881 Lesser et al. Apr 2005 B1
6897788 Khair et al. May 2005 B2
6909878 Haller Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6928370 Anuzis et al. Aug 2005 B2
6929636 Von Alten Aug 2005 B1
6937150 Medema Aug 2005 B2
6942616 Kerr Sep 2005 B2
6951536 Yokoi Oct 2005 B2
6956917 Lenosky Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6959929 Pugnet et al. Nov 2005 B2
6961601 Matthews et al. Nov 2005 B2
6968153 Heinonen Nov 2005 B1
6987965 Ng et al. Jan 2006 B2
6990082 Zehavi et al. Jan 2006 B1
7002476 Rapchak Feb 2006 B2
7004395 Koenck Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7009946 Kardach Mar 2006 B1
7013162 Gorsuch Mar 2006 B2
7016648 Haller Mar 2006 B2
7020508 Stivoric Mar 2006 B2
7024248 Penner et al. Apr 2006 B2
7031745 Shen Apr 2006 B2
7031857 Tarassenko et al. Apr 2006 B2
7039453 Mullick May 2006 B2
7046649 Awater et al. May 2006 B2
7076437 Levy Jul 2006 B1
7116252 Teraguchi Oct 2006 B2
7118531 Krill Oct 2006 B2
7127300 Mazar et al. Oct 2006 B2
7139332 Yu et al. Nov 2006 B2
7146228 Nielsen Dec 2006 B2
7146449 Do et al. Dec 2006 B2
7149581 Goedeke et al. Dec 2006 B2
7154071 Sattler et al. Dec 2006 B2
7154916 Soloff Dec 2006 B2
7155232 Godfrey et al. Dec 2006 B2
7160258 Imran Jan 2007 B2
7161484 Tsoukalis Jan 2007 B2
7164942 Avrahami Jan 2007 B2
7171166 Ng et al. Jan 2007 B2
7171177 Park et al. Jan 2007 B2
7171259 Rytky Jan 2007 B2
7187960 Abreu Mar 2007 B2
7188199 Leung et al. Mar 2007 B2
7188767 Penuela Mar 2007 B2
7194038 Inkinen Mar 2007 B1
7206630 Tarler Apr 2007 B1
7209790 Thompson et al. Apr 2007 B2
7215660 Perlman May 2007 B2
7215991 Besson May 2007 B2
7218967 Bergelson May 2007 B2
7231451 Law Jun 2007 B2
7243118 Lou Jul 2007 B2
7246521 Kim Jul 2007 B2
7249212 Do Jul 2007 B2
7252792 Perrault Aug 2007 B2
7253716 Lovoi et al. Aug 2007 B2
7261690 Teller Aug 2007 B2
7270633 Goscha Sep 2007 B1
7273454 Raymond et al. Sep 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7289855 Nghiem Oct 2007 B2
7291497 Holmes Nov 2007 B2
7292139 Mazar et al. Nov 2007 B2
7294105 Islam Nov 2007 B1
7313163 Liu Dec 2007 B2
7317378 Jarvis et al. Jan 2008 B2
7318808 Tarassenko et al. Jan 2008 B2
7336929 Yasuda Feb 2008 B2
7342895 Serpa Mar 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7349722 Witkowski et al. Mar 2008 B2
7352998 Palin Apr 2008 B2
7353258 Washburn Apr 2008 B2
7357891 Yang et al. Apr 2008 B2
7359674 Markki Apr 2008 B2
7366558 Virtanen et al. Apr 2008 B2
7373196 Ryu et al. May 2008 B2
7375739 Robbins May 2008 B2
7376435 McGowan May 2008 B2
7382263 Danowski et al. Jun 2008 B2
7387607 Holt Jun 2008 B2
7388903 Godfrey et al. Jun 2008 B2
7389088 Kim Jun 2008 B2
7392015 Farlow Jun 2008 B1
7395105 Schmidt et al. Jul 2008 B2
7395106 Ryu et al. Jul 2008 B2
7396330 Banet Jul 2008 B2
7404968 Abrams et al. Jul 2008 B2
7413544 Kerr Aug 2008 B2
7414534 Kroll et al. Aug 2008 B1
7415242 Ngan Aug 2008 B1
7424268 Diener Sep 2008 B2
7424319 Muehlsteff Sep 2008 B2
7427266 Ayer et al. Sep 2008 B2
7471665 Perlman Dec 2008 B2
7499674 Salokannel Mar 2009 B2
7502643 Farringdon et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7510121 Koenck Mar 2009 B2
7512448 Malick Mar 2009 B2
7515043 Welch Apr 2009 B2
7523756 Minai Apr 2009 B2
7525426 Edelstein Apr 2009 B2
7539533 Tran May 2009 B2
7542878 Nanikashvili Jun 2009 B2
7551590 Haller Jun 2009 B2
7554452 Cole Jun 2009 B2
7575005 Mumford Aug 2009 B2
7599003 Suzuki et al. Oct 2009 B2
7616111 Covannon Nov 2009 B2
7616710 Kim et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7626387 Adachi Dec 2009 B2
7640802 King et al. Jan 2010 B2
7647112 Tracey Jan 2010 B2
7647185 Tarassenko et al. Jan 2010 B2
7653031 Godfrey et al. Jan 2010 B2
7668437 Yamada et al. Feb 2010 B1
7672703 Yeo et al. Mar 2010 B2
7672714 Kuo Mar 2010 B2
7673679 Harrison et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7688204 Yamanaka et al. Mar 2010 B2
7689437 Teller et al. Mar 2010 B1
7697994 VanDanacker et al. Apr 2010 B2
7720036 Sadri May 2010 B2
7729776 Von Arx et al. Jun 2010 B2
7733224 Tran Jun 2010 B2
7736318 Cosentino Jun 2010 B2
7756587 Penner et al. Jul 2010 B2
7782991 Sobchak et al. Aug 2010 B2
7797033 D'Andrea et al. Sep 2010 B2
7809399 Lu Oct 2010 B2
7844341 Von Arx et al. Nov 2010 B2
7904133 Gehman et al. Mar 2011 B2
D639437 Bishay et al. Jun 2011 S
7978064 Zdeblick et al. Jul 2011 B2
7983189 Bugenhagen Jul 2011 B2
8036748 Zdeblick et al. Oct 2011 B2
8055334 Savage et al. Nov 2011 B2
8073707 Teller et al. Dec 2011 B2
8083128 Dembo et al. Dec 2011 B2
8114021 Robertson et al. Feb 2012 B2
8123576 Kim Feb 2012 B2
8140143 Picard et al. Mar 2012 B2
8170515 Le Reverend et al. May 2012 B2
8180425 Selvitelli et al. May 2012 B2
8184854 Bartsch May 2012 B2
8193821 Mueller Jun 2012 B2
8200320 Kovacs Jun 2012 B2
8214007 Baker et al. Jul 2012 B2
8238998 Park Aug 2012 B2
8249686 Libbus et al. Aug 2012 B2
8285356 Bly et al. Oct 2012 B2
8290574 Feild et al. Oct 2012 B2
8301232 Albert et al. Oct 2012 B2
8308640 Baldus et al. Nov 2012 B2
8315687 Cross et al. Nov 2012 B2
8332009 McLaughlin et al. Dec 2012 B2
8360976 Imran Jan 2013 B2
8369936 Farringdon et al. Feb 2013 B2
8386009 Lindberg et al. Feb 2013 B2
8404275 Habboushe Mar 2013 B2
8440274 Wang May 2013 B2
8471960 Lin et al. Jun 2013 B2
8514979 Laporte Aug 2013 B2
8604974 Ganeshan Dec 2013 B2
8615290 Lin et al. Dec 2013 B2
8620402 Parker, III et al. Dec 2013 B2
8754799 Coln et al. Jun 2014 B2
8773258 Vosch et al. Jul 2014 B2
8836513 Hafezi et al. Sep 2014 B2
8858432 Robertson et al. Oct 2014 B2
8932221 Colliou et al. Jan 2015 B2
8945005 Hafezi et al. Feb 2015 B2
9014779 Zdeblick et al. Apr 2015 B2
9149577 Robertson et al. Oct 2015 B2
9158890 Meredith et al. Oct 2015 B2
9230141 Kawaguchi Jan 2016 B2
9270503 Fleming et al. Feb 2016 B2
20010027331 Thompson Oct 2001 A1
20010031071 Nichols et al. Oct 2001 A1
20010044588 Mault Nov 2001 A1
20010051766 Gazdzinski Dec 2001 A1
20010056262 Cabiri et al. Dec 2001 A1
20020002326 Causey et al. Jan 2002 A1
20020026111 Ackerman Feb 2002 A1
20020040278 Anuzis et al. Apr 2002 A1
20020077620 Sweeney et al. Jun 2002 A1
20020132226 Nair Sep 2002 A1
20020169696 Zara Nov 2002 A1
20020192159 Reitberg Dec 2002 A1
20020193669 Glukhovsky Dec 2002 A1
20020198470 Imran et al. Dec 2002 A1
20030017826 Fishman Jan 2003 A1
20030023150 Yokoi et al. Jan 2003 A1
20030028226 Thompson Feb 2003 A1
20030065536 Hansen Apr 2003 A1
20030076179 Branch et al. Apr 2003 A1
20030083559 Thompson May 2003 A1
20030091121 Kenmochi May 2003 A1
20030126593 Mault Jul 2003 A1
20030130714 Nielsen et al. Jul 2003 A1
20030135128 Suffin et al. Jul 2003 A1
20030135392 Vrijens et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030158756 Abramson Aug 2003 A1
20030162556 Libes Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20030167000 Mullick et al. Sep 2003 A1
20030171791 KenKnight Sep 2003 A1
20030171898 Tarassenko et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030181815 Ebner et al. Sep 2003 A1
20030185286 Yuen Oct 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030195403 Berner et al. Oct 2003 A1
20030213495 Fujita et al. Nov 2003 A1
20030214579 Iddan Nov 2003 A1
20030216622 Meron et al. Nov 2003 A1
20030216625 Phipps Nov 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030216729 Marchitto Nov 2003 A1
20030229382 Sun et al. Dec 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040018476 LaDue Jan 2004 A1
20040019172 Yang et al. Jan 2004 A1
20040034295 Salganicoff Feb 2004 A1
20040049245 Gass Mar 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040073454 Urquhart et al. Apr 2004 A1
20040077995 Ferek-Petric Apr 2004 A1
20040082982 Gord et al. Apr 2004 A1
20040087839 Raymond et al. May 2004 A1
20040092801 Drakulic May 2004 A1
20040106859 Say et al. Jun 2004 A1
20040115507 Potter et al. Jun 2004 A1
20040115517 Fukuda et al. Jun 2004 A1
20040121015 Chidlaw et al. Jun 2004 A1
20040122297 Stahmann et al. Jun 2004 A1
20040148140 Tarassenko et al. Jul 2004 A1
20040153007 Harris Aug 2004 A1
20040167226 Serafini Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040193020 Chiba Sep 2004 A1
20040193029 Glukhovsky Sep 2004 A1
20040193446 Mayer et al. Sep 2004 A1
20040199222 Sun et al. Oct 2004 A1
20040215084 Shimizu et al. Oct 2004 A1
20040218683 Batra Nov 2004 A1
20040220643 Schmidt Nov 2004 A1
20040224644 Wu Nov 2004 A1
20040225199 Evanyk Nov 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040260154 Sidelnik Dec 2004 A1
20050017841 Doi Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021103 DiLorenzo Jan 2005 A1
20050021370 Riff Jan 2005 A1
20050024198 Ward Feb 2005 A1
20050027205 Tarassenko et al. Feb 2005 A1
20050038321 Fujita et al. Feb 2005 A1
20050043634 Yokoi et al. Feb 2005 A1
20050055014 Coppeta et al. Mar 2005 A1
20050062644 Leci Mar 2005 A1
20050065407 Nakamura et al. Mar 2005 A1
20050070778 Lackey Mar 2005 A1
20050092108 Andermo May 2005 A1
20050096514 Starkebaum May 2005 A1
20050096562 Delalic et al. May 2005 A1
20050101843 Quinn May 2005 A1
20050101872 Sattler May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050116820 Goldreich Jun 2005 A1
20050117389 Worledge Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131281 Ayer et al. Jun 2005 A1
20050137480 Alt et al. Jun 2005 A1
20050143623 Kojima Jun 2005 A1
20050148883 Boesen Jul 2005 A1
20050154428 Bruinsma Jul 2005 A1
20050165323 Montgomery Jul 2005 A1
20050177069 Takizawa Aug 2005 A1
20050182389 LaPorte Aug 2005 A1
20050187789 Hatlestad et al. Aug 2005 A1
20050192489 Marshall Sep 2005 A1
20050197680 DelMain et al. Sep 2005 A1
20050228268 Cole Oct 2005 A1
20050234307 Heinonen Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050245794 Dinsmoor Nov 2005 A1
20050259768 Yang et al. Nov 2005 A1
20050261559 Mumford Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050267756 Schultz et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050277999 Strother et al. Dec 2005 A1
20050285746 Sengupta Dec 2005 A1
20050288594 Lewkowicz et al. Dec 2005 A1
20060001496 Abrosimov et al. Jan 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060061472 Lovoi et al. Mar 2006 A1
20060065713 Kingery Mar 2006 A1
20060074283 Henderson Apr 2006 A1
20060078765 Yang et al. Apr 2006 A1
20060095091 Drew May 2006 A1
20060095093 Bettesh et al. May 2006 A1
20060100533 Han May 2006 A1
20060109058 Keating May 2006 A1
20060110962 Powell May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060136266 Tarassenko et al. Jun 2006 A1
20060136744 Lange Jun 2006 A1
20060142648 Banet Jun 2006 A1
20060145876 Kimura Jul 2006 A1
20060148254 McLean Jul 2006 A1
20060149339 Burnes Jul 2006 A1
20060155174 Glukhovsky et al. Jul 2006 A1
20060155183 Kroecker Jul 2006 A1
20060158820 Takiguchi Jul 2006 A1
20060161225 Sormann et al. Jul 2006 A1
20060179949 Kim Aug 2006 A1
20060183993 Horn Aug 2006 A1
20060184092 Atanasoska et al. Aug 2006 A1
20060204738 Dubrow et al. Sep 2006 A1
20060210626 Spaeder Sep 2006 A1
20060216603 Choi Sep 2006 A1
20060218011 Walker Sep 2006 A1
20060235489 Drew Oct 2006 A1
20060243288 Kim et al. Nov 2006 A1
20060247505 Siddiqui Nov 2006 A1
20060253005 Drinan Nov 2006 A1
20060255064 Donaldson Nov 2006 A1
20060265246 Hoag Nov 2006 A1
20060270346 Ibrahim Nov 2006 A1
20060277097 Shafron et al. Dec 2006 A1
20060280227 Pinkney Dec 2006 A1
20060282001 Noel Dec 2006 A1
20060289640 Mercure Dec 2006 A1
20060293607 Alt Dec 2006 A1
20070002038 Suzuki Jan 2007 A1
20070006636 King et al. Jan 2007 A1
20070008113 Spoonhower et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070027386 Such Feb 2007 A1
20070027388 Chou Feb 2007 A1
20070038054 Zhou Feb 2007 A1
20070049339 Barak et al. Mar 2007 A1
20070055098 Shimizu et al. Mar 2007 A1
20070060797 Ball Mar 2007 A1
20070073353 Rooney et al. Mar 2007 A1
20070096765 Kagan May 2007 A1
20070106346 Bergelson May 2007 A1
20070123772 Euliano May 2007 A1
20070129622 Bourget Jun 2007 A1
20070130287 Kumar Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142721 Berner et al. Jun 2007 A1
20070156016 Betesh Jul 2007 A1
20070162089 Mosesov Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070167495 Brown et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070173701 Al-Ali Jul 2007 A1
20070179347 Tarassenko et al. Aug 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070185393 Zhou Aug 2007 A1
20070191002 Ge Aug 2007 A1
20070196456 Stevens Aug 2007 A1
20070207793 Myer Sep 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070237719 Jones Oct 2007 A1
20070244370 Kuo et al. Oct 2007 A1
20070249946 Kumar et al. Oct 2007 A1
20070255198 Leong et al. Nov 2007 A1
20070255330 Lee Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070279217 Venkatraman Dec 2007 A1
20070282174 Sabatino Dec 2007 A1
20070282177 Pilz Dec 2007 A1
20070291715 Laroia et al. Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080014866 Lipowski et al. Jan 2008 A1
20080015421 Penner Jan 2008 A1
20080015494 Santini et al. Jan 2008 A1
20080020037 Robertson et al. Jan 2008 A1
20080021519 DeGeest Jan 2008 A1
20080021521 Shah Jan 2008 A1
20080027679 Shklarski Jan 2008 A1
20080033273 Zhou Feb 2008 A1
20080045843 Tsuji et al. Feb 2008 A1
20080046038 Hill Feb 2008 A1
20080051667 Goldreich Feb 2008 A1
20080051767 Rossing et al. Feb 2008 A1
20080058614 Banet Mar 2008 A1
20080062856 Feher Mar 2008 A1
20080065168 Bitton et al. Mar 2008 A1
20080074307 Boric-Lubecke Mar 2008 A1
20080077015 Boric-Lubecke Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080077188 Denker et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091114 Min Apr 2008 A1
20080097549 Colbaugh Apr 2008 A1
20080097917 Dicks Apr 2008 A1
20080099366 Niemiec et al. May 2008 A1
20080103440 Ferren et al. May 2008 A1
20080112885 Okunev et al. May 2008 A1
20080114224 Bandy et al. May 2008 A1
20080119705 Patel May 2008 A1
20080119716 Boric-Lubecke May 2008 A1
20080137566 Marholev Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080140403 Hughes et al. Jun 2008 A1
20080146871 Arneson et al. Jun 2008 A1
20080146889 Young Jun 2008 A1
20080146892 LeBoeuf Jun 2008 A1
20080154104 Lamego Jun 2008 A1
20080166992 Ricordi Jul 2008 A1
20080183245 Van Oort Jul 2008 A1
20080188837 Belsky et al. Aug 2008 A1
20080194912 Trovato et al. Aug 2008 A1
20080208009 Shklarski Aug 2008 A1
20080214901 Gehman Sep 2008 A1
20080214985 Yanaki Sep 2008 A1
20080243020 Chou Oct 2008 A1
20080249360 Li Oct 2008 A1
20080262320 Schaefer et al. Oct 2008 A1
20080262336 Ryu Oct 2008 A1
20080269664 Trovato et al. Oct 2008 A1
20080275312 Mosesov Nov 2008 A1
20080284599 Zdeblick et al. Nov 2008 A1
20080288026 Cross et al. Nov 2008 A1
20080288027 Kroll Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080300572 Rankers Dec 2008 A1
20080303638 Nguyen Dec 2008 A1
20080306357 Korman Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080306360 Robertson et al. Dec 2008 A1
20080306362 Davis Dec 2008 A1
20080311852 Hansen Dec 2008 A1
20080312522 Rowlandson Dec 2008 A1
20080316020 Robertson Dec 2008 A1
20090009332 Nunez et al. Jan 2009 A1
20090024045 Prakash Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030297 Miller Jan 2009 A1
20090034209 Joo Feb 2009 A1
20090043171 Rule Feb 2009 A1
20090048498 Riskey Feb 2009 A1
20090062634 Say et al. Mar 2009 A1
20090062670 Sterling Mar 2009 A1
20090069642 Gao Mar 2009 A1
20090069655 Say et al. Mar 2009 A1
20090069656 Say et al. Mar 2009 A1
20090069657 Say et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069724 Otto et al. Mar 2009 A1
20090076340 Libbus et al. Mar 2009 A1
20090076343 James Mar 2009 A1
20090076350 Bly et al. Mar 2009 A1
20090076397 Libbus et al. Mar 2009 A1
20090082645 Hafezi et al. Mar 2009 A1
20090088618 Arneson Apr 2009 A1
20090099435 Say et al. Apr 2009 A1
20090110148 Zhang Apr 2009 A1
20090112626 Talbot Apr 2009 A1
20090124871 Arshak May 2009 A1
20090131774 Sweitzer May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090157113 Marcotte Jun 2009 A1
20090157358 Kim Jun 2009 A1
20090161602 Matsumoto Jun 2009 A1
20090163789 Say et al. Jun 2009 A1
20090171180 Pering Jul 2009 A1
20090173628 Say et al. Jul 2009 A1
20090177055 Say et al. Jul 2009 A1
20090177056 Say et al. Jul 2009 A1
20090177057 Say et al. Jul 2009 A1
20090177058 Say et al. Jul 2009 A1
20090177059 Say et al. Jul 2009 A1
20090177060 Say et al. Jul 2009 A1
20090177061 Say et al. Jul 2009 A1
20090177062 Say et al. Jul 2009 A1
20090177063 Say et al. Jul 2009 A1
20090177064 Say et al. Jul 2009 A1
20090177065 Say et al. Jul 2009 A1
20090177066 Say et al. Jul 2009 A1
20090182206 Najafi Jul 2009 A1
20090182212 Say et al. Jul 2009 A1
20090182213 Say et al. Jul 2009 A1
20090182214 Say et al. Jul 2009 A1
20090182215 Say et al. Jul 2009 A1
20090182388 Von Arx Jul 2009 A1
20090187088 Say et al. Jul 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187090 Say et al. Jul 2009 A1
20090187091 Say et al. Jul 2009 A1
20090187092 Say et al. Jul 2009 A1
20090187093 Say et al. Jul 2009 A1
20090187094 Say et al. Jul 2009 A1
20090187095 Say et al. Jul 2009 A1
20090187381 King et al. Jul 2009 A1
20090192351 Nishino Jul 2009 A1
20090192368 Say et al. Jul 2009 A1
20090192369 Say et al. Jul 2009 A1
20090192370 Say et al. Jul 2009 A1
20090192371 Say et al. Jul 2009 A1
20090192372 Say et al. Jul 2009 A1
20090192373 Say et al. Jul 2009 A1
20090192374 Say et al. Jul 2009 A1
20090192375 Say et al. Jul 2009 A1
20090192376 Say et al. Jul 2009 A1
20090192377 Say et al. Jul 2009 A1
20090192378 Say et al. Jul 2009 A1
20090192379 Say et al. Jul 2009 A1
20090198115 Say et al. Aug 2009 A1
20090198116 Say et al. Aug 2009 A1
20090198175 Say et al. Aug 2009 A1
20090203964 Shimizu et al. Aug 2009 A1
20090203971 Sciarappa Aug 2009 A1
20090203972 Heneghan Aug 2009 A1
20090203978 Say et al. Aug 2009 A1
20090204265 Hackett Aug 2009 A1
20090210164 Say et al. Aug 2009 A1
20090216101 Say et al. Aug 2009 A1
20090216102 Say et al. Aug 2009 A1
20090227204 Robertson et al. Sep 2009 A1
20090227876 Tran Sep 2009 A1
20090227940 Say et al. Sep 2009 A1
20090227941 Say et al. Sep 2009 A1
20090228214 Say et al. Sep 2009 A1
20090231125 Baldus Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090243833 Huang Oct 2009 A1
20090253960 Takenaka et al. Oct 2009 A1
20090256702 Robertson Oct 2009 A1
20090264714 Chou Oct 2009 A1
20090264964 Abrahamson Oct 2009 A1
20090265186 Tarassenko et al. Oct 2009 A1
20090273467 Elixmann Nov 2009 A1
20090281539 Selig Nov 2009 A1
20090292194 Libbus et al. Nov 2009 A1
20090295548 Ronkka Dec 2009 A1
20090296677 Mahany Dec 2009 A1
20090301925 Alloro et al. Dec 2009 A1
20090303920 Mahany Dec 2009 A1
20090312619 Say et al. Dec 2009 A1
20090318761 Rabinovitz Dec 2009 A1
20090318779 Tran Dec 2009 A1
20090318783 Rohde Dec 2009 A1
20090318793 Datta Dec 2009 A1
20100010330 Rankers Jan 2010 A1
20100033324 Shimizu et al. Feb 2010 A1
20100049006 Magar Feb 2010 A1
20100049012 Dijksman et al. Feb 2010 A1
20100049069 Tarassenko et al. Feb 2010 A1
20100049263 Reeve Feb 2010 A1
20100056878 Partin Mar 2010 A1
20100056891 Say et al. Mar 2010 A1
20100056939 Tarassenko et al. Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100062709 Kato Mar 2010 A1
20100063438 Bengtsson Mar 2010 A1
20100063841 D'Ambrosia et al. Mar 2010 A1
20100069002 Rong Mar 2010 A1
20100069717 Hafezi et al. Mar 2010 A1
20100099967 Say et al. Apr 2010 A1
20100099968 Say et al. Apr 2010 A1
20100099969 Say et al. Apr 2010 A1
20100100077 Rush Apr 2010 A1
20100100078 Say et al. Apr 2010 A1
20100106001 Say et al. Apr 2010 A1
20100118853 Godfrey May 2010 A1
20100139672 Kroll et al. Jun 2010 A1
20100160742 Seidl et al. Jun 2010 A1
20100168659 Say et al. Jul 2010 A1
20100179398 Say et al. Jul 2010 A1
20100191073 Tarassenko et al. Jul 2010 A1
20100210299 Gorbachov Aug 2010 A1
20100222652 Cho Sep 2010 A1
20100228113 Solosko Sep 2010 A1
20100234706 Gilland Sep 2010 A1
20100234715 Shin Sep 2010 A1
20100234914 Shen Sep 2010 A1
20100245091 Singh Sep 2010 A1
20100249881 Corndorf Sep 2010 A1
20100256461 Mohamedali Oct 2010 A1
20100259543 Tarassenko et al. Oct 2010 A1
20100268048 Say et al. Oct 2010 A1
20100268049 Say et al. Oct 2010 A1
20100268050 Say et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100280345 Say et al. Nov 2010 A1
20100280346 Say et al. Nov 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298730 Tarassenko et al. Nov 2010 A1
20100311482 Lange Dec 2010 A1
20100312580 Tarassenko et al. Dec 2010 A1
20110004079 Al-Ali et al. Jan 2011 A1
20110065983 Hafezi et al. Mar 2011 A1
20110081860 Brown et al. Apr 2011 A1
20110124983 Kroll et al. May 2011 A1
20110144470 Mazar et al. Jun 2011 A1
20110166937 Bangera et al. Jul 2011 A1
20110237924 McGusty et al. Sep 2011 A1
20110279963 Kumar et al. Nov 2011 A1
20120016231 Westmoreland Jan 2012 A1
20120029307 Paquet et al. Feb 2012 A1
20120029309 Paquet et al. Feb 2012 A1
20120071743 Todorov et al. Mar 2012 A1
20120083715 Yuen et al. Apr 2012 A1
20120089000 Bishay et al. Apr 2012 A1
20120101396 Solosko et al. Apr 2012 A1
20120197144 Christ et al. Aug 2012 A1
20120299723 Hafezi et al. Nov 2012 A1
20120310070 Kumar et al. Dec 2012 A1
20120316413 Liu et al. Dec 2012 A1
20130030259 Thomsen et al. Jan 2013 A1
20130057385 Murakami et al. Mar 2013 A1
20130060115 Gehman et al. Mar 2013 A1
20140300490 Kotz et al. Oct 2014 A1
20150080677 Thompson et al. Mar 2015 A1
20150080678 Frank et al. Mar 2015 A1
20150080679 Frank et al. Mar 2015 A1
20150080680 Zdeblick et al. Mar 2015 A1
20150080681 Hafezi et al. Mar 2015 A1
20150127737 Thompson et al. May 2015 A1
20150127738 Thompson et al. May 2015 A1
20150182170 Zdeblick et al. Jul 2015 A1
20150248833 Arne et al. Sep 2015 A1
20160204883 Pullela Jul 2016 A1
Foreign Referenced Citations (156)
Number Date Country
1588649 Mar 2005 CN
1991868 Jul 2007 CN
101005470 Jul 2007 CN
101032396 Sep 2007 CN
201076456 Jun 2008 CN
10313005 Oct 2004 DE
1246356 Oct 2002 EP
1789128 May 2007 EP
2063535 May 2009 EP
2143369 Jan 2010 EP
61072712 Apr 1986 JP
S62112529 May 1987 JP
05228128 Sep 1993 JP
1014898 Jan 1998 JP
2000506410 May 2000 JP
2002224053 Aug 2002 JP
2002282219 Oct 2002 JP
2002291684 Oct 2002 JP
2003050867 Feb 2003 JP
2004007187 Jan 2004 JP
2004313242 Nov 2004 JP
2005073886 Mar 2005 JP
2005304880 Apr 2005 JP
2005137683 Jun 2005 JP
2005532841 Nov 2005 JP
2005532849 Nov 2005 JP
2006508752 Mar 2006 JP
2006509574 Mar 2006 JP
2006136405 Jun 2006 JP
2006177699 Jul 2006 JP
2007167448 Jul 2007 JP
2007313340 Dec 2007 JP
2008011865 Jan 2008 JP
2008501415 Jan 2008 JP
2008086390 Apr 2008 JP
2008191110 Aug 2008 JP
2009528909 Aug 2009 JP
927471 Nov 2009 KR
10-2012-09995 Sep 2012 KR
553735 Sep 2003 TW
200724094 Jul 2007 TW
WO8802237 Apr 1988 WO
WO9308734 May 1993 WO
WO9319667 Oct 1993 WO
WO9714112 Apr 1997 WO
WO9843537 Oct 1998 WO
WO9959465 Nov 1999 WO
WO0033246 Jun 2000 WO
WO0100085 Jan 2001 WO
WO0147466 Jul 2001 WO
WO0174011 Oct 2001 WO
WO0180731 Nov 2001 WO
WO0245489 Jun 2002 WO
WO02058330 Jul 2002 WO
WO02062276 Aug 2002 WO
WO02087681 Nov 2002 WO
WO03050643 Jun 2003 WO
WO2004014225 Feb 2004 WO
WO2004039256 May 2004 WO
WO2004059551 Jul 2004 WO
WO2004066834 Aug 2004 WO
WO2004068748 Aug 2004 WO
WO2004068881 Aug 2004 WO
WO2004075751 Sep 2004 WO
WO2004109316 Dec 2004 WO
WO2005011237 Feb 2005 WO
WO2005013503 Feb 2005 WO
WO2005020023 Mar 2005 WO
WO2005024687 Mar 2005 WO
WO2005041767 May 2005 WO
WO2005047837 May 2005 WO
WO2005051166 Jun 2005 WO
WO2005055448 Jun 2005 WO
WO2005082436 Sep 2005 WO
WO2005110238 Nov 2005 WO
WO2006027586 Mar 2006 WO
WO2006035351 Apr 2006 WO
WO2006046648 May 2006 WO
WO2006055892 May 2006 WO
WO2006055956 May 2006 WO
WO2006066566 Jun 2006 WO
WO2006075016 Jul 2006 WO
WO2006100620 Sep 2006 WO
WO2006104843 Oct 2006 WO
WO2006109072 Oct 2006 WO
WO2006116718 Nov 2006 WO
WO2006119345 Nov 2006 WO
WO2006127355 Nov 2006 WO
WO2007001724 Jan 2007 WO
WO2007001742 Jan 2007 WO
WO2007013952 Feb 2007 WO
WO2007014084 Feb 2007 WO
WO2007014527 Feb 2007 WO
WO2007021496 Feb 2007 WO
WO2007027660 Mar 2007 WO
WO2007028035 Mar 2007 WO
WO2007036687 Apr 2007 WO
WO2007036741 Apr 2007 WO
WO2007036746 Apr 2007 WO
WO2007040878 Apr 2007 WO
WO2007071180 Jun 2007 WO
WO2007096810 Aug 2007 WO
WO2007101141 Sep 2007 WO
WO2007120946 Oct 2007 WO
WO2007127316 Nov 2007 WO
WO2007127455 Nov 2007 WO
WO2007127879 Nov 2007 WO
WO2007128165 Nov 2007 WO
WO2007130491 Nov 2007 WO
WO2007143535 Dec 2007 WO
WO2007149546 Dec 2007 WO
WO2008002239 Jan 2008 WO
WO2008008281 Jan 2008 WO
WO2008030482 Mar 2008 WO
WO2008052136 May 2008 WO
WO2008063626 May 2008 WO
WO2008066617 Jun 2008 WO
WO2008076464 Jun 2008 WO
WO2008089232 Jul 2008 WO
WO2008091683 Jul 2008 WO
WO2008095183 Aug 2008 WO
WO2008097652 Aug 2008 WO
WO2008101107 Aug 2008 WO
WO2008112577 Sep 2008 WO
WO2008112578 Sep 2008 WO
WO2008120156 Oct 2008 WO
WO2008133394 Nov 2008 WO
WO2008134185 Nov 2008 WO
WO2008150633 Dec 2008 WO
WO2009001108 Dec 2008 WO
WO2009006615 Jan 2009 WO
WO2009029453 Mar 2009 WO
WO2009031149 Mar 2009 WO
WO2009036334 Mar 2009 WO
WO2009051829 Apr 2009 WO
WO2009051830 Apr 2009 WO
WO2009063377 May 2009 WO
WO2009081348 Jul 2009 WO
WO2009111664 Sep 2009 WO
WO2009146082 Dec 2009 WO
WO2010009100 Jan 2010 WO
WO2010011833 Jan 2010 WO
WO2010019778 Feb 2010 WO
WO2010057049 May 2010 WO
WO2010075115 Jul 2010 WO
WO2010080843 Jul 2010 WO
WO2010105053 Sep 2010 WO
WO2010107563 Sep 2010 WO
WO2010115194 Oct 2010 WO
WO2010132331 Nov 2010 WO
WO2010135516 Nov 2010 WO
WO2012104657 Aug 2012 WO
WO2012158190 Nov 2012 WO
WO2013012869 Jan 2013 WO
WO2015042411 Mar 2015 WO
WO2015112603 Jul 2015 WO
Non-Patent Literature Citations (68)
Entry
International Search Report and Written Opinion for PCT/IB2013/059084 dated Jun. 20, 2014 (7 pages).
AADE, “AADE 37th Annual Meeting San Antonio Aug. 4-7, 2010” American Association of Diabetes Educators (2010); http://www.diabeteseducator.org/annualmeeting/2010/index.html; 2 pp.
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, 12 pp.
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. for Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pp.
Au-Yeung, K., et al., “A Networked System for Self-Management of Drug Therapy and Wellness”, Wireless Health '10, Oct. 5-7, 2010, San Diego, 9 pages.
Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; (2003); abstract.
Barrie, Heidelberg pH capsule gastric analysis. Texbook of Natural Medicine, (1992), Pizzorno, Murray & Barrie.
Baskiyar, S. “A Real-time Fault Tolerant Intra-body Network” Dept. of Comp. Sci & Soft Eng; Auburn University; Proceedings of the 27th Annual IEEE Conference; 0742-1303/02 (2002) IEEE; 6 pp.
Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-010.pdf.
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53.
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastoenterology (2008) vol. 22, Issue 5, pp. 813-837.
Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTA—Web/documents/ME/ePatch—ECG—EMG.pdf, Dated Sep. 2, 2010.
Evanczuk, S., “PIC MCU software library uses human body for secure communications link” EDN Network; edn.com; Feb. 26 (2013) Retrieved from internet Jun. 19, 2013 at http://www.edn.com/electronics-products/other/4407842/PIC-MCU-software-library-uses-human-body-for-secure-communications-link; 5 pp.
Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band-Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (2008); http://www.asic.fh-offenburg.de/downloads/ePille/IFIP—IEEE—Dubai—Conference.pdf.
Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. (2002), p. 1-43.
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure—Global—GMB-0118-01.pdf; 4pp.
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12: 2231-6; abstract.
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html.
Halthion Medical Technologies “Providing Ambulatory Medical Devices Which Monitor, Measure and Record” webpage. Online website: http://www.halthion.com/; downloaded May 30, 2012.
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16.
Hoover et al., “Rx for health: Engineers design pill that signals it has been swallowed” University of Florida News (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/.
Hotz “The Really Smart Phone” The Wall Street Journal, What They Know (2011); 6 pp.; http://online.wsj.com/article/SB10001424052748704547604576263261679848814.html?mod=djemTECH—t.
Intromedic, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp).
ISFET—Ion Sensitive Field-Effect Transistor; Microsens S.A. pdf document. First cited by Examiner in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp.
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp.
Juvenile Diabetes Research Foundation International (JDRF), “Artificial Pancreas Project” (2010); http://www.artificialpancreasproject.com/; 3 pp.
Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48.
Lifescan, “OneTouch UltraLink™” http://www.lifescan.com/products/meters/ultralink (2010) 2 pp.
Mackay et al., “Radio Telemetering from within the Body” Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C.
MacKay et al., “Endoradiosonde” Nature, (1957) 1239-1240, 179 Nature Publishing Group.
McKenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11.
Medtronic, “CareLink Therapy Management Software for Diabetes” (2010); https://carelink.minimed.com/patient/entry.jsp?bhcp=1; 1 pp.
Medtronic, “Carelink™ USB” (2008) http://www.medtronicdiabetes.com/pdf/carelink—usb—factsheet.pdf 2pp.
Medtronic “The New MiniMed Paradigm® Real-Time Revel™ System” (2010) http://www.medtronicdiabetes.com/products/index.html; 2 pp.
Medtronic, “Mini Med Paradigm® Revel™ Insulin Pump” (2010) http://www.medtronicdiabetes.com/products/insulinpumps/index.html; 2 pp.
Medtronic, Mini Med Paradigm™ Veo™ System: Factsheet (2010). http://www.medtronic-diabetes.com.au/downloads/Paradigm%20Veo%20Factsheet.pdf ; 4 pp.
Melanson, “Walkers swallow RFID pills for science” Engadget (2008); http://www.engadget.com/2008/07/29/walkers-swallow-rfid-pills-for-science/.
Minimitter Co. Inc. “Actiheart” Traditional 510(k) Summary. Sep. 27, 2005.
Minimitter Co. Inc. Noninvasive technology to help your studies succeed. Mini Mitter.com Mar. 31, 2009.
Mini Mitter Co, Inc. 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. Sep. 21, 1999.
Mini Mitter Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004.
Minimitter Co. Inc. VitalSense Integrated Physiological Monitoring System. Product Description. (2005).
Minimitter Co. Inc. VitalSense Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009.
Mojaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7.
“New ‘smart pill’ to track adherence” E-Health-Insider (2010) http://www.e-health-insider.com/news/5910/new—‘smart—pil’—monitors—medicines.
Owano, N., “Study proposes smart sutures with sensors for wounds” phys.org. Aug. 2012. http://phys.org/news/2012-08-smart-sutures-sensors-wounds.html.
Park, “Medtronic to Buy MiniMed for $3.7 Billion” (2001) HomeCare; http://homecaremag.com/mag/medical—medtronic—buy—minimed/; 2 pp.
Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 5 pages.
“RFID “pill” monitors marchers” RFID News (2008) http://www.rfidnews.org/2008/07/23/rfid-pill-monitors-marchers/.
Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8.
Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407.
“SensiVida minimally invasive clinical systems” Investor Presentation Oct. 2009 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf.
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), p. 329-334.
Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010).; http://www.cumminscollege.org/downloads/electronics—and—telecommunication/Newsletters/Current%20Newsletters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010 (2010).
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. (2009).
“The SmartPill Wireless Motility Capsule” Smartpill, The Measure of GI Health; (2010) http://www.smartpillcorp.com/index.cfm?pagepath=Products/The—SmartPill—Capsule&id=17814.
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31.
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007).
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal Apr. 27, 2010; http://www.rfidjournal.com/article/view/7560/1.
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Springer Berlin Heidelberg (2008) 21-30.
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72.
Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006.
Xiaoming et al., “A telemedicine system for wireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6.
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52.
Yao et al., “Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues” Proceedings of the 28th IEEE, EMBS Annual International Conference, Aug. 30-Sep. 3, 2006.
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17.
Zworkin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group.
Walkey, David J., 97.398, Physical Electronics, Lecture 20, MOSFET Structure and Processing, Carleton University, Ottawa, Canada, Oct. 26, 2008 (24 pages).
Related Publications (1)
Number Date Country
20160226697 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
61881555 Sep 2013 US