Rogers et al., “The Removal of Nitric Oxide using a Non-Thermal Plasma Discharge Device”, http.//www.gnt.nct/-rogersjw/nox/noxohtm1. |
Southwest Research Institute (SwRI) News release, 1996, “SwRI nonthermal plasma reactor neutralizes harmful emissions”, htpp://www.swri.org/9what/release/plasma.htm. |
Kintaichi, et al., “Selective Reduction of Nitrogen Oxides with Hydrocarbons Over Solid Acid Catalysts in Oxygen Rich Atmoshperes”, Catalysis Letters 6 (1990) 239-244. |
Plasma Exhaust Aftertreatment, SAE SP-98/1395, Library of Congress Card No.: 98-86679, Copyright © 1998 Society of Automotive Engineers, Inc. |
Suhr et al., “Reduction of Nitric Oxide in Flue Gases by Point to Plane Corona Discharge with Catalytical Coatings on the Plane Electrode,” Combust. Sci. and Tech., vol. 72. pp. 101-115. |
Penetrante et al., “Comparison of Electrical Discharge Techniques for Nonthermal Plasma Processing of NO in N2, ” IEEE Transactions on Plasma Science, vol. 23, No. 4, Aug. 1995, 679-687. |
Whealton et al., “971718 Non-Thermal Plasma Exhaust Aftertreatment: A Fast Rise-Time Concept,” Manuscript based on work performed at the Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corporation for the U.S. Dept. of Energy under contract No. DE-AC05-96OR22464, 1-14. |
Fanick et al., “Simultaneous Reduction of Diesel Particulate and NOx Using a Plasma,” SAE Technical Paper Series 942070, 239-246. |
Hepburn et al., “The Pulse Flame Combustor Revisited,” 962118 Ford Motor Co., 1-36. |
Sztenderowicz et al., of Chevron Research and Technology Co. et al., “Effects of Fuel Sulfur Level on Emissions from Transitional Low Emission Vehicles,” 952561, 2067-2082. |
Burch et al., “Mechanism of the Selective Reduction of Nitric Oxide by Propene on Platinum-Based Catalysts in the Presence of Excess Oxygen,” Symposium on Nox Reduction before the Division of Petroleum Chemistry, Inc. 207th National Meeting, American Chemical Society, San Diego, CA, Mar. 13-18, 1994, pp150-153. |
Liu et al., “In Situ XANES Characterization of Cu in Cu-ZSM-5 during Selective Catalytic Reduction of NO by Hydrocarbon,” Symposium on Nox Reduction Presented before the Division of Petroleum Chemistry, Inc. 207th National Meeting, American Chemical Society, San Diego, CA, Mar. 13-18, 1994, pp107-111. |
Yasuda et al., “IR Study of Catalytic Reduction of Nitrogen Monoxide by Propene in the Presence of Oxygen over Ce-Exchanged ZSM-5 Zeolite,” Symposium on NOx Reduction Presented before the Division of Petroleum Chemistry, Inc. 207th National Meeting, American Chemical Society, San Diego, CA, Mar. 13-18, 1994, pp 99-102. |
Yamamoto, T. et al., “Control of Volatile Organic Compounds by an ac Energized Ferroelectric Pellet Reactor and a Pulsed Corona Reactor,” IEEE Transactions on Industry Applications, vol. 128. No. 3, pp528-534 (1992). |
Chang, M.B. et al., “Gas-Phase Removal on NO from Gas Streams via Dielectric Barrier Discharges,” Environ. Sci. technol., vol. 26, pp777-781 (1992). |
Chang, J-S. Et al., “Corona Discharge Processes,” IEEE Transaction on Plasma Science, vol. 19, pp1152-1165 (1991). |
Eliasson, B., “Nonequilibrium Volume Plasma Chemical Processing,” Environ. Sci. Tehcnol., vol. 19 pp1063-1077 (1991). |
Hamada et al., “Selective reduction of nitrogen monoxide with propane over alumina and HZSM-5 zeolite,” “Effect of oxygen and nitrogen dioxide intermediate,” Applied Catalysis, 70(1991) L15-L20. |
Hamada et al., “Transition metal-promoted silica and alumina catalysts for the selective reduction of nitrogen monoxide with propane,” Applied Catalysis, 70 (1991) L1-L8. |
Mizuno, A., et al., “A Method for the Removal of Sulfur Dioxide from Exhaust Gas Utilizing Pulsed Streamer Corona for Electron Energization,” IEEE Transactions on Industry Applications, 1986, vol. 22, p516. |
Penetrante, et al., “Non-Thermal Plasma Techniques for Pollution Control—Part A: Overview, Fundamentals and Supporting Technologies”, (1993) p. 65 (Springer-Verlag, Berlin). |