The above needs are at least partially met through provision of the method and apparatus for remote control described in the following detailed description, particularly when studied in conjunction with the drawings, wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are typically not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention.
Generally speaking, pursuant to these various embodiments, an RF transmitter is provided for controlling operation of a barrier movement operator, such as a garage door opener. The ability of the RF transmitter to function when it is distant from a vehicle in which is normally used is, however, limited. In other words, if the RF transmitter is too far away from the vehicle, the RF transmitter will not function to transmit an RF signal to a garage door opener to cause a garage door to open and close. For example, the optimal distance may be 10-30 feet depending on the embodiment. Alternatively, the RF transmitter may be adapted to function only within a certain proximity of some object other than a vehicle, such as, for example, a Radio Frequency Identifier (“RFID”) card within a user's wallet or coupled to a keychain. This distance restriction is implemented for safety purposes so that in the event that, for example, the RF transmitter is stolen or lost, it cannot be used to cause the garage door opener to open the garage door by a third party. Because it is known someone either within or near the vehicle will normally use the RF transmitter, this restriction is made and may be used to prevent unauthorized usage.
In an embodiment, a secondary RF transmitter may be placed within the vehicle and may periodically broadcast an identification signal. If the primary RF transmitter receives the identification signal, it is subsequently allowed to transmit an RF signal to the garage door opener to open or close the garage door. In some embodiments, the primary RF transmitter cannot transmit an RF signal unless it has received the identification signal within a predetermined time period. In other embodiments, the primary RF transmitter can still transmit the RF signal regardless of whether the identification signal has been received from the secondary transmitter. However, in order to operate, the garage door operator would need to receive a certain code from the primary RF transmitter. This code may be received from the secondary RF transmitter via the identification signal. In this embodiment, the secondary RF transmitter is located with the vehicle. For example, it may be stored separately from the primary RF transmitter, for example, in a glove box, on visor, or anywhere else in the vehicle. In some embodiments, the secondary RF transmitter is permanently fixed in the vehicle. In other embodiments, the secondary RF transmitter is movable. In embodiments where the secondary RF transmitter is fixed inside the vehicle, the secondary RF transmitter may be mounted onto the dashboard or to an armrest or fixedly mounted at any other suitable place in the vehicle. The identification signal may include a rolling or fixed code. In some embodiments, an RF signal must be transmitted to the garage door opener within a predetermined time limit (such as 60 seconds) or the primary RF transmitted will wait until it receives a new identification signal from the secondary transmitter prior to transmitting the RF signal to the garage door opener.
The primary RF transmitter may be associated with a specific vehicle. The association may be made when the vehicle is manufactured. Alternatively, a learning process may be implemented to make this association. During the learning process, a vehicle identification code may be received from the secondary transmitter and stored in a memory of the primary transmitter. After the learning process is completed, the primary transmitter may be controlled so that an RF signal is transmitted to the garage door opener only after a signal containing the same vehicle identification code has been received from the secondary transmitter.
In another embodiment, a RFID device may be utilized. In such embodiments, instead of intermittently broadcasting the identification signal at certain intervals, the identification signal may instead be transmitted via RFID technology. For example, a user may depress a button on the RF transmitter, causing an RF signal to be transmitted to the RFID device. Upon receiving the RF signal, the RFID device transmits the identification signal to the RF transmitter. In some embodiments, the RFID tag is in communication with a transmitter and utilizes power from the received signal to transmit the identification signal. In other embodiments, the transmitter receives power from a battery or other power source to transmit the identification signal.
Referring now to drawings and especially to
The garage door operator 10 also includes a head unit 24 for providing motion to the garage door 16 via a rail assembly 26. The rail assembly 26 includes a trolley 28 for releasable connection of the head unit 24 to the garage door 16 via an arm 30. The arm 30 is connected to an upper portion 32 of the garage door 16 for opening and closing it. The trolley 28 is connected to an endless chain to be driven thereby. The chain is driven by a sprocket in the head unit 24. The sprocket acts as a power takeoff for an electric motor located in the head unit 24.
The head unit 24 includes a radio frequency receiver 50, as may best be seen in
A wall control unit 60 communicates over a line 62 with the head unit microcontroller 56 to effect control of a garage door operator motor 70, and a light 72 via relay logic 74 connected to the microcontroller 56. The entire head unit 24 is powered from a power supply 76. In addition, the garage door operator 10 includes an obstacle detector 78 which optically or via an infrared pulsed beam detects when the garage door opening 22 is blocked and signals the microcontroller 56 of the blockage. The microcontroller 56 then causes a reversal or opening of the door 16. In addition, a position indicator 80 indicates to the head unit microcontroller 56, through at least part of the travel of the door 16, the door position so that the microcontroller 56 can control the close position and the open position of the door 16 accurately
The primary transmitter 102 is utilized by a user 108. The ability of the primary transmitter 102 to function when it is distant from the vehicle 106 in which it normally used is, however, removed. In other words, if the primary transmitter 102 is too far away from the vehicle 106, the primary transmitter 102 will not function to transmit an RF signal to the head unit 24 of the garage door opener to cause a garage door to open and close. For example, the optimal distance may be 10-30 feet depending on the embodiment. This distance restriction is implemented for safety purposes so that in the event that, for example, the primary transmitter 102 is stolen or lost, it cannot be used to cause the garage door opener 10 to open the garage door 16 by a third party. Because it is known that the primary transmitter 102 will normally be used by someone either within or near the vehicle 106, this restriction is made to prevent unauthorized usage.
In order to control whether the primary transmitter 102 may be utilized to cause the head unit to open or close the garage door 16, the second transmitter 104 is utilized to broadcast an identification signal that is to be received by the primary transmitter 102. The identification signal may be a rolling or fixed code transmitted at a predictable rate by the second transmitter 104. If the primary transmitter 102 receives the identification signal from the secondary transmitter 104, it is subsequently allowed to transmit an RF signal to the garage door opener to open the garage door 16. In some embodiments, the primary transmitter 102 cannot transmit an RF signal to the garage door opener unless it has received the identification signal within a predetermined time period. For example, there may be a time limitation such that the primary transmitter 102 can only transmit an RF signal to the garage door opener 10 to perform certain functions within 60 seconds of receiving the identification signal from the secondary transmitter 104.
In other embodiments, the primary transmitter 102 can still transmit the RF signal regardless of whether the identification signal has been received from the secondary transmitter 104. However, in order to operate, the garage door operator 10 would need to receive a certain code from the primary transmitter 102. This code is received by the primary transmitter 102 via the identification signal transmitted by the secondary transmitter 104.
In this embodiment, the secondary transmitter 104 is located with the vehicle 106. For example, it may be stored separately from the primary transmitter 102, for example, in a glove box, on visor, or anywhere else in the vehicle 106. In some embodiments, the secondary transmitter 104 is permanently fixed in the vehicle 106. In other embodiments, the secondary transmitter 104 is movable. In embodiments where the secondary transmitter 106 is fixed inside the vehicle 106, the secondary transmitter 104 may be mounted onto the dashboard or to an arm rest or fixedly mounted at any other suitable place in the vehicle 106. In some embodiments, an RF signal must be transmitted to the garage door opener 10 within a predetermined time limit (such as 60 seconds) or the primary transmitter 102 will wait until it receives a new identification signal from the secondary transmitter 104 prior to transmitting the RF signal to the garage door opener 10.
The primary transmitter 102 is associated with the vehicle 106 to provide heightened security. In order for the use of the secondary transmitter 102 to provide additional security over current RF transmitters, there has to be a way to associate the primary transmitter 102 with the vehicle to prevent a thief or other third party from using an unauthorized RF transmitter in the place of the authorized primary transmitter 102. For example, the primary transmitter 102 may require that a predetermined vehicle identification code be received in the identification signal from the secondary transmitter 104 prior to transmitting an RF signal to the garage door opener 10.
One way of making this association is for a manufacturer of the vehicle 106 to install the secondary transmitter 104. For example, the primary transmitter 102 may be pre-loaded with a unique code transmitted by the secondary transmitter 104, such that the primary transmitter 102 will only transmit to the garage door opener 10 in the event that this vehicle identification code is received in the identification signal from the secondary transmitter 104. The vehicle identification code may be stored in a memory within the primary transmitter 102 and a code received from the secondary transmitter 104 may be matched against the pre-stored vehicle identification code.
Alternatively, a learning process may be implemented by a user 108 to make the association between the primary transmitter 102 and the vehicle 106. For example, the secondary transmitter 104 may be sold and/or manufactured separately from the primary transmitter 102. In the event that the user 108 has the secondary transmitter 104 installed within the vehicle 106, the user 108 may use the primary transmitter 102 to initiate the learning process. For safety purposes, the primary transmitter 102 may have a limitation on the number of times a code may be learned from the secondary transmitter 104. For example, the primary transmitter 102 may come with three memory slots, and the user 108 may cause the primary transmitter 102 to learn three vehicle identification codes, one of which will be stored in each of the three memory slots. This would allow a single primary transmitter 102 to be used in three different vehicles, each of which has a secondary transmitter 104 that transmits a different vehicle identification code. However, after the three memory slots have been used, the primary transmitter 102 is not able to learn any new codes. Accordingly, if the user 108 wants to associate the primary transmitter 102 with a fourth vehicle, another primary transmitter 102 would have to be purchased for use with the fourth vehicle. The limitation on the number of times a vehicle identification code may be learned prevents a thief from using an RF transmitter pre-loaded with thousands of codes to circumvent the additional security provided by use of the second transmitter 104.
To prevent the user 108 from accidentally/inadvertently causing the primary transmitter 102 to enter into the learning process, additional safeguards may be implemented. For example, in the event that the primary transmitter 102 includes a keypad, the user 108 may be required to enter a unique code or some other type of password via the keypad in order to enter into the learning process. Alternatively, the user 108 may be required to depress certain designated buttons on the primary transmitter 102 for a specified amount of time (such as a period of 7.5 seconds) in order to enter into the learning process.
Next, at operation 132, a timer within the primary transmitter 102 is initialized. For example, the timer may be initialized to 60 seconds. The timer is used to limit a time interval between when the identification signal is received and an RF signal may be transmitted to the garage door opener 10. Next, at operation 134, the primary transmitter 102 is enabled to transmit the RF signal to the garage door opener 10. At operation 136, a determination is made as to whether the timer has expired. If “no,” processing proceeds to operation 138. If “yes,” on the other hand, processing returns to operation 130 and the primary transmitter 102 waits until the next identification signal is received. At operation 138, a determination is made as to whether an input is received to transmit the RF signal to the garage door opener 10. The input may comprise a closing or opening of a switch or some other signal generated in response to, for example, a button on the primary transmitter 102 being depressed. If, at operation 138, no such input has been received, processing returns to operation 136. If, however, an input has been received, processing proceeds to operation 140 at which point the RF signal is transmitted. Finally, processing returns to operation 130.
The RFID device 204 may be stored within an automobile or near some other device where it will typically be used. A user 208 may hold the primary transmitter 202. When the user 208 desires access to the garage, the user may depress a button on the primary transmitter 202. The primary transmitter 202 may then broadcast an RF signal to request an identification signal from the RFID device 204. In response to receiving the RF signal, the RFID device 204 may transmit the identification signal to the primary transmitter 202. In some embodiments, the RFID device 204 is in communication with a transmitter or transceiver and utilizes power from the received signal to transmit the identification signal. In other embodiments, the transmitter in the RFID device 204 receives power from a battery or other power source to transmit the identification signal.
As with the secondary transmitter 104 of
The identification signal transmitted from the RFID device 204 to the primary transmitter 202 may be a rolling or fixed code transmitted at a predictable rate. If the primary transmitter 202 receives the identification signal from the RFID device 204, it is subsequently allowed to transmit an RF signal to the garage door opener 10 to open the garage door 16. In some embodiments, the primary transmitter 202 cannot transmit an RF signal to the garage door opener 10 unless it has received the identification signal within a predetermined time period. For example, there may be a time limitation such that the primary transmitter 202 can only transmit an RF signal to the garage door opener 10 to perform certain functions within 60 seconds of receiving the identification signal from the RFID device 204.
The primary transmitter 202 is associated with the vehicle 206 to provide heightened security. For example, the primary transmitter 202 may require that a predetermined vehicle identification code be received in the identification signal from the secondary transmitter 204 prior to transmitting an RF signal to the garage door opener 10. This vehicle identification code may be pre-stored or determined via a learning process similar to, or the same as, the process discussed above wit respect to
The primary transmitter 202 may include some, or all of elements as were described above with respect to the primary transmitter 102 of
Pursuant to the various embodiments described above, an RF transmitter is provided for controlling operation of a barrier movement operator, such as a garage door opener. The ability of the RF transmitter to function when it is distant from an identification transmitter located near where the RF transmitter is normally used is, however, limited.
A secondary RF transmitter may be placed within the vehicle or on the user's key chain or in the user's pocket, for example, and may periodically broadcast an identification signal. If the primary RF transmitter receives the identification signal, it is subsequently allowed to transmit an RF signal to the garage door opener to open or close the garage door. In some embodiments, the primary RF transmitter cannot transmit an RF signal unless it has received the identification signal within a predetermined time period. In other embodiments, the primary RF transmitter can still transmit the RF signal regardless of whether the identification signal has been received from the secondary transmitter. However, in order to operate, the garage door operator would need to receive a certain code from the primary RF transmitter. This code may be received from the secondary RF transmitter via the identification signal. In this embodiment, the secondary RF transmitter is located with the vehicle. The identification signal may include a rolling or fixed code. In some embodiments, an RF signal must be transmitted to the garage door opener within a predetermined time limit (such as 60 seconds) or the primary RF transmitted will wait until it receives a new identification signal from the secondary transmitter prior to transmitting the RF signal to the garage door opener.
The primary RF transmitter may be associated with a specific vehicle. A learning process may be implemented to make this association. During the learning process, a vehicle identification code may be received from the secondary transmitter and stored in a memory of the primary transmitter. After the learning process is completed, the primary transmitter may be controlled so that an RF signal is transmitted to the garage door opener only after a signal containing the same vehicle identification code has been received from the secondary transmitter.
In another embodiment, a Radio Frequency Identification (“RFID”) device may be utilized. In such embodiments, instead of intermittently broadcasting the identification signal at certain intervals, the identification signal may instead be transmitted via RFID technology. For example, a user may depress a button on the RF transmitter, causing an RF signal to be transmitted to the RFID device. Upon receiving the RF signal, the RFID device transmits the identification signal to the RF transmitter. In some embodiments, the RFID tag is in communication with a transmitter and utilizes power from the received signal to transmit the identification signal. In other embodiments, the transmitter receives power from a battery or other power source to transmit the identification signal.
Accordingly, the embodiments described above provide security to the owner of a garage door opener by removing the ability for a transmitter to function when it is distant from a vehicle in which it is normally used. By adding a secondary transmitter within the vehicle and requiring the primary transmitter to receive an identification signal from the secondary transmitter, the primary transmitter would have knowledge that it is close enough to the vehicle in order to activate the garage door opener to perform various functions.
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.