1. Technical Field
The present disclosure relates to electrosurgical instruments used for open and endoscopic surgical procedures for sealing or fusing tissue. More particularly, the present disclosure relates to a bipolar forceps for sealing vessels, vascular tissues and soft tissues by perforating vessels and/or tissue and applying energy in the vicinity of the perforated area to reduce energy consumption and facilitate extraction of collagen and elastin during an electrosurgical procedure.
2. Background of the Related Art
Open or endoscopic electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis. The electrode of each opposing jaw member is charged to a different electric potential such that when the jaw members grasp tissue, electrical energy can be selectively transferred through the tissue. A surgeon can cauterize, coagulate/desiccate and/or simply reduce or slow bleeding, by controlling the intensity, frequency and duration of the electrosurgical energy applied between the electrodes and through the tissue.
Certain surgical procedures require more than simply cauterizing tissue and rely on the combination of clamping pressure, electrosurgical energy and gap distance to “seal” tissue, vessels and certain vascular bundles. More particularly, vessel sealing or tissue sealing utilizes a unique combination of radiofrequency (RF) energy, clamping pressure and precise control of gap distance (i.e., distance between opposing jaw members when closed about tissue) to effectively seal or fuse tissue between two opposing jaw members or sealing plates. Vessel or tissue sealing is more than “cauterization”, which involves the use of heat to destroy tissue (also called “diathermy” or “electrodiathermy”). Vessel sealing is also more than “coagulation”, which is the process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” is defined as the process of liquefying the collagen, elastin and ground substances in the tissue so that the tissue reforms into a fused mass with significantly-reduced demarcation between the opposing tissue structures.
Existing electrosurgical forceps utilize a pair of jaw members having metal electrodes to grasp and hold tissue during a sealing procedure. The metal electrodes deliver RF energy to tissue and the electric current conducted by the tissue releases heat that eventually seals the tissue. This approach may be inefficient and result in unnecessary energy consumption. For instance, even if tissue between jaw members contains a single vessel, traditional RF energy-based tissue sealing instruments would seal the entire volume of tissue between the jaws that would lead to energy loss as well as increasing the possibility of collateral damage. Further, because electrodes are made from metal, which has high heat conductivity, such electrodes may be responsible for significant heat loss. Additionally, although grasping and holding tissue facilitates tissue damage and extracting and mixing of elastin and collagen, a sufficient amount of elastin and collagen is not released.
In an embodiment of the present disclosure, an end effector assembly is provided. The end effector assembly includes a pair of opposing jaw members configured to grasp tissue therebetween. Each of the opposing jaw members includes a non conducting tissue contact surface and an energy delivering element configured to perforate the tissue to create an opening, extract elastin and collagen from the tissue and denaturize the elastin and the collagen in the vicinity of the opening.
In another embodiment of the present disclosure, an electrosurgical instrument for sealing tissue is provided. The electrosurgical instrument may include a housing, a handle assembly and an end effector assembly. The end effector assembly includes a pair of opposing jaw members configured to grasp tissue therebetween. Each of the opposing jaw members includes a non conducting tissue contact surface and an energy delivering element configured to perforate the tissue to create an opening, extract elastin and collagen from the tissue and denaturize the elastin and the collagen in the vicinity of the opening.
In yet another embodiment of the present disclosure another electrosurgical instrument for sealing tissue is provided. The electrosurgical instrument may include a pair of opposing shafts with each shaft having a handle at the proximal end of the shaft. The instrument may also include an end effector assembly including a pair of opposing jaw members attached at a distal end of the pair of opposing shafts wherein the opposing jaw members move from a first position to a second position by moving the pair of opposing shafts relative to one another. Each of the opposing jaw members includes a non conducting tissue contact surface and an energy delivering element configured to perforate the tissue to create an opening, extract elastin and collagen from the tissue and denaturize the elastin and the collagen in the vicinity of the opening.
The energy delivering element includes a post electrode configured to apply energy to the tissue to perforate the tissue and to extract elastin and collagen from the tissue and a ring electrode to denaturize the elastin and the collagen in the vicinity of the opening. The post electrode and ring electrode may apply radio frequency energy, optical energy or a combination of both radiofrequency energy and optical energy.
In yet another embodiment of the present disclosure, a method for sealing tissue using an end effector assembly having a pair of opposing jaw member wherein each jaw member has at least one energy delivering element is provided. The method includes grasping tissue between the pair of opposing jaw members, applying a first energy from the energy delivering element to perforate the tissue to create an opening in the tissue and to extract elastin and collagen from the tissue and applying a second energy from the energy delivering element to denaturize the elastin and the collagen in the vicinity of the opening in the tissue.
Objects and features of the presently disclosed systems and methods will become apparent to those of ordinary skill in the art when descriptions of various embodiments thereof are read with reference to the accompanying drawings, of which:
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, the disclosed embodiments are merely examples of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Like reference numerals may refer to similar or identical elements throughout the description of the figures.
Electromagnetic energy is generally classified by increasing frequency or decreasing wavelength into radio waves, microwaves, infrared, visible light, ultraviolet, X-rays and gamma-rays. As used herein, the term “microwave” generally refers to electromagnetic waves in the frequency range of 300 megahertz (MHz) (3×108 cycles/second) to 300 gigahertz (GHz) (3×1011 cycles/second). As used herein, the term “RF” generally refers to electromagnetic waves having a lower frequency than microwaves. The terms “tissue” and “vessel” may be used interchangeably since it is believed that the present disclosure may be employed to seal and cut tissue or seal and cut vessels utilizing the same principles described herein.
As will be described in more detail below with reference to the accompanying figures, the present disclosure is directed to the use energy delivering elements having post electrodes and circle electrodes to reduce the consumption of energy during a vessel sealing procedure as well as increase the release of elastin and collagen from vessel walls.
Referring now to
The proximal end 14 of shaft 12 mechanically engages the rotating assembly 80 to facilitate rotation of the electrode assembly 105. In the drawings and in the descriptions that follow, the term “proximal”, as is traditional, will refer to the end of the forceps 10 that is closer to the user, while the term “distal” will refer to the end that is further from the user. Details relating to the mechanically cooperating components of the shaft 12 and the rotating assembly 80 are described in commonly-owned U.S. patent application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846, entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS” filed on Jun. 13, 2003.
Handle assembly 30 includes a fixed handle 50 and a movable handle 40. Fixed handle 50 is integrally associated with housing 20 and handle 40 is movable relative to fixed handle 50 to actuate the opposing jaw members 110 and 120 of the electrode assembly 105 as explained in more detail below. Movable handle 40 and switch assembly 70 are of unitary construction and are operatively connected to the housing 20 and the fixed handle 50 during the assembly process. Housing 20 is constructed from two component halves 20a and 20b, which are assembled about the proximal end of shaft 12 during assembly. Switch assembly is configured to selectively provide electrical energy to the electrode assembly 105.
As mentioned above, electrode assembly 105 is attached to the distal end 16 of shaft 12 and includes the opposing jaw members 110 and 120. Movable handle 40 of handle assembly 30 imparts movement of the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween.
Referring now to
Each shaft 112a and 112b includes a handle 117a and 117b disposed at the proximal end 114a and 114b thereof that each define a finger hole 118a and 118b, respectively, therethrough for receiving a finger of the user. As can be appreciated, finger holes 118a and 118b facilitate movement of the shafts 112a and 112b relative to one another, which, in turn, pivot the jaw members 110 and 120 from the open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another to the clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween. A ratchet 130 may be included for selectively locking the jaw members 110 and 120 relative to one another at various positions during pivoting.
More particularly, the ratchet 130 includes a first mechanical interface 130a associated with shaft 112a and a second mating mechanical interface associated with shaft 112b. Each position associated with the cooperating ratchet interfaces 130a and 130b holds a specific, i.e., constant, strain energy in the shaft members 112a and 112b, which, in turn, transmits a specific closing force to the jaw members 110 and 120. The ratchet 130 may include graduations or other visual markings that enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members 110 and 120.
As best seen in
One of the shafts, e.g. 112b, includes a proximal shaft connector/flange 140 that is designed to connect the forceps 100 to a source of electrosurgical energy such as an electrosurgical generator 500. More particularly, flange 140 mechanically secures electrosurgical cable 210 to the forceps 100 such that the user may selectively apply electrosurgical energy as needed.
As will be described below with reference to
Non-conductive tissue contacting surface 303 includes at least one energy delivering element 305 that includes a post electrode 306 and a ring electrode 307. Although shown as a circular-shape, ring electrode 307 may assume any other annular or enclosed configuration or alternatively partially enclosed configuration such as a C-shape arrangement. The post electrode 306 is concentrically centered within ring electrode 307. Each energy delivering element 305 on jaw member 110 has a corresponding energy delivering element 305 on jaw member 120 such that when the jaw members 110 and 120 are closed about tissue, electrosurgical energy flows from post electrode 306 on jaw member 110 to post electrode 306 on jaw member 120 or from ring electrode 307 on jaw member 110 to ring electrode 307 on jaw member 120. Energy delivering elements 305 may be arranged on tissue contacting surface 303 in a chess-like pattern as shown in
As shown in
The above described perforation of tissue may be performed by conducting RF energy between post electrodes 306 of jaw members 110 and 120 as described above or by a mechanical perforator or application of optical energy (e.g., by a laser). Energy applied for denaturizing elastin and collagen may be RF energy as described above or optical energy. In another embodiment, perforation and application of energy to denaturize elastin and collagen may be performed substantially simultaneously.
Generator 500 may also control activation of energy delivery elements 305 according to a routine stored in the generator or provided by the user. For instance, generator 500 may activate a single pair of opposing energy delivery elements 305 or multiple pairs of opposing energy delivery elements 305. The multiple pairs of opposing energy delivery elements may be activated according to a predetermined sequence or simultaneously.
The non-conductive tissue contacting surfaces 303 may include one or more stop members (not shown) configured to limit the movement of the two opposing jaw members 110 and 120 relative to one another to form a gap therebetween. It is envisioned that the stop members may be disposed on the non conductive tissue contacting surface 303 of one or both of the jaw members 110 and 120 depending upon a particular purpose or to achieve a particular result
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. The claims can encompass embodiments in hardware, software, or a combination thereof. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation application and claims the benefit of, and priority to, U.S. patent application Ser. No. 12/948,081, filed on Nov. 17, 2010, the entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
4617927 | Manes | Oct 1986 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
D343453 | Noda | Jan 1994 | S |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
D384413 | Zlock et al. | Sep 1997 | S |
D402028 | Grimm et al. | Dec 1998 | S |
D416089 | Barton et al. | Nov 1999 | S |
6030384 | Nezhat | Feb 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
D493888 | Reschke | Aug 2004 | S |
6773434 | Ciarrocca | Aug 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
D582038 | Swoyer et al. | Dec 2008 | S |
7655007 | Baily | Feb 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
D621503 | Otten et al. | Aug 2010 | S |
7776036 | Schechter et al. | Aug 2010 | B2 |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
D630324 | Reschke | Jan 2011 | S |
8147489 | Moses et al. | Apr 2012 | B2 |
8197633 | Guerra | Jun 2012 | B2 |
8298233 | Mueller | Oct 2012 | B2 |
8343151 | Siebrecht et al. | Jan 2013 | B2 |
8361072 | Dumbauld et al. | Jan 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8394095 | Garrison et al. | Mar 2013 | B2 |
8409246 | Kerr et al. | Apr 2013 | B2 |
8409247 | Garrison et al. | Apr 2013 | B2 |
8425511 | Olson | Apr 2013 | B2 |
8430877 | Kerr et al. | Apr 2013 | B2 |
8439913 | Horner et al. | May 2013 | B2 |
8469991 | Kerr | Jun 2013 | B2 |
8469992 | Roy et al. | Jun 2013 | B2 |
8480671 | Mueller | Jul 2013 | B2 |
8491624 | Kerr et al. | Jul 2013 | B2 |
8491625 | Horner | Jul 2013 | B2 |
8491626 | Roy et al. | Jul 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8540749 | Garrison et al. | Sep 2013 | B2 |
8551091 | Couture et al. | Oct 2013 | B2 |
8556929 | Harper et al. | Oct 2013 | B2 |
8568397 | Horner et al. | Oct 2013 | B2 |
8585736 | Horner et al. | Nov 2013 | B2 |
8597295 | Kerr | Dec 2013 | B2 |
8623018 | Horner et al. | Jan 2014 | B2 |
8641712 | Couture | Feb 2014 | B2 |
8647343 | Chojin et al. | Feb 2014 | B2 |
8652135 | Nau, Jr. | Feb 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8672939 | Garrison | Mar 2014 | B2 |
8685021 | Chernov et al. | Apr 2014 | B2 |
8734445 | Johnson et al. | May 2014 | B2 |
8740898 | Chojin et al. | Jun 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8795269 | Garrison | Aug 2014 | B2 |
8808288 | Reschke | Aug 2014 | B2 |
8814864 | Gilbert | Aug 2014 | B2 |
8840639 | Gerhardt, Jr. et al. | Sep 2014 | B2 |
8858553 | Chojin | Oct 2014 | B2 |
8888775 | Nau, Jr. et al. | Nov 2014 | B2 |
8906018 | Rooks et al. | Dec 2014 | B2 |
8920421 | Rupp | Dec 2014 | B2 |
8932293 | Chernov et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8945175 | Twomey | Feb 2015 | B2 |
8961504 | Hoarau et al. | Feb 2015 | B2 |
8968316 | Roy et al. | Mar 2015 | B2 |
8968357 | Mueller | Mar 2015 | B2 |
8968359 | Kerr et al. | Mar 2015 | B2 |
20030078578 | Truckai et al. | Apr 2003 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20060052779 | Hammill | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20090248022 | Falkenstein et al. | Oct 2009 | A1 |
20100063500 | Muszala | Mar 2010 | A1 |
20100130971 | Baily | May 2010 | A1 |
20110118736 | Harper et al. | May 2011 | A1 |
20110193608 | Krapohl | Aug 2011 | A1 |
20110270251 | Horner et al. | Nov 2011 | A1 |
20110276049 | Gerhardt | Nov 2011 | A1 |
20110295313 | Kerr | Dec 2011 | A1 |
20110319888 | Mueller et al. | Dec 2011 | A1 |
20120059372 | Johnson | Mar 2012 | A1 |
20120059375 | Couture et al. | Mar 2012 | A1 |
20120059409 | Reschke et al. | Mar 2012 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120083827 | Artale et al. | Apr 2012 | A1 |
20120123404 | Craig | May 2012 | A1 |
20120123410 | Craig | May 2012 | A1 |
20120130367 | Garrison | May 2012 | A1 |
20120172868 | Twomey et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jun 1986 | DE |
03612646 | Apr 1987 | DE |
8712328 | Feb 1988 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
10045375 | Oct 2002 | DE |
202007009165 | Aug 2007 | DE |
202007009317 | Aug 2007 | DE |
19738457 | Jan 2009 | DE |
102004026179 | Jan 2009 | DE |
102008018406 | Jul 2009 | DE |
1 159 926 | Dec 2001 | EP |
1767163 | Mar 2007 | EP |
1767164 | Mar 2007 | EP |
61-501068 | Sep 1984 | JP |
10-24051 | Jan 1989 | JP |
65-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
6-285078 | Oct 1994 | JP |
6-511401 | Dec 1994 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11-070124 | Mar 1999 | JP |
11-169381 | Jun 1999 | JP |
11244298 | Sep 1999 | JP |
2000-102545 | Apr 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
401367 | Oct 1973 | SU |
0036986 | Jun 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
2004082495 | Sep 2004 | WO |
2005110264 | Nov 2005 | WO |
Entry |
---|
US 8,968,315, 03/2015, Roy et al. (withdrawn) |
Japanese Office Action dated Apr. 3, 2015, issued in Japanese Application No. 2011251526. |
Int'l Search Report EP 07 016911 dated May 28, 2010. |
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008. |
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008. |
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008. |
Int'l Search Report EP 07 021647.8 dated May 2, 2008. |
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008. |
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008. |
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008. |
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008. |
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009. |
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009. |
Int'l Search Report EP 09 003677.3 dated May 4, 2009. |
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009. |
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009. |
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009. |
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009. |
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009. |
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010. |
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009. |
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009. |
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009. |
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009. |
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009. |
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009. |
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009. |
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009. |
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009. |
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010. |
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010. |
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009. |
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010. |
Int'l Search Report EP 10 011750.6 dated Feb. 1, 2011. |
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010. |
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010. |
Int'l Search Report EP 10 160870,1 dated Aug. 9, 2010. |
Int'l Search Report EP 10 161596.1 dated Jul. 28, 2010. |
Int'l Search Report EP 10 168705.1 dated Oct. 4, 2010. |
Int'l Search Report EP 10 169647.4 dated Oct. 29, 2010. |
Int'l Search Report EP 10 172005.0 dated Sep. 30, 2010. |
Int'l Search Report EP 10 175956.1 dated Nov. 12, 2010. |
Int'l Search Report EP 10 181034.9 dated Jan. 26, 2011. |
Int'l Search Report EP 10 181969.6 dated Feb. 4, 2011. |
Int'l Search Report EP 10 191320.0 dated Feb. 15, 2011. |
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999. |
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999. |
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999. |
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000. |
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001. |
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001. |
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001. |
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001. |
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002. |
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002. |
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003. |
Int'l Search Report PCT/US03/18674 dated Sep. 18, 2003. |
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003. |
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003. |
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005. |
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004. |
Int'l Search Report PCT/US04/15311 dated Jan. 12, 2005. |
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008. |
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008. |
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008. |
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008. |
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009. |
European Search Report for European Application No. 11189521.5 dated Feb. 9, 2012. |
Int'l Search Report EP 98957771 dated Aug. 9, 2001. |
Int'l Search Report EP 98957773 dated Aug. 1, 2001. |
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002. |
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005. |
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005. |
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005. |
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005. |
Int'l Search Report EP 04709033.7 dated Dec. 8, 2010. |
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007. |
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008. |
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009. |
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005. |
Int'l Search Report EP 05013894 dated Feb. 3, 2006. |
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005. |
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006. |
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005. |
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005. |
Int'l Search Report EP 05019429.9 dated May 6, 2008. |
Int'l Search Report EP 05020532 dated Jan. 10, 2006. |
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006. |
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006. |
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006. |
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006. |
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006. |
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006. |
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006. |
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006. |
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006. |
Int'l Search Report EP 06005185.1 dated May 10, 2006. |
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006. |
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009. |
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006. |
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006. |
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007. |
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007. |
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007. |
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007. |
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007. |
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007. |
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007. |
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007. |
Int'l Search Report EP 07 004429.2 dated Nov. 2, 2010. |
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007. |
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007. |
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007. |
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007. |
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007. |
Int'l Search Report EP 07 014016 dated Jan. 28, 2008. |
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008. |
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008. |
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” ; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000. |
Canadian Office Action dated Jul. 26, 2017, issued in CA Application No. 2,758,426. |
Number | Date | Country | |
---|---|---|---|
20150112330 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12948081 | Nov 2010 | US |
Child | 14578884 | US |