1. Field of the Invention
The present disclosure relates generally to venting a cooking device. More particularly, the present disclosure relates to venting a cooking chamber of a cooking device into an exhaust of air.
2. Description of Related Art
Most food products, when cooked in a cooking chamber of an oven, produce an amount of steam. This expanding gas or steam needs to escape from the cooking chamber via either an access port, or a door to the cooking chamber. Steam vents generally are between the cooking chamber and ambient environment to allow controlled dissipation of pressure by exhausting exhaust gases including the expanding gas or steam through the steam vent to the ambient environment. The exiting exhaust gases can reach very high temperatures causing both the oven and ambient environment to be adversely affected by the heat. Further, since the exhaust gases can become polluted with airborne contaminates from the food product, the contaminates, e.g., grease, can condense on exit from the vent and drip/stain/contaminate surrounding environments.
Accordingly, it has been determined by the present disclosure, there is a need for a device to reduce a temperature of exhaust gases when exiting a cooking device. There is a further need to decrease a concentration of particles within the exhaust gases when exiting a cooking device.
A cooking device is provided that includes an airflow system that generates airflow within a duct and a cooking chamber that is configured to vent heated air and/or steam within the cooking chamber to the duct. The heated air and/or steam vented to the duct is accelerated by the airflow.
The above-described and other advantages and features of the present disclosure will be appreciated and understood by those skilled in the art from the following detailed description, drawings, and appended claims.
Referring to the drawings and in particular to
Cooking device 100 has a cooking chamber 10. Cooking chamber 10 has an enclosure 12 surrounding a cavity 14. Enclosure 12 includes a rear wall 15, side walls 16 and 17, a top wall 18, and a bottom wall 19. Enclosure 12 has an open portion 11, as shown in
Cooking device has a duct 30. Duct 30 is a conduit 33 having an inlet 34 and an outlet 36. Duct 30 may be connected to a magnetron 40 of a microwave system.
Cavity 14 is in fluid communication with duct 30. Cavity 14 is in fluid communication with duct through pipe 20. Pipe 20 has an inlet 23 and an outlet 24.
Referring now to
Heated air and/or steam is produced within cavity 14 that increases pressure within cavity 14. In order to relieve the pressure within cavity 14, a portion of the heated air and/or steam is vented to duct 30, as shown by arrow 22. The heated air and/or steam is accelerated by airflow 32 as the heated air and/or steam flows into duct 30.
The portion of the heated air and/or steam that is vented to duct 30 is vented through pipe 20 to duct 30, as shown by arrow 22. The heated air and/or steam is accelerated by airflow 32 as the heated air and/or steam flows through pipe 20 into duct 30. Pipe 20 is connected to an upper rear portion of cooking chamber 10. However, pipe 20 may be connected to cooking chamber 10 at other locations. Pipe 20 has a shape and size that can vary with dimensions of cooking device 100. Duct 30 may have a size to give optimum airflow for cooling cooking device components, for example, magnetron 40, and, therefore, flow of air over pipe 20. For example, a size of pipe 20 is substantially smaller than a size of duct 30, such as, 1:1000.
Cooking device 100 has a housing 60, as shown in
As shown in
The air from the ambient environment that is drawn into cooking device 100 is at a cooler temperature than air within the cooking device 100 during operation, and may pass over magnetron 40 to cool magnetron 40 and/or other electrical components of cooking device 100 to cool the electrical components. Air that forms airflow 32 may cool other components of cooking device, such as, for example, other electrical components that may include a transformer, motor of a fan, and other components that heat may have a detrimental effect thereon. Advantageously, airflow being generated by cooling system 80 that generates airflow 32 and also cools magnetron 40 and/or other components of cooking device 100, eliminates a need for separate sources of airflow, one for each of airflow 32 and cooling air for magnetron 40 and/or other components of cooking device 100. However, airflow 32 that accelerates the heat and/or steam being vented from cooking chamber 10 to duct 30 may be generated by a source that is separate from airflow being generated to cool magnetron 40 and/or other components of cooking device 100, such as, for example, a fan that does not generate airflow in fluid and/or thermal communication with magnetron 40 and/or other components of cooking device 100. This airflow may be generated from a different source than the cooling fan used to cool the magnetron and would be in the form of an additional cooling fan.
As shown in
The food may be heated by impingement, convection, microwave, radiant heat, or other heating device in fluid and/or thermal communication with cavity 14. As shown in
In operation, the food (not shown) is placed within cavity 14 to be heated. The food may be heated by impingement, convection, microwave, radiant heat, or other heating device in fluid and/or thermal communication with cavity 14. For example, the food is heated by the microwave device having magnetron 40 or fan 90 that passes air over a heating element heating airflow into cavity 14. As the food is being heated, generally, heated air and/or steam is produced that increases pressure within cavity 14, as well as, increased pressure generated by fan 90. In order to relieve the pressure within cavity 14, a portion of the heated air and/or steam is vented through pipe 20 to duct 30, as shown by arrow 22. The heated air and/or steam may be vented through pipe 20 directly to duct 30. Alternatively, as shown in
It has been found by the present disclosure that acceleration of the heated air and/or steam from cavity 14 by airflow 32 in duct 30 lowers a temperature and increases a velocity of the heated air and/or steam in comparison to heated air and/or steam that is vented directly into the ambient environment from cavity 14 that would be at a lower velocity and higher temperature. Advantageously, an effect on the ambient environment that the heated air and/or steam from cavity 14 that combines with airflow 32 is exhausted into is reduced over exhausting the heated air and/or steam without combining it with airflow 32. For example, the heat/steam vented from the cooking chamber may be reduced in temperature within the range of about 200° Celsius/400° Fahrenheit by airflow 32 in duct 30.
It has also been found by the present disclosure that that the acceleration of the heated air and/or steam from cavity 14 in duct 30 accelerates airborne particles within the heated air and/or steam and reduces a concentration of the airborne particles lower than heated air and/or steam vented directly out of cavity 14 without combining with airflow 32. Advantageously, the lower concentration of the airborne particles within the combined airflow of the heated air and/or steam and airflow 32 reduces a likelihood of contamination of the ambient environment surrounding cooking device 100, such as, condensing of the airborne particles to drip/stain/contaminate the oven or ambient environment, over airborne particles exhausted within the heated air and/or steam that is not combined with airflow 32. The amount the concentration of the airborne particulate may be reduced to may be up to 13:1 by airflow 32 within duct 30.
It should also be noted that the terms “first”, “second”, “third”, “upper”, “lower”, “above”, “below”, and the like may be used herein to modify various elements. These modifiers do not imply a spatial, sequential, or hierarchical order to the modified elements unless specifically stated.
While the present disclosure has been described with reference to one or more exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment(s) disclosed as the best mode contemplated, but that the disclosure will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/239,007, filed Sep. 1, 2009. U.S. Provisional Application No. 61/239,007, filed Sep. 1, 2009 is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61239007 | Sep 2009 | US |