Method and apparatus for virtual digital subtraction angiography

Information

  • Patent Grant
  • 6990368
  • Patent Number
    6,990,368
  • Date Filed
    Thursday, April 4, 2002
    22 years ago
  • Date Issued
    Tuesday, January 24, 2006
    18 years ago
Abstract
A medical imaging system is provided that detects any change in relative position between the patient and the imaging device and corrects the image data for any motion that occurs. The medical imaging system includes: an imaging device for capturing two or more image data sets representative of a patient; a tracking subsystem for capturing patient position data that is indicative of the position of the patient and device position data that is indicative of the position of the imaging device; an image subtraction subsystem for performing a digital subtraction operation between at least two image data sets; and a motion correction subsystem configured to detect a change in the relative position between the patient and the imaging device and, upon detecting a change in the relative position, compensate in at least one of the first image data set and the second image data set for the change in relative position prior to performing the digital subtraction operation.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical imaging systems and, more particularly, to a system that detects any change in relative position between a patient and the imaging device and corrects the image data for any such motion that occurs.


BACKGROUND OF THE INVENTION

Modern diagnostic medicine has benefited significantly from radiology. Radiation, such as x-rays, may be used to generate images of internal body structures. In general, radiation is emanated towards a patient's body and absorbed in varying amounts by tissues in the body. An x-ray image is then created based on the relative differences of detected radiation passing through the patients' body.


Digital subtraction is a well known technique for visually enhancing differences between such images. For example, digital subtraction angiography (DSA) is used to visualize vasculature by comparing two or more images of the same blood vessels before and after injection of a contrast agent. Assuming that the only change between the pre-contrast image (or “mask”) and the contrast-containing image is related to the injection of the contrast agent, the “difference image” clearly outlines the vessels into which the contrast agent has flowed.


However, digital subtraction techniques assume a fixed relative position between the imaging device and the patient being imaged for any images which are being compared. If this relative position changes between the time that the initial image (the one to which all subsequent images are compared) is acquired and the time that any of the subsequent images are acquired, the difference image will not only convey changes in the anatomy of the patient, but also any “artifacts” or changes introduced by this change in relative position between the imaging device and the patient.


Therefore, it is desirable to provide a medical imaging system that addresses the patient motion artifact problem. It is envisioned that the system will directly measure the relative position between the imaging device and the patient, and then compensate the images for any motion that occurs between the time at which the initial image is acquired and the time at which any subsequent images are acquired by the imaging system.


SUMMARY OF THE INVENTION

In accordance with the present invention, a medical imaging system is provided that detects any change in relative position between the patient and the imaging device and compensates the image data for any patient motion that occurs. The medical imaging system includes: an imaging device for capturing two or more image data sets representative of a patient; a tracking subsystem for detecting patient position data that is indicative of the position of the patient and device position data that is indicative of the position of the imaging device; an image subtraction subsystem for performing a digital subtraction operation between at least two image data sets; and a motion correction subsystem configured to detect a change in the relative position between the patient and the imaging device and upon detecting a change in the relative position, compensate in at least one of the first image data set and the second image data set for the change in relative position prior to performing the digital subtraction operation. The digital subtraction image can detect the motion of a therapeutic device, motion of a therapy as it moves through the body, perfusion of a substance, contrast agents, chemical change of a substance, a drug as it attaches itself to anatomical material or interacts with diseased tissue, or any device or substance that has an image signature within one or multiple image modalities. The digital subtraction of any 3D volume such as those created by MR, CT, Isocentric C-arms, C-arms tracked to construct volumes, 3D ultrasound, etc. can now be viewed from any angle or with any cut plane. It is also important to point out that the tracking subsystem can be implemented via a number of different devices or techniques in order to correct for patient motion. Simple modeling of patient respiration or heart cycles can be used in conjunction with a tracking subsystem or solely to provide motion correction. The system could use actual signals as inputs to these models.


For a more complete understanding of the invention, reference may be had to the following specification and to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of a surgical instrument navigation system in accordance with present invention;



FIG. 2 is a diagram of a true and a distorted image that may be captured by the surgical navigation system;



FIGS. 3A and 3B illustrates the projective transformation process employed by the surgical navigation system;



FIG. 4 is a flowchart depicting the operation of the enhanced surgical navigation system of the present invention;



FIG. 5 is a block diagram of an enhanced surgical instrument navigation system in accordance with the present invention;



FIGS. 6A-6C illustrates the different types of changes in the relative position between the patient and the imaging device; and



FIG. 7 is a flowchart depicting the operation of the motion correction subsystem in accordance with the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 is a diagram of an exemplary surgical instrument navigation system. The primary component of the surgical instrument navigation system is a fluoroscopic imaging device 100. The fluoroscopic imaging device 100 generally includes a C-arm 103 attached to a mobile base 102 or fixed room system. An x-ray source 104 is located at one end of the C-arm 103 and an x-ray receiving section 105 is located at the other end of the C-arm 103. In addition, the fluoroscopic imaging device 100 includes a calibration and tracking target 106 attached to the x-ray receiving section 105. As will be further described below, the calibration and tracking target 106 further includes one or more radiation sensors 107, a plurality of tracking targets 109, and a plurality of calibration markers 111. While the following description is provided by reference to an x-ray imaging device, it is readily understood that other types on imaging devices, such as a computed tomography imaging device, a magnetic resonance imaging device or an ultra-sound device, are within the scope of the present invention. It is also readily understood that two-dimensional projection images or three-dimensional volumetric images are within the scope of the present invention.


In operation, a patient 110 is positioned between the x-ray source 104 and the x-ray receiving section 105. In response to an operator's command input, x-rays emanating from source 104 pass through the patient area, including the patient 110 and the calibration and tracking target 106, and into the receiving section 105 of the imaging device. The receiving section 105 generates a two-dimensional image based on the intensities of the received x-rays. To do so, the receiving section 105 may be comprised an image intensifier that converts the x-rays to visible light and a charge coupled device (CCD) video camera that converts the visible light to digital images. Alternatively, the receiving section 105 may be a device that converts x-rays directly to digital images, thus potentially avoiding distortion introduced by first converting to visible light.


Furthermore, the C-arm 103 is capable of rotating relative to the patient 110, thereby allowing images of the patient 110 to be taken from multiple directions. For example, the physician may rotate the C-arm 103 in the direction of arrows 108 or about the long axis of the patient 110. Each of these directions of movement involves rotation about a mechanical axis of the C-arm 103. In this example, the long axis of the patient 110 is aligned with the mechanical axis of the C-arm 103. In sum, the imaging device 100 is generally operable to capture one or more sets of image data representative of the patient 110.


Resulting fluoroscopic images are then transmitted to an image processing device 120. In one embodiment, the image processing device 120 may be comprised of two computers. A control computer 122 which allows a physician to control the fundamental operation of the imaging device 100, such as setting imaging parameters, and a second computer 124 which may be used to perform more robust image processing functions. It is envisioned that either computer may provide facilities for displaying, saving, digitally manipulating, or printing a hard copy of the received images. It is further envisioned that images may be displayed to the physician through a heads-up display (not shown). It is readily understood that these computing functions may be integrated into a single computer or distributed across three or more computing devices.


An exemplary imaging device 100 is the Series 9800 Mobile Digital Imaging System manufactured by OEC Medical Systems, Inc. of Salt Lake City, Utah. It should be noted that calibration and tracking target 106 is typically not included in the Series 9800 Mobile Digital Imaging System, but otherwise this system is similar to the imaging system 100 described above. An alternative imaging device is the SIREMOBILE Iso-C System manufactured by Siemens Medical Systems, Inc. of Iselin, N.J.


Intrinsic calibration is the process of correcting image distortion in a received image and establishing the projective transformation for that image. Raw images generated by the receiving section 105 tend to suffer from undesirable distortion caused by a number of factors, including inherent image distortion in the image intensifier and external electromagnetic fields. An example of a true and a distorted image is shown in FIG. 2. Checkerboard 202 represents the true image of a checkerboard shaped object placed in the image tracking area. The image taken by receiving section 105, however, can suffer significant distortion, as illustrated by the distorted image 204.


Furthermore, the image formation process is governed by a geometric projective transformation which maps lines in the fluoroscope's field of view to points in the image (i.e., within the x-ray receiving section 105). This concept is illustrated in FIGS. 3A and 3B. Image 300 (and any image generated by the fluoroscope) is composed of discrete picture elements (pixels), an example of which is labeled as 302. Every pixel within the image 300 has a corresponding three-dimensional line in the fluoroscope's field of view. For example, the line corresponding to pixel 302 is labeled as 304. The complete mapping between image pixels 302 and corresponding lines 304 governs projection of objects within the field of view into the image. The intensity value at pixel 302 is determined by the densities of the object elements (i.e., portions of a patient's anatomy, operating room table, etc.) intersected by the line 304. For the purpose of computer assisted navigational guidance, it is necessary to estimate the projective transformation which maps lines in the field of view to pixels in the image, and vice versa.


Intrinsic calibration involves placing “calibration markers” in the path of the x-ray, where a calibration marker is an object opaque or semi-opaque to x-rays. Calibration markers 111 are rigidly arranged in predetermined patterns in one or more planes in the path of the x-rays and are visible in the recorded images. Because the true relative position of the calibration markers 111 in the recorded images are known, the image processing device 120 is able to calculate an amount of distortion at each pixel 302 in the image (where a pixel is a single point in the image). Accordingly, the image processing device 120 can digitally compensate for the distortion in the image and generate a distortion-free, or at least a distortion improved image. Alternatively, distortion may be left in the image, and subsequent operations on the image, such as superimposing an iconic representation of a surgical instrument on the image (described in more detail below), may be distorted to match the image distortion determined by the calibration markers.


Since the position of the calibration markers 111 are known with respect to the tracking targets 109 and ultimately with respect to a tracking sensor, the calibration markers 111 can also be used to estimate the geometric perspective transformation. A more detailed explanation of methods for performing intrinsic calibration is described in the following references B. Schuele et al., “Correction of Image Intensifier Distortion for Three-Dimensional Reconstruction,” presented at SPIE Medical Imaging 1995, San Diego, Calif., 1995 and G. Champleboux et al., “Accurate Calibration of Cameras and Range Imaging Sensors: the NPBS Method,” Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, May 1992, and U.S. Pat. No. 6,118,845, issued Sep. 12, 2000 by the present assignee, the contents of which are hereby incorporated by reference.


The surgical instrument navigation system further includes a tracking subsystem. The tracking subsystem is generally comprised of a non-contact position location sensor, numerous tracking targets embedded in different system components and accompanying computational software implemented in the image processing device 120. In a preferred embodiment, the tracking subsystem employs a real-time infrared tracking sensor 130. Although an infrared-based tracking subsystem (either passive or active) is presently preferred, it is envisioned that other well known types of positional location devices may be used to implement the tracking subsystem. For example, positional location devices based on mechanical arms, robotics, radio wave, magnetic fields, fiber optic, or sonic emissions are also within the scope of the present invention.


The tracking sensor 130 detects the presence and location of a surgical instrument 140. To do so, the specially constructed surgical instrument 140 is embedded with tracking targets 141, such as infrared reflectors or emitters. Because the relative spatial locations of the tracking targets 141 on the surgical instrument 140 are known a priori, the tracking subsystem is able to determine the location of the surgical instrument 140 in three-dimensional space using well known mathematical transformations.


During an operation, a dynamic reference frame marker 150 is attached in a fixed position relative to the portion of the patient 110 to be operated on. For example, when inserting a screw into the spine of the patient 110, the dynamic reference frame marker 150 may be physically attached to a portion of the spine of the patient 110. The reference frame marker 150 is similarly embedded with tracking targets 151, such as infrared reflectors or emitters. In this way, the tracking sensor 130 is also able to determine the location of reference frame marker 150 in three-dimensional space.


Consequently, the surgical instrument 140 can be accurately located in three dimensional space relative to the reference frame marker 150 and thus can be located relative to the patient's anatomy. The determination of the three-dimensional position of an object, such as the reference frame marker, relative to a patient is known in the art, and is discussed, for example, in the following references, each of which are hereby incorporated by reference: PCT Publication WO 96/11624 to Bucholz et al., published Apr. 25, 1996; U.S. Pat. No. 5,384,454 to Bucholz; U.S. Pat. No. 5,851,183 to Bucholz; and U.S. Pat. No. 5,871,445 to Bucholz.


Lastly, the calibration and tracking target 106 also includes tracking targets 109, such as infrared reflectors or emitters. In a similar manner, the tracking sensor 130 detects the presence and location of the tracking targets 109. Since the calibration and tracking target 106 is in a fixed position relative to the x-ray receiving section 105, the image processing device 120 can further determine the three-dimensional position of the x-ray receiving section 105 relative to the surgical instrument 140 and/or the dynamic reference frame 150 (and thus the patient).


In one embodiment, the tracking sensor 130 determines the position of the x-ray receiving section 105 at each point in time that it captures image data. In an alternative embodiment, position data for the x-ray receiving section 105 is reported by a mechanical localizer associated with the imaging device 100. The mechanical localizer is operable to report position data for the x-ray receiving section 105 relative to a baseline position. In operation, the tracking sensor 130 may be used to determine the baseline position of the x-ray receiving section 105 relative to the either the surgical instrument 140 and/or the dynamic reference frame 150. Alternatively, you may simply touch the surgical instrument 140 to various reference points on the x-ray receiving section 105. Thereafter, as position of the x-ray receiving section 105 changes over time, its position is reported by the mechanical localizer. In other words, by first determining the baseline location, subsequent movement and location of imaging device 100 can be determined by monitoring the drive or movement mechanism surgical localizer of the imaging device 100. The image processing device 120 can then determine the position of the x-ray receiving device 105 relative to either the surgical instrument 140 and/or the dynamic reference frame 150.


In operation, the enhanced surgical navigation system assists physicians performing surgery by displaying real-time or pre-acquired images, such as fluoroscopic x-ray images, of the patient 110 on a display associated with image processing device 120 that is visible to the surgeon. Representations of surgical instruments 140 are overlaid on pre-acquired fluoroscopic images of the patient 110 based on the position of the instruments 140 as determined by the tracking sensor 130. In this manner, the surgeon is able to see the location of the instrument 140 relative to the patient's anatomy, without the need to acquire real-time fluoroscopic images, thereby greatly reducing radiation exposure to the patient and to the surgical team.



FIG. 4 is a flowchart depicting the operation of the surgical navigation system. The physician begins by acquiring one or more fluoroscopic x-ray images of the patient 110 using the imaging device 100 as shown at 402. Radiation sensors 107 embedded in the calibration and tracking target 106 may be used to detect the presence of radiation. The image processing device 120 uses input from the radiation sensors 107 to determine the beginning and end of a radiation cycle. Alternatively, the operator may manually indicate the beginning and end of a radiation cycle or a signal may be sent from the imaging device.


For a fluoroscopic x-ray image to be useable for navigational guidance, the imaging device 100 must be stationary with respect to the patient 110 during image acquisition. If the C-arm 103 or the patient 110 is moving during image acquisition, the position of the imaging device will not be accurately determined relative to the patient's reference frame. Thus, it is important that the recorded position of imaging device 100 reflects its true position at the time of image acquisition.


During the image acquisition process, the image processing device 120 continuously examines the relative position between the patient 110 and the imaging device 100 as shown at 404. If the imaging device 100 moves during the image acquisition process, or if the imaging device 100 moves after image acquisition but before its position is recorded, calibration measurements will be erroneous, thereby resulting in incorrect graphical overlays. To prevent this type of erroneous image, image data may be discarded if the patient 110 moves relative to the imaging device 100 during the image acquisition process.


At the end of the radiation cycle, the image processing device 120 retrieves the acquired image data as well as positional data for the imaging device 100 and the dynamic reference frame 150. The image processing device 120 subsequently calibrates the acquired image to learn its projective transformation and optionally to correct distortion in the image at 406. Calibrated image data along with corresponding positional data is then stored. These processing steps are repeated for each image that is acquired.


During surgery, the tracking sensor 130 detects the position of surgical instrument 140 relative to the dynamic reference frame 150, and hence relative to the patient 110 at 408. The image processing device 120 dynamically computes, in real-time, the projection of instrument 140 into each fluoroscopic image as the instrument 140 is moved by the physician. A graphical representation of instrument 140 may then be overlaid on the fluoroscopic images at 410. The graphical representation of instrument 140 is an iconic representation of where the actual surgical instrument 140 would appear within the acquired fluoroscopic x-ray image as if the imaging device 100 was continuously acquiring new images from the same view as the original image. There is no theoretical limit to the number of fluoroscopic images on which the graphical representations of instrument may be simultaneously overlaid.


In accordance with the present invention, the surgical instrument navigation system described above has been enhanced to detect any change in relative position between the patient 110 and the imaging device 100, and compensate image data for any such patient motion. Referring to FIG. 5, the enhanced surgical navigation system 500 includes an imaging device 502 and a tracking subsystem 504. As described above, the imaging device 502 is operable to capture one or more image data sets representative of a patient; whereas the tracking subsystem 504 is operable to determine patient position data 506 indicative of the position of the patient as well as device position data 508 indicative of the position of the imaging device.


The enhanced surgical instrument navigation system 500 further includes a motion correction subsystem 510 and an image subtraction subsystem 520. The image subtraction subsystem 520 is adapted to receive two image data sets 503 from the imaging device 502. The image subtraction subsystem 520 is then operable to perform a digital subtraction operation between the two image data sets, thereby generating resulting image data 522 indicative of the differences between the two image data sets. Further explanation of exemplary digital subtraction techniques is described in Christensen's Physics of Diagnostic Radiology by Thomas S. Curry, III, James E. Dowdey, and Robert C. Murry, Jr., 4th Ed. 1990, the contents of which are hereby incorporated by reference. It is readily understood that various well known digital subtraction techniques are within the scope of the present invention. It is further understood that other comparison techniques for assessing image data acquired at different points in time are also within the scope of the present invention. Any sort of image analysis or comparison can be applied to such a technique as segmentation, volume rendering, or shape analysis to a brain structure such as the hippocampus or tumor growth. One such technique for shape analysis is described in U.S. patent application Ser. No. 09/326,657 Method and Apparatus for Automatic Shape Characterization and U.S. Pat. No. 6,226,418 which are specifications are here included.


Prior to performing a digital subtraction operation, the motion correction subsystem 510 may be used to detect any patient motion that occurs between the times at which the image data is acquired. Referring to FIG. 7, the motion correction subsystem 510 is adapted to receive the patient position data 506 and device position data 508 corresponding to each of the two image data sets 503 as shown at 702. The motion correction subsystem 510 is then operable to detect any change in the relative position between the patient and the imaging device as shown at 704.


In one embodiment, the detection of patient motion merely serves as a triggering event for the operation of the enhanced surgical navigation system 500. When no change occurs in the relative position of the patient, a digital subtraction operation may simply be performed by the image subtraction subsystem 520. Alternatively, the digital subtraction operation may be performed when the measured change in relative position is less than a predetermined threshold value that is indicative of a maximum acceptable change in the relative position between the patient and the imaging device. On the other hand, when a unacceptable amount of patient motion is detected, the motion correction subsystem 510 may initiate an alternate operation, such as providing an operator alarm.


In another embodiment, the motion correction subsystem 510 may measure the change in relative position between the patient and the imaging device over time. When the measured change in relative position is less than the predetermined threshold value, the motion correction subsystem 510 initiates the digital subtraction operation at 722. On the other hand, when the measured change in relative position is equal to or greater than the predetermined threshold value, the motion correction subsystem 510 will apply a suitable correction to at least one of the two image data sets.


Since the suitable correction depends upon the nature of the relative motion, the motion correction subsystem 501 is operable to determine the nature of the relative motion at 708. For instance, when the relative motion (or change in relative position) is a translation that is parallel to the imaging plane 602 of the imaging device, a suitable translation correction would be performed to one of the two images as shown at 712. FIG. 6A illustrates a translation that is parallel to the imaging plane 602 of the imaging device (e.g., the face of the image intensifier of a fluoroscope). When the relative motion is a translation that is perpendicular to the imaging plane 602, a change occurs in the scale or size of the imaged anatomy as shown at 716. In this case, a suitable scale correction would be performed to one of the two images. FIG. 6B illustrates a translation that is perpendicular to the imaging plane 602 of the imaging device (as represented by the top surface of operating table). Suitable image correction techniques are well known in the art.


When the relative motion is a rotation of the imaging device about the patient's anatomy, the ability to perform a correction depends upon the magnitude and direction of the rotation. FIG. 6C illustrates motion that is rotational to the imaging plane 602 of the imaging device. Rotations of the imaging device relative to the anatomy in a plane parallel to the image plane can be corrected by applying an appropriate in plane rotation to one of the two images. However, in the case of two-dimensional projection imaging, it is impossible to correct for arbitrary rotations without knowing the three-dimensional shape of the underlying anatomy. In some of these cases, the rotational correction may be approximated using known translation techniques. Therefore, it is envisioned that the motion correction subsystem 510 may further include a mechanism for determining when a rotational correction can be performed by a translation and then applying an appropriate rotational translation as shown at 720. It is readily understood that in the case of three-dimensional volumetric images, the limitation on correcting for rotations does not apply, and a complete correction can be applied to the image data.


Once an appropriate correction has been applied to either of the two image data sets, the motion correction subsystem 510 initiates a digital subtraction operation at 722. It is to be understood that only the relevant steps of the methodology are shown in FIG. 7, but that other software-implemented instructions may be needed to control and manage the overall operation of the subsystem.


In two-dimensional projection imaging, determining how to apply a correction to an image given a measurement of the relative motion between patient and the imaging device requires an additional piece of information. In particular, the intrinsic calibration parameters of the imaging device must be known to the motion correction subsystem 510.


In three-dimensional digital subtraction, it is possible to compute volume changes of the contrast media as a function of time. Once the motion correction is applied, this would be computed as the volume of the difference image above a given intensity threshold. This difference volume could be further constrained to lie within a segmented region (e.g., within a vertebral body, outside a vertebral body). Computation of other shape attributes (surface area, moments of inertia, etc.) are also possible.


It is further envisioned that the motion correction subsystem 510 may be configured to eliminate motion artifacts caused by changes in the position of the tracked surgical instrument 140. Recall that any changes in the imager's field of view will result in an enhanced region of the difference image. Typically, the motion of the surgical instrument 140 is not clinically relevant and, therefore, it would be desirable to eliminate these enhanced regions from any resulting difference image. Using the measured positions of a given instrument 140 relative to the imaging device 100, together with data for the three-dimensional shape of the instrument (e.g., from a CAD model), it is possible to compute the resulting enhanced region in the difference image. Once this region is known, it is then possible to eliminate this instrument-induced motion artifact from the image. It is to be understood that this function can be applied to either two-dimensional projection images or three-dimensional volumetric images.


While the above description is provided with reference to a surgical navigation system, it is readily understood that the broader aspects of the present invention are generally applicable to medical imaging systems where motion between the patient and the imaging device is suspected.


Moreover, it is readily understood that the present invention is applicable to different types of medical applications. One medical application of interest is vertebroplasty, in which bone cement is injected into a vertebral body of the spine via a needle that passes through the spinal pedicle. Leakage of this cement into surrounding structures can result in serious complications. Therefore, visualizing the spread of this cement over time is critical so that the clinician can ensure that the cement does not leave the vertebral body. One way to achieve this goal is by using single or multi-planar fluoroscopic imaging to view the anatomical structures as the above-mentioned cement is introduced. Unfortunately, the cement is often poorly visualized in the fluoroscopic images. Digital subtraction radiology provides a mechanism for highlighting the location of the cement by comparing a pre-cement image to one or more images acquired while the cement is being injected. Unfortunately, due to the nature of the clinical procedure, there is a moderate likelihood that the spinal anatomy will move relative to the imaging device as the cement is being injected. By applying the methods and systems of the present invention, it is possible to compensate for this motion, thereby making digital subtraction techniques feasible for this application.


Another medical application may involve a comparison between vector fields computed in an area to represent brain shifts or other soft tissue deformations. Other possible medical applications may include but are not limited to monitoring the introduction of embolics into vascular aneurysms; introduction of cement into other bony anatomy; bone density analysis; etc. Analysis of bone morphogenic protein dispersion through the bone for spinal or orthopedic applications may be completed by looking at the slightest changes in bone density or other carrier with an image signature to monitor effectiveness or used to indicate or compute new dosages need to be administered. It is readily apparent from some of these examples that the time period between acquired image data may range from a few seconds to days or weeks.


While the invention has been described in its presently preferred form, it will be understood that the invention is capable of modification without departing from the spirit of the invention as set forth in the appended claims.

Claims
  • 1. A medical imaging system, comprising: an imaging device operable to capture two or more image data sets representative of a patient; a tracking subsystem operable to detect patient position data corresponding to each image data set and device position data corresponding to each image data set, where the patient position data is indicative of the position of the patient and the device position data is indicative of the position of the imaging device; a motion correction subsystem adapted to receive patient position data corresponding to the first and second image data set and device position data corresponding to the first and second image data set, and the motion correction subsystem is operable to detect a change in relative position between the patient and the imaging device; and an image subtraction subsystem adapted to receive at least a first image data set and a second image data set from the imaging device, the image subtraction subsystem is operable to perform a digital subtraction operation between the first image data set and the second image data set when no substantial change occurs in the relative position between the patient and the imaging device.
  • 2. The medical imaging system of claim 1 wherein the imaging device includes an image source operable to emanate radiation towards the patient and an image receiver positioned to receive radiation from the image source.
  • 3. The medical imaging system of claim 1 wherein the imaging device is selected from the group consisting of an x-ray imaging device, a computed tomography imaging device and a magnetic resonance imaging device.
  • 4. The medical imaging system of claim 1 wherein the tracking subsystem is further defined as an infrared tracking sensor.
  • 5. The medical imaging system of claim 1 wherein the imaging device further includes a plurality of tracking targets that are detectable by the tracking subsystem.
  • 6. The medical imaging system of claim 1 further comprises a reference frame marker positioned in a fixed location relative to the patient, where the reference frame marker includes tracking targets that are detectable by the tracking subsystem.
  • 7. The medical imaging system of claim 6 wherein the reference frame marker is physically attached to a portion of the patient.
  • 8. The medical imaging system of claim 1 wherein the motion correction subsystem is further operable to generate an operator alarm upon detection of a change in the relative position between the patient and the imaging device.
  • 9. The medical imaging system of claim 1 further comprising a surgical instrument having tracking targets that are detectable by the tracking subsystem, such that the tracking subsystem detects in real-time instrument position data indicative of the position of the surgical instrument.
  • 10. The medical imaging system of claim 9 wherein the motion correction subsystem is adapted to receive instrument position data from the tracking subsystem and operable to compensate for a change in the position of the surgical instrument in at least one of the first image data set and the second image data set.
  • 11. A medical imaging system, comprising: an imaging device operable to capture two or more image data sets representative of a patient; a tracking subsystem operable to detect patient position data corresponding to each of the image data sets and device position data corresponding to each the image data sets, where the patient position data is indicative of the position of the patient and the device position data is indicative of the position of the imaging device; an image subtraction subsystem adapted to receive at least a first image data set and a second image data set from the imaging device, the image subtraction subsystem operable to perform a digital subtraction operation between the first image data set and the second image data set; and a motion correction subsystem adapted to receive patient position data corresponding to the first and second image data sets and device position data corresponding to the first and second image data sets, and the motion correction subsystem is operable to measure a change in relative position between the patient and the imaging device and, upon detecting a change in the relative position, compensate in at least one of the first image data set and the second image data set for the change in relative position, prior to performing the digital subtraction operation.
  • 12. The medical imaging system of claim 11 wherein the imaging device includes an image source operable to emanate radiation towards the patient and an image receiver positioned to receive radiation from the image source.
  • 13. The medical imaging system of claim 11 wherein the imaging device is selected from the group consisting of an x-ray imaging device, a computed tomography imaging device and a magnetic resonance imaging device.
  • 14. The medical imaging system of claim 11 wherein the tracking subsystem is further defined as an infrared tracking sensor.
  • 15. The medical imaging system of claim 11 wherein the imaging device further includes a plurality of tracking targets that are detectable by the tracking subsystem.
  • 16. The medical imaging system of claim 11 further comprises a reference frame marker positioned in a fixed location relative to the patient, where the reference frame marker includes tracking targets that are detectable by the tracking subsystem.
  • 17. The medical imaging system of claim 16 wherein the reference frame marker is physically attached to a portion of the patient.
  • 18. The medical imaging system of claim 11 further comprising a surgical instrument having tracking targets that are detectable by the tracking subsystem, such that the tracking subsystem detects in real-time instrument position data indicative of the position of the surgical instrument.
  • 19. The medical imaging system of claim 18 wherein the motion correction subsystem is adapted to receive instrument position data from the tracking subsystem and operable to compensate for a change in the position of the surgical instrument in at least one of the first image data set and the second image data set.
  • 20. A method for performing a digital subtraction operation in a medical imaging device, comprising: capturing a first image data set representative of a patient; detecting first patient position data indicative of the position of the patient during acquisition of the first image data set; detecting first device position data indicative of the position of the imaging device during acquisition of the first image data set; capturing a second image data set representative of the patient; detecting second patient position data indicative of the position of the patient during acquisition of the second image data set; detecting second device position data indicative of the position of the imaging device during acquisition of the second image data set; determining if a change occurs in the relative position between the patient and the imaging device during a time interval between the acquisition of the first image data set and the acquisition of the second image data set; and performing a digital subtraction operation between the first image data set and the second image data set, when no substantial change occurs in the relative position between the patient and the imaging device.
  • 21. The method of claim 20 further comprises measuring the change in relative position between the patient and the imaging device, and performing the digital subtraction operation when the measured change in relative position is less than a predetermined threshold value indicative of a maximum acceptable change in the relative position between the patient and the imaging device.
  • 22. The method of claim 20 further comprises compensating at least one of the first image data set and the second image data set for a change in relative position between the patient and the imaging device prior to performing the digital subtraction operation.
  • 23. The method of claim 22 further comprises compensating at least one of the first image data set and the second image data set when the measured change in relative position exceeds a predetermined threshold value indicative of a maximum acceptable change in the relative position between the patient and the imaging device.
  • 24. The method of claim 22 wherein the step of compensating at least one of the first image data set and the second image data set further comprises performing a translational correction to at least one of the image data sets when the change in relative position between the patient and the imaging device is parallel to an image plane of the imaging device.
  • 25. The method of claim 22 wherein the step of compensating at least one of the first image data set and the second image data set further comprises performing a scaled correction to at least one of the image data sets when the change in relative position between the patient and the imaging device is perpendicular to an image plane of the imaging device.
  • 26. The method of claim 22 wherein the step of compensating at least one of the first image data set and the second image data set further comprises performing a rotational correction to at least one of the image data sets when the change in relative position between the patient and the imaging device is rotational to an image plane of the imaging device.
US Referenced Citations (472)
Number Name Date Kind
1576781 Philips Mar 1926 A
1735726 Bornhardt Nov 1929 A
2407845 Nemeyer Sep 1946 A
2650588 Drew Sep 1953 A
2697433 Zehnder Dec 1954 A
3016899 Stenvall Jan 1962 A
3017887 Heyer Jan 1962 A
3061936 Dobbeleer Nov 1962 A
3073310 Mocarski Jan 1963 A
3294083 Alderson Dec 1966 A
3367326 Frazier Feb 1968 A
3439256 Kähne et al. Apr 1969 A
3577160 White May 1971 A
3674014 Tillander Jul 1972 A
3702935 Carey et al. Nov 1972 A
3704707 Halloran Dec 1972 A
3847157 Caillouette et al. Nov 1974 A
3868565 Kuipers Feb 1975 A
3941127 Froning Mar 1976 A
4037592 Kronner Jul 1977 A
4052620 Brunnett Oct 1977 A
4054881 Raab Oct 1977 A
4068556 Foley Jan 1978 A
4071456 McGee et al. Jan 1978 A
4117337 Staats Sep 1978 A
4173228 Van Steenwyk et al. Nov 1979 A
4202349 Jones May 1980 A
4228779 Wetzel Oct 1980 A
4259725 Andrews et al. Mar 1981 A
4262306 Renner Apr 1981 A
4287809 Egli et al. Sep 1981 A
4314251 Raab Feb 1982 A
4317078 Weed et al. Feb 1982 A
4328813 Ray May 1982 A
4335427 Hunt et al. Jun 1982 A
4339953 Iwasaki Jul 1982 A
4341220 Perry Jul 1982 A
4358856 Stivender et al. Nov 1982 A
4360028 Barbier et al. Nov 1982 A
4368536 Pfeiler Jan 1983 A
4396885 Constant Aug 1983 A
4403321 Kruger Sep 1983 A
4418422 Richter et al. Nov 1983 A
4422041 Lienau Dec 1983 A
4431005 McCormick Feb 1984 A
4465069 Barbier et al. Aug 1984 A
4467146 Lassaux Aug 1984 A
4485815 Amplatz Dec 1984 A
4506676 Duska Mar 1985 A
4533946 Yasuhara et al. Aug 1985 A
4541106 Belanger et al. Sep 1985 A
4543959 Sepponen Oct 1985 A
4544948 Okazaki Oct 1985 A
4544949 Kurihara Oct 1985 A
4548208 Niemi Oct 1985 A
4559557 Keyes et al. Dec 1985 A
4572198 Codrington Feb 1986 A
4574265 Kaiser Mar 1986 A
4575752 Honda Mar 1986 A
4583538 Onik et al. Apr 1986 A
4584577 Temple Apr 1986 A
4586926 Osborne May 1986 A
4613866 Blood Sep 1986 A
4618978 Cosman Oct 1986 A
4621628 Bludermann Nov 1986 A
4625718 Olerud et al. Dec 1986 A
4628355 Ogura et al. Dec 1986 A
4639867 Suzuki et al. Jan 1987 A
4642786 Hansen Feb 1987 A
4645343 Stockdale et al. Feb 1987 A
4649504 Krouglicof et al. Mar 1987 A
4649561 Arnold Mar 1987 A
4651732 Frederick Mar 1987 A
4653509 Oloff et al. Mar 1987 A
4673352 Hansen Jun 1987 A
4689670 Okazaki Aug 1987 A
4692864 Shimoni et al. Sep 1987 A
4706665 Gouda Nov 1987 A
4719419 Dawley Jan 1988 A
4722056 Roberts et al. Jan 1988 A
4722336 Kim et al. Feb 1988 A
4724110 Arnold Feb 1988 A
4727565 Ericson Feb 1988 A
4729379 Ohe Mar 1988 A
4736398 Graeff et al. Apr 1988 A
4737794 Jones Apr 1988 A
4737921 Goldwasser et al. Apr 1988 A
4750487 Zanetti Jun 1988 A
4764944 Finlayson Aug 1988 A
4771787 Wurster et al. Sep 1988 A
4791934 Brunnett Dec 1988 A
4793355 Crum et al. Dec 1988 A
4797907 Anderton Jan 1989 A
4803976 Frigg et al. Feb 1989 A
4821206 Arora Apr 1989 A
4821213 Cline et al. Apr 1989 A
4821731 Martinelli et al. Apr 1989 A
4829373 Leberl et al. May 1989 A
4836778 Baumrind et al. Jun 1989 A
4845771 Wislocki et al. Jul 1989 A
4849692 Blood Jul 1989 A
4862893 Martinelli Sep 1989 A
4870692 Zuiderveld et al. Sep 1989 A
4889526 Rauscher et al. Dec 1989 A
4905698 Strohl, Jr. et al. Mar 1990 A
4923459 Nambu May 1990 A
4931056 Ghajar et al. Jun 1990 A
4945305 Blood Jul 1990 A
4945914 Allen Aug 1990 A
4951653 Fry et al. Aug 1990 A
4977655 Martinelli Dec 1990 A
4989608 Ratner Feb 1991 A
4991579 Allen Feb 1991 A
5002058 Martinelli Mar 1991 A
5005578 Greer et al. Apr 1991 A
5005592 Cartmell Apr 1991 A
5013317 Cole et al. May 1991 A
5016639 Allen May 1991 A
5027818 Bova et al. Jul 1991 A
5030196 Inoue Jul 1991 A
5030222 Calandruccio et al. Jul 1991 A
5031203 Trecha Jul 1991 A
5042486 Pfeiler et al. Aug 1991 A
5050608 Watanabe et al. Sep 1991 A
5054492 Scribner et al. Oct 1991 A
5057095 Fabian Oct 1991 A
5059789 Salcudean Oct 1991 A
5070454 Griffith Dec 1991 A
5078142 Siczek et al. Jan 1992 A
5079699 Tuy et al. Jan 1992 A
5086401 Glassman et al. Feb 1992 A
5094241 Allen Mar 1992 A
5097839 Allen Mar 1992 A
5099845 Besz et al. Mar 1992 A
5105829 Fabian et al. Apr 1992 A
5107839 Houdek et al. Apr 1992 A
5107843 Aarnio et al. Apr 1992 A
5107862 Fabian et al. Apr 1992 A
5109194 Cantaloube Apr 1992 A
5119817 Allen Jun 1992 A
5142930 Allen et al. Sep 1992 A
5142939 Bauer et al. Sep 1992 A
5152288 Hoenig et al. Oct 1992 A
5154179 Ratner Oct 1992 A
5160337 Cosman Nov 1992 A
5161536 Vikomerson et al. Nov 1992 A
5172115 Kerth et al. Dec 1992 A
5178164 Allen Jan 1993 A
5178621 Cook et al. Jan 1993 A
5186174 Schlondorff et al. Feb 1993 A
5187475 Wagener et al. Feb 1993 A
5188126 Fabian et al. Feb 1993 A
5189690 Samuel Feb 1993 A
5190059 Fabian et al. Mar 1993 A
5193106 DeSena Mar 1993 A
5197476 Nowacki et al. Mar 1993 A
5197965 Cherry et al. Mar 1993 A
5198768 Keren Mar 1993 A
5198877 Schulz Mar 1993 A
5211164 Allen May 1993 A
5211165 Dumoulin et al. May 1993 A
5211176 Ishiguro et al. May 1993 A
5212720 Landi et al. May 1993 A
5214615 Bauer May 1993 A
5219351 Teubner et al. Jun 1993 A
5222499 Allen et al. Jun 1993 A
5228442 Imran Jul 1993 A
5229935 Yamagishi et al. Jul 1993 A
5230338 Allen et al. Jul 1993 A
5230623 Guthrie et al. Jul 1993 A
5233990 Barnea Aug 1993 A
5235927 Singh et al. Aug 1993 A
5237996 Waldman et al. Aug 1993 A
5249581 Horbal et al. Oct 1993 A
5251127 Raab Oct 1993 A
5251635 Dumoulin et al. Oct 1993 A
5253647 Takahashi et al. Oct 1993 A
5255680 Darrow et al. Oct 1993 A
5257629 Kitney et al. Nov 1993 A
5257636 White Nov 1993 A
5265610 Darrow et al. Nov 1993 A
5265611 Hoenig et al. Nov 1993 A
5269759 Hernandez et al. Dec 1993 A
5271400 Dumoulin et al. Dec 1993 A
5273025 Sakiyama et al. Dec 1993 A
5274551 Corby, Jr. Dec 1993 A
5276927 Day Jan 1994 A
5279309 Taylor et al. Jan 1994 A
5291199 Overman et al. Mar 1994 A
5295483 Nowacki et al. Mar 1994 A
5297549 Beatty et al. Mar 1994 A
5299254 Dancer et al. Mar 1994 A
5299288 Glassman et al. Mar 1994 A
5305091 Gelbart et al. Apr 1994 A
5305203 Raab Apr 1994 A
5309913 Kormos et al. May 1994 A
5315630 Sturm et al. May 1994 A
5316024 Hirschi et al. May 1994 A
5318025 Dumoulin et al. Jun 1994 A
5320111 Livingston Jun 1994 A
5325728 Zimmerman et al. Jul 1994 A
5325873 Hirschi et al. Jul 1994 A
5329944 Fabian et al. Jul 1994 A
5333168 Fernandes et al. Jul 1994 A
5353795 Souza et al. Oct 1994 A
5353800 Pohndorf et al. Oct 1994 A
5353807 DeMarco Oct 1994 A
5368030 Zinreich et al. Nov 1994 A
5369678 Chiu et al. Nov 1994 A
5375596 Twiss et al. Dec 1994 A
5377678 Dumoulin et al. Jan 1995 A
5383454 Bucholz Jan 1995 A
5385146 Goldreyer Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5386828 Owens et al. Feb 1995 A
5389101 Heilbrun et al. Feb 1995 A
5391199 Ben-Haim Feb 1995 A
5394457 Leibinger et al. Feb 1995 A
5397329 Allen Mar 1995 A
5398684 Hardy Mar 1995 A
5399146 Nowacki et al. Mar 1995 A
5400384 Fernandes et al. Mar 1995 A
5402801 Taylor Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5417210 Funda et al. May 1995 A
5419325 Dumoulin et al. May 1995 A
5423334 Jordan Jun 1995 A
5425367 Shapiro et al. Jun 1995 A
5425382 Golden et al. Jun 1995 A
5426683 O'Farrell, Jr. et al. Jun 1995 A
5426687 Goodall et al. Jun 1995 A
5427097 Depp Jun 1995 A
5429132 Guy et al. Jul 1995 A
5433198 Desai Jul 1995 A
RE35025 Anderton Aug 1995 E
5437277 Dumoulin et al. Aug 1995 A
5442674 Picard et al. Aug 1995 A
5443066 Dumoulin et al. Aug 1995 A
5443489 Ben-Haim Aug 1995 A
5444756 Pai et al. Aug 1995 A
5445144 Wodicka et al. Aug 1995 A
5445150 Dumoulin et al. Aug 1995 A
5445166 Taylor Aug 1995 A
5446548 Gerig et al. Aug 1995 A
5447154 Cinquin et al. Sep 1995 A
5448610 Yamamoto et al. Sep 1995 A
5453686 Anderson Sep 1995 A
5456718 Szymaitis Oct 1995 A
5458718 Venkitachalam Oct 1995 A
5464446 Dreessen et al. Nov 1995 A
5478341 Cook et al. Dec 1995 A
5478343 Ritter Dec 1995 A
5480422 Ben-Haim Jan 1996 A
5483961 Kelly et al. Jan 1996 A
5485849 Panescu et al. Jan 1996 A
5487391 Panescu Jan 1996 A
5487729 Avellanet et al. Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5490196 Rudich et al. Feb 1996 A
5494034 Schlondorff et al. Feb 1996 A
5497008 Kumakhov Mar 1996 A
5503416 Aoki et al. Apr 1996 A
5513637 Twiss et al. May 1996 A
5515160 Schulz et al. May 1996 A
5517990 Kalfas et al. May 1996 A
5531227 Schneider Jul 1996 A
5531520 Grimson et al. Jul 1996 A
5542938 Avellanet et al. Aug 1996 A
5543951 Moehrmann Aug 1996 A
5546940 Panescu et al. Aug 1996 A
5546949 Frazin et al. Aug 1996 A
5546951 Ben-Haim Aug 1996 A
5551429 Fitzpatrick et al. Sep 1996 A
5551431 Wells, III et al. Sep 1996 A
5558091 Acker et al. Sep 1996 A
5568809 Ben-haim Oct 1996 A
5572999 Funda et al. Nov 1996 A
5573533 Strul Nov 1996 A
5575794 Walus et al. Nov 1996 A
5583909 Hanover Dec 1996 A
5588430 Bova et al. Dec 1996 A
5590215 Allen Dec 1996 A
5592939 Martinelli Jan 1997 A
5595193 Walus et al. Jan 1997 A
5596228 Anderton et al. Jan 1997 A
5600330 Blood Feb 1997 A
5603318 Heilbrun et al. Feb 1997 A
5611025 Lorensen et al. Mar 1997 A
5617462 Spratt Apr 1997 A
5617857 Chader et al. Apr 1997 A
5619261 Anderton Apr 1997 A
5622169 Golden et al. Apr 1997 A
5622170 Schulz Apr 1997 A
5627873 Hanover et al. May 1997 A
5628315 Vilsmeier et al. May 1997 A
5630431 Taylor May 1997 A
5636644 Hart et al. Jun 1997 A
5638819 Manwaring et al. Jun 1997 A
5640170 Anderson Jun 1997 A
5642395 Anderton et al. Jun 1997 A
5643268 Vilsmeier et al. Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5647360 Bani-Hashemi et al. Jul 1997 A
5647361 Damadian Jul 1997 A
5651047 Moorman et al. Jul 1997 A
5662111 Cosman Sep 1997 A
5664001 Tachibana et al. Sep 1997 A
5671265 Andress Sep 1997 A
5674296 Bryan et al. Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5681260 Ueda et al. Oct 1997 A
5682886 Delp et al. Nov 1997 A
5682890 Kormos et al. Nov 1997 A
5690106 Bani-Hashemi et al. Nov 1997 A
5690108 Chakeres Nov 1997 A
5694945 Ben-Haim Dec 1997 A
5695500 Taylor et al. Dec 1997 A
5695501 Carol et al. Dec 1997 A
5696500 Diem Dec 1997 A
5697377 Wittkampf Dec 1997 A
5702406 Vilsmeier et al. Dec 1997 A
5711299 Manwaring et al. Jan 1998 A
5713946 Ben-Haim Feb 1998 A
5715822 Watkins Feb 1998 A
5715836 Kliegis et al. Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5727552 Ryan Mar 1998 A
5727553 Saad Mar 1998 A
5729129 Acker Mar 1998 A
5730129 Darrow et al. Mar 1998 A
5730130 Fitzpatrick et al. Mar 1998 A
5732703 Kalfas et al. Mar 1998 A
5735278 Hoult et al. Apr 1998 A
5738096 Ben-Haim Apr 1998 A
5741214 Ouchi et al. Apr 1998 A
5742394 Hansen Apr 1998 A
5744953 Hansen Apr 1998 A
5748767 Raab May 1998 A
5749362 Funda et al. May 1998 A
5749835 Glantz May 1998 A
5752513 Acker et al. May 1998 A
5755725 Druais May 1998 A
RE35816 Schulz Jun 1998 E
5758667 Slettenmark Jun 1998 A
5762064 Polvani Jun 1998 A
5767699 Bosnyak et al. Jun 1998 A
5769789 Wang et al. Jun 1998 A
5769861 Vilsmeier Jun 1998 A
5772594 Barrick Jun 1998 A
5775322 Silverstein et al. Jul 1998 A
5776064 Kalfas et al. Jul 1998 A
5782765 Jonkman Jul 1998 A
5787886 Kelly et al. Aug 1998 A
5792055 McKinnon Aug 1998 A
5795294 Luber et al. Aug 1998 A
5797849 Vesely et al. Aug 1998 A
5799055 Peshkin et al. Aug 1998 A
5799099 Wang et al. Aug 1998 A
5800352 Ferre et al. Sep 1998 A
5800535 Howard, III Sep 1998 A
5802719 O'Farrell, Jr. et al. Sep 1998 A
5803089 Ferre et al. Sep 1998 A
5807252 Hassfeld et al. Sep 1998 A
5810728 Kuhn Sep 1998 A
5810735 Halperin et al. Sep 1998 A
5812629 Clauser Sep 1998 A
5823192 Kalend et al. Oct 1998 A
5823958 Truppe Oct 1998 A
5827187 Wang et al. Oct 1998 A
5828725 Levinson Oct 1998 A
5829444 Ferre et al. Nov 1998 A
5831260 Hansen Nov 1998 A
5833608 Acker Nov 1998 A
5834759 Glossop Nov 1998 A
5836954 Heilbrun et al. Nov 1998 A
5840024 Taniguchi et al. Nov 1998 A
5840025 Ben-Haim Nov 1998 A
5843076 Webster, Jr. et al. Dec 1998 A
5848967 Cosman Dec 1998 A
5851183 Bucholz Dec 1998 A
5865846 Bryan et al. Feb 1999 A
5868674 Glowinski et al. Feb 1999 A
5868675 Henrion et al. Feb 1999 A
5871445 Bucholz Feb 1999 A
5871455 Ueno Feb 1999 A
5871487 Warner et al. Feb 1999 A
5873822 Ferre et al. Feb 1999 A
5884410 Prinz Mar 1999 A
5891034 Bucholz Apr 1999 A
5891157 Day et al. Apr 1999 A
5904691 Barnett et al. May 1999 A
5907395 Schulz et al. May 1999 A
5913820 Bladen et al. Jun 1999 A
5920395 Schulz Jul 1999 A
5921992 Costales et al. Jul 1999 A
5923727 Navab Jul 1999 A
5928248 Acker Jul 1999 A
5938603 Ponzi Aug 1999 A
5938694 Jaraczewski et al. Aug 1999 A
5947981 Cosman Sep 1999 A
5950629 Taylor et al. Sep 1999 A
5951475 Gueziec et al. Sep 1999 A
5954647 Bova et al. Sep 1999 A
5954796 McCarty et al. Sep 1999 A
5967980 Ferre et al. Oct 1999 A
5968047 Reed Oct 1999 A
5971997 Guthrie et al. Oct 1999 A
5976156 Taylor et al. Nov 1999 A
5980535 Barnett et al. Nov 1999 A
5983126 Wittkampf Nov 1999 A
5987349 Schulz Nov 1999 A
5987960 Messner et al. Nov 1999 A
5999837 Messner et al. Dec 1999 A
5999840 Grimson et al. Dec 1999 A
6001130 Bryan et al. Dec 1999 A
6006126 Cosman Dec 1999 A
6016439 Acker Jan 2000 A
6019725 Vesely et al. Feb 2000 A
6024695 Taylor et al. Feb 2000 A
6050724 Schmitz et al. Apr 2000 A
6059718 Taniguchi et al. May 2000 A
6061587 Kucharczyk et al. May 2000 A
6063022 Ben-Haim May 2000 A
6073043 Schneider Jun 2000 A
6094474 Vezina Jul 2000 A
6104944 Martinelli Aug 2000 A
6118845 Simon et al. Sep 2000 A
6122538 Sliwa, Jr. et al. Sep 2000 A
6131396 Duerr et al. Oct 2000 A
6139183 Graumann Oct 2000 A
6149592 Yanof et al. Nov 2000 A
6156067 Bryan et al. Dec 2000 A
6161032 Acker Dec 2000 A
6167296 Shahidi Dec 2000 A
6167445 Gai et al. Dec 2000 A
6172499 Ashe Jan 2001 B1
6175756 Ferre et al. Jan 2001 B1
6223067 Vilsmeier Apr 2001 B1
6233476 Strommer et al. May 2001 B1
6246231 Ashe Jun 2001 B1
6249754 Neul et al. Jun 2001 B1
6273896 Franck et al. Aug 2001 B1
6298262 Franck et al. Oct 2001 B1
6332089 Acker et al. Dec 2001 B1
6341231 Ferre et al. Jan 2002 B1
6351659 Vilsmeier Feb 2002 B1
6356617 Besch et al. Mar 2002 B1
6381485 Hunter et al. Apr 2002 B1
6424856 Vilsmeier et al. Jul 2002 B1
6428547 Vilsmeier et al. Aug 2002 B1
6434415 Foley et al. Aug 2002 B1
6437567 Schenck et al. Aug 2002 B1
6445943 Ferre et al. Sep 2002 B1
6463318 Prince Oct 2002 B2
6470207 Simon et al. Oct 2002 B1
6474341 Hunter et al. Nov 2002 B1
6491647 Bridger et al. Dec 2002 B1
6493573 Martinelli et al. Dec 2002 B1
6498944 Ben-Haim et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6527443 Vilsmeier et al. Mar 2003 B1
6551325 Neubauer et al. Apr 2003 B2
6584174 Schubert et al. Jun 2003 B2
6609022 Vilsmeier et al. Aug 2003 B2
6611700 Vilsmeier et al. Aug 2003 B1
6640128 Vilsmeier et al. Oct 2003 B2
6669635 Kessman et al. Dec 2003 B2
6675037 Tsekos Jan 2004 B1
6690965 Riaziat et al. Feb 2004 B1
6694162 Hartlep Feb 2004 B2
6701179 Martinelli et al. Mar 2004 B1
6718055 Suri Apr 2004 B1
Foreign Referenced Citations (58)
Number Date Country
964149 Mar 1975 CA
3042343 Jun 1982 DE
3508730 Sep 1986 DE
3717871 Dec 1988 DE
3831278 Mar 1989 DE
3838011 Jul 1989 DE
3904595 Apr 1990 DE
3902249 Aug 1990 DE
4225112 Dec 1993 DE
4233978 Apr 1994 DE
4432890 Mar 1996 DE
19829230 Mar 2000 DE
10085137 Nov 2002 DE
0018166 Oct 1980 EP
0155857 Sep 1985 EP
0 319 844 Jan 1988 EP
0419729 Sep 1989 EP
0350996 Jan 1990 EP
350996 Jan 1990 EP
0359773 Mar 1990 EP
0 651 968 Aug 1990 EP
0427358 May 1991 EP
0456103 Nov 1991 EP
0469966 Feb 1992 EP
0501993 Sep 1992 EP
0 581 704 Jul 1993 EP
0655138 Aug 1993 EP
0894473 Jan 1995 EP
0908146 Apr 1999 EP
2417970 Sep 1979 FR
2094590 Sep 1982 GB
2765738 Apr 1998 JP
WO 8809151 Dec 1988 WO
WO 8905123 Jun 1989 WO
WO 9005494 May 1990 WO
WO 9103982 Apr 1991 WO
WO 9104711 Apr 1991 WO
WO 9107726 May 1991 WO
WO 9200702 Jan 1992 WO
WO 9203090 Mar 1992 WO
WO 9206645 Apr 1992 WO
WO 9404938 Mar 1994 WO
WO 9406352 Mar 1994 WO
WO 9423647 Oct 1994 WO
WO 9424933 Nov 1994 WO
WO 9611624 Apr 1996 WO
WO 9808554 Mar 1998 WO
WO 9838908 Sep 1998 WO
WO 9915097 Apr 1999 WO
WO 9921498 May 1999 WO
WO 9926549 Jun 1999 WO
WO 9927839 Jun 1999 WO
WO 9929253 Jun 1999 WO
WO 9933406 Jul 1999 WO
WO 9938449 Aug 1999 WO
WO 9960939 Dec 1999 WO
WO 0000086 Jan 2000 WO
WO 0130437 May 2001 WO
Related Publications (1)
Number Date Country
20030191394 A1 Oct 2003 US