The present invention relates to a method for continuously washing a fibre suspension with washing liquid.
The invention also relates to an apparatus for continuous washing of a fibre suspension with washing liquid, comprising
U.S. Pat. No. 5,556,508 describes an apparatus for treating a fibre suspension that is fed into a displacement space, the outer limitation wall of which is rotatable and perforated to allow the washing liquid to be pressed through the limitation wall into the displacement space. The reject, that is the liquid displaced by the washing liquid, is drawn off by means of a channel located radially inside the displacement space. Thus, the washing liquid must be added with a significantly high pressure to be able to be pressed through the perforated wall into the displacement space and the fibre suspension added thereto, which offers powerful resistance, as fibres will be pressed against the inside of the perforated wall because of the rotation and form a thickened fibre mat blocking the openings in the perforated wall. In such an apparatus, there is a great risk of the fibre suspension being thickened in certain locations in the system of channels, with accompanying clogging and stoppages. In addition, there is a great risk of the washing liquid added under high pressure being pressed through said fibre mat in the locations where it presents less resistance so that channels are formed and the displacement effect is significantly impaired or ceases completely. Accordingly, the known washing apparatus has a relatively low degree of efficiency.
The object of the present invention is to provide a new method and a new apparatus for washing a fibre suspension that at least significantly reduces the above-mentioned problems.
The method in accordance with the invention is characterized in that
The apparatus in accordance with the invention is characterized in
The invention will be further described with reference to the accompanying drawings.
In the drawings, white arrows indicate flows of fibre suspension and black arrows flows of liquid.
The rotor unit 1 is rotatably journalled to rotate about an axis of rotation 5, defined by an elongate shaft 6 that extends through the three sections 2, 3, 4. The apparatus has a stand, including two floor supports 7, 8, spaced from each other and located axially outside the inlet section 2 and the outlet section 4, respectively. The shaft 6, which is driven by a motor (not shown), is rotatably journalled in bearing members 9 at the ends of the apparatus.
The inlet section 2 has an inlet 10 for pulp, connecting tangentially to an inner, elongate, concentric, annular inlet channel 11, and a similar inlet 12 for washing liquid, connecting tangentially to an outer, elongate, concentric, annular inlet channel 13, the inlet 12 for washing liquid being arranged radially outside the pulp inlet 10 and axially somewhat displaced relative to the same. The inlet channel 11 is defined by a first, inner wall element 14, which forms part of the rotor unit 1 and which thus is rotatable. The inner wall element 14 is concentric with the axis of rotation 5 and is located a pre-determined minimum distance from the same, which distance increases in the direction of flow, as is evident from FIG. 1. The inlet channel 11 is further defined by a second, outer wall element 15, concentric with the axis of rotation 5 and located radially outside the inner wall element 14. The inlet channel 13 is defined by an inner wall element, formed by said wall element 15 and an outer wall element 47.
The outlet section 4 has an outlet 16 for the accept and a first, concentric, annular outlet channel 17, to which the accept outlet 16 connects tangentially, and a similar outlet 18 for the reject and a second, concentric, annular outlet channel 19, to which the reject outlet 18 connects tangentially. The outlet channels 17, 19 are arranged axially adjacent to each other. The outlet channel 19 for the reject is in communication with the treatment section 3 via an axial, concentric, annular connection channel 20, which thus is located radially inside said outlet channel 17 for the accept. The connection channel 20 is defined by inner and outer wall elements 21, 22 that both form part of the rotor unit 1 and are concentric with the axis of rotation 5, the outer wall element 22 being supported by the inner wall element 21 by means of a plurality of radial support elements 23, which are inclined in the direction of flow to exert an axial feeding effect on the reject. The connection channel 20 has a pre-determined radial extension, i.e. the difference in radius between wall elements 21 and 22.
The treatment section 3 has an annular, concentric treatment channel 24 that has a pre-determined, long extension and is provided with an inlet end 72 and an outlet end 73. The treatment channel 24 is in direct, open communication with said channels 11, 13 and 17, 19, 20 of the inlet and outlet sections 2, 4, respectively, via these inlet and outlet ends 72, 73. In other words, there are no flow-impeding or flow-limiting, screen-like or perforated construction elements in the transitions between the channels at said inlet and outlet ends 72, 73, nor in the actual channels. The treatment channel 24 is defined by a first, inner, wall element 25 that is impermeable to liquid and forms part of the rotor unit 1. The inner wall element 25 is concentric with the axis of rotation 5 and located a pre-determined constant distance from the same. The treatment channel 24 is further defined by a second, outer, wall element 26 that is impermeable to liquid, concentric with the axis of rotation 5 and located radially outside the inner wall element 25. As mentioned above, the inlet channels 11, 13 discharge directly into the treatment channel 24 via its inlet end 72, the inlet channels 11, 13 being arranged to discharge into the treatment channel 24 radially outside and adjacent to each other so that they are in contact with each other. The inner wall element 25 is provided with a plurality of impeller vanes 27, which thus are located in the treatment channel 24 to cause the content, consisting of fibres and liquid, to rotate about the axis of rotation 5 in a helical movement path during its passage through the treatment channel 24. As the treatment channel 24 is free from any kind of flow-impeding or flow-limiting construction element, such as screen elements, for instance, the fibres in the fed-in pulp have complete freedom, during rotation in the treatment channel under the influence of the centripetal force, to move within and out of the liquid phase of the pulp in the direction away from the inner wall element 25 to form an inner, annular, aqueous layer 28, having low fibre content, and an outer, annular, aqueous layer 29, having high fibre content. As the object is to separate the inner liquid layer 28 of low fibre content, the reject, from the outer layer 29 of high fibre content, the accept, the connection channel 20 is thus dimensioned for the reject so that its radial extension corresponds to the radial extension, that is the thickness, of the liquid layer 28 of low fibre content as measured in close proximity to the connection channel 20, that is at the outlet end 73 of the treatment channel 24 where its thickness for natural reasons is greatest. Thus, the liquid layer 28 of low fibre content is removed via the first, inner connection channel 20 for reject, whilst the aqueous layer 29 of high fibre content is discharged via a second, outer connection channel 30. The inner wall element 14 of the inlet channel 11 is likewise provided with impeller vanes (omitted in FIG. 2), which constitute extensions of the impeller vanes 27. Similar impeller vanes can also be arranged on the inner wall element 15 of the inlet channel 13.
In the embodiment shown in
The inlet section 2 comprises a concentric, tubular body 37, one end of which is rigidly mounted, for instance by welding, to the nearby bearing member 9 of the floor support 7, whilst the other end is free so that a free, radially expanded end portion surrounds the conical casing part 32 and a small portion of the cylindrical casing part 33 and so that said free end and the opposing cylindrical casing part 33 define between them an annular free opening 38. Said pulp inlet 10 connects tangentially to this tubular body 37, which thus forms said outer wall element 15 of the inlet section 2.
The outlet section 4 comprises an inner, an outer and an intermediate, flat ring 39, 40 and 41, respectively. The inner ring 39 and the intermediate ring 41 define between them said outlet channel 17 for the accept, whilst the outer ring 40 and the intermediate ring 41 define between them said outlet channel 19 for the reject. Cylindrical walls 42, 43 are rigidly attached to the three said flat rings 39, 40, 41 to define circumferentially said outlet channels 17 and 19, respectively.
A cylindrical, outer casing 44 with a constant circular cross section is rigidly attached by one of its ends to the inner, flat ring 39 of the outlet section 4 and by its other end to an end plate 45, which in turn is rigidly mounted to the tubular body 37 of the inlet section 2. Thus, the casing 44 forms said outer wall elements 47 and 26 of the outer inlet channel 13 and the treatment channel 24, respectively. In the embodiment shown in
As previously mentioned, the washing-liquid inlet 12 is located a radial distance from the shaft 6 greater than that of the pulp inlet 10 and adjacent to the cylindrical casing 44 of the stator unit, so that the washing liquid in the subsequent inlet channel 13 will follow the inside of the casing 44 and the outside of the wall element 15, around the same in a helical path and, accordingly, with an axial movement component in the direction towards and into the treatment channel 24, to form an outer annular layer 75 of washing liquid at the inlet end 72 of the treatment channel 24. The pulp simultaneously flowing into the inlet channel 11 follows the inside of the wall element 15 and the outside of the wall element 14 around the same in a helical path and, accordingly, with an axial movement component in the direction towards and into the treatment channel 24, via the opening 38, to form an inner annular layer 74 of pulp at the inlet end 72 of the treatment channel, which pulp layer 74 encounters the washing-liquid layer 75 without the layers 74, 75 mixing with each other with the exception of the boundary zone between them. The rotor unit 1 will influence the pulp layer 74 to continue rotating in a movement path about the axis of rotation 5 and, as the outlets 16, 18 are open for continuous discharge, the movement path will be helical. As the pulp layer 74 is in direct physical contact with the washing-liquid layer 75 located radially outside it, the pulp layer 74 will influence the washing-liquid layer 75 so that this likewise moves in its above-mentioned helical path with the same incline, that is with the same movement component towards the outlet, possibly disregarding a small zone adjacent to the inside of the casing 44 due to the friction between the same and the liquid. Due to the fact that a fibre is heavier (approximately 5 per cent heavier) than the corresponding volume of liquid, the fibre will be influenced by the centripetal force so that it moves in the direction towards the casing 44 of the stator unit to be received by the washing-liquid layer 75, which thereby obtains an increasing fibre content in the direction towards the outlet end 73, whilst the pulp layer 74 simultaneously obtains a corresponding diminishing fibre content, so that said reject layer 28 is formed in proximity to the outlet end 73 to be removed from the apparatus via the connection channel 20, the outlet channel 19 and the reject outlet 18. The washing liquid now forms the liquid phase of the simultaneously obtained accept layer 29. In other words, the fibres have been moved radially outwards from an inner, unclean liquid phase to an outer, cleaner or fresh liquid phase, depending on the quality of the washing liquid.
As the outer casing 44 is stationary, one or more helical vanes can be arranged on the inside of the casing 44, which helical vanes extend in a helix, like a thread, from the upstream end of the casing to its downstream end. Such a helical vane, which can have a height of 2 mm, assists in feeding the material towards the outlet section. The outlet 16 for the accept is provided with a supply pipe 48 for diluting liquid (see
If so desired, the outer casing 44, comprising the outer wall elements 26, 47, can be made to rotate together with the inner casing 31, i.e. to form part of the rotor unit 1 by means of connection pieces, similar to the support elements 23, being arranged between the casings 31, 44, and slide and sealing devices being arranged between the thus movable, outer casing and the opposing fixed construction elements at the movable, outer casing.
The washing-liquid inlet 12 in the apparatus shown in
The apparatus in accordance with
The treatment channels shown in
The rotor unit 101 is rotatably journalled to rotate about an axis of rotation 105, defined by an elongate shaft 106, extending throughout the outlet and treatment sections 104, 103 and partially into the inlet section 102. The apparatus has a stand, including two floor supports 107, 108, spaced from each other and located axially inside the inlet section 102 and the outlet section 104, respectively. Bearing members 109 for rotatably journalling the shaft 106, which is driven by a motor (not shown), are arranged at the ends of the apparatus.
The inlet section 102 has an inlet 110 for pulp, which connects tangentially to an inner, elongate inlet channel 111, concentric with the axis of rotation 105 and a similar inlet 112 for washing liquid (see FIG. 8), which connects to an outer, elongate, concentric inlet channel 113, the inlet 112 for washing liquid being arranged radially outside the pulp inlet 110 and axially somewhat displaced relative to the same. The inlet channel 111 has an axial first part 181, coaxial with the axis of rotation 105, and a conical second part 182, in which the inlet channel 111 is defined by an inner wall element 114, which forms part of the rotor unit 101 and is thus rotatable. The inner wall element 114 is concentric with the axis of rotation 5 and has a certain conicity. The inlet channel ill is further defined by an outer cylindrical wall element 115, concentric with the axis of rotation 105. The inlet channel 113 likewise has an axial first part 203 and a conical second part 208. The inlet channel 113 is defined by an inner wall element, which is formed by said wall element 115 and a conical wall element 202, in one piece with the wall element 115. Further, the inlet channel 113 is defined by an outer wall element 147, formed by a concentric tube part 207 and a conical wall element 210.
The outlet section 104 has an outlet 116 for the accept (see
The treatment section 103 has an annular, concentric treatment channel 124 that has a pre-determined, elongate, conical extension and exhibits an inlet end 172 and an outlet end 173. The treatment channel 124 is in direct open communication with said channels 111, 113, and 117, 187, 188 of the inlet and outlet sections 102 and 104, respectively, via these inlet and outlet ends 172, 173. In other words, there are no flow-impeding or flow-limiting, screen-like or perforated construction elements in the transitions between the channels at said inlet and outlet ends 172, 173, nor in the actual channels. The treatment channel 124 is defined by a first, inner, conical wall element 125 that is impermeable to liquid and forms part of the rotor unit 101. The inner wall element 125 is concentric with the axis of rotation 105 and is located a pre-determined distance from the same, as measured at the inlet end 172. Further, the treatment channel 124 is defined by a second, outer, conical wall element 126 that is impermeable to liquid and concentric with the axis of rotation 105 and located radially outside the inner wall element 125. As mentioned above, the inlet channels 111, 113 discharge directly into the treatment channel 124 via its inlet end 172, the inlet channels 111, 113 being arranged to discharge into the treatment channel 124 radially outside each other and adjacent to each other so that they are in contact. The inner wall element 125 is provided with a plurality of impeller vanes 127, which thus are located in the treatment channel 124 to cause the content, which thus consist of liquid and fibres, to rotate about the axis of rotation 105 in a helical movement path during its passage through the treatment channel 124. As the treatment channel 124 is free from any kind of flow-impeding or flow-limiting construction elements, such as screen elements, for instance, the fibres in the fed-in pulp have complete freedom, during rotation in the treatment channel under the influence of the centripetal force, to move within and out of the liquid phase of the pulp in the direction away from the inner wall element 125 to form an inner, annular, aqueous layer 128, of low fibre content, and an outer, annular, aqueous layer 129, of high fibre content.
In the embodiment shown in
The coaxial first part 181 of the inlet channel 111 consists of a stationary tube 194 and a rotatable tube 195, tightly joined to the end of the stationary tube 194 via a stationary ring 196, in turn connected to the bearing members 109, which are arranged on the support 107 and in which the tube 195 is rotatably journalled. A rotor cross 198 has a first part 199, rigidly mounted inside the rotatable tube 195, and a second part 200, protruding from the fixed, first part 199 to be freely received by the stationary tube 194 for rotation inside the same. The rotor cross 198 has vanes 197 (see
The outlet section 104 comprises first and second rings 139 and 141, respectively, that define between them said outlet channel 117 for the accept. The second ring 141 and the end wall 204 define between them said outlet channel 186 for the second reject. The two flat rings 139, 141 and the end wall 204 are rigidly attached to a cylindrical wall 142, which circumferentially defines said outlet channels 117 and 186.
A conical, outer casing 144, having a diameter increasing in the direction of flow, is at its downstream end provided with an annular slide and sealing device 205, co-operating with said cylinder wall 142, and at its upstream end provided with an annular slide and sealing device 206, co-operating with said non-rotating tube part 207. The casing 144 is rigidly connected to the opposite inner casing 131 via the impeller vanes 201, 223 and the wall element 202, thus forming part of the rotor unit 101. The upstream portion of the casing 144 forms said outer wall element 210 in the inlet channel 113. Further, the casing 144 forms the outer wall element 126 in the treatment channel 124 and an outer wall element 209 in the connection channel 130. Both end portions of the apparatus form two stator units, between which the rotor unit 101 extends and to which the rotor unit is rotatably connected by means of said slide and sealing devices 205, 206. The treatment channel 124 has a constant through-flow area, as the casings 131 and 144 have different conicity. As previously mentioned, the washing-liquid inlet 112 is located a radial distance from the shaft 106 that is greater than that of the pulp inlet 110 (which is coaxial) and adjacent to the conical casing 144 of the rotor unit so that the washing liquid in the subsequent inlet channel 113 follows the inside of the casing 144 and the outside of the wall element 202 around these in a helical path and, accordingly, with a movement component in the direction towards and into the treatment channel 124 to form an outer annular layer 175 of washing liquid at the inlet end 172 of the treatment channel 124. The pulp, simultaneously flowing into the inlet channel 111, follows the inside of the wall element 115 and the outside of the wall element 114 in a helical path and, accordingly, with a movement component in the direction towards and into the treatment channel 124 to form an inner annular layer 174 of pulp at the inlet end 172 of the treatment channel 124, which pulp layer 174 encounters the washing-liquid layer 175 without the layers 174, 175 mixing with each other with the exception of the boundary zone between them. The rotor unit 101 will influence the pulp layer 174 to continue rotating in a movement path about the axis of rotation 105 and, as the outlets 116, 183 and 185 are open for continuous discharge, the movement path will be helical. As the pulp layer 174 is in direct physical contact with the layer 175 of washing liquid located radially outside it, the pulp layer 174 will influence the layer 175 of washing liquid so that this likewise moves in its above-mentioned helical path with the same incline, that is with the same movement component towards the outlet. Due to the fact that a fibre is heavier (approximately 5 per cent heavier) than the corresponding volume of liquid, the fibre will be influenced by the centripetal force so that it moves in the direction towards the outer casing 144 to be received by the washing-liquid layer 175, which thereby obtains an increasing fibre content in the direction towards the outlet end 173, whilst the pulp layer 174 simultaneously obtains a corresponding diminishing fibre content, so that said reject layer 128 is formed in proximity to the outlet end 173 to be removed from the apparatus via the connection channels 187, 188, the outlet channels 184, 186 and the reject outlets 183, 185. The washing liquid now forms the liquid phase of the simultaneously obtained accept layer 129. In other words, the fibres have been moved radially outwards from an inner, unclean liquid phase to an outer, cleaner or fresh liquid phase, depending on the quality of the washing liquid.
The outlet 116 for the accept can also in this case be provided with a supply pipe for diluting liquid, if so desired.
In an alternative embodiment (not shown) of the apparatus in accordance with
The apparatus shown in
In the above description and in the appended claims, the expression “annular” is used for a channel even if the channel has impeller vanes that completely or partially close the channel circumferentially. During operation, however, the material moves in the shape of a ring about the axis of rotation.
Number | Date | Country | Kind |
---|---|---|---|
0003856 | Oct 2000 | SE | national |
This application is the U.S. national phase of International Application No. PCT/SE01/02296 filed October 23, 2001, which designed the U.S.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE01/02296 | 10/23/2001 | WO | 00 | 5/22/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/34999 | 5/2/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3964996 | Holz et al. | Jun 1976 | A |
4286512 | Berggren | Sep 1981 | A |
4915830 | Mackay et al. | Apr 1990 | A |
5131544 | Serres et al. | Jul 1992 | A |
5204009 | Rowland | Apr 1993 | A |
5221434 | Henricson | Jun 1993 | A |
5556508 | Ekholm et al. | Sep 1996 | A |
6068772 | Czerwoniak et al. | May 2000 | A |
6071378 | Saito | Jun 2000 | A |
20040040678 | Ekholm et al. | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040040678 A1 | Mar 2004 | US |